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Abstract: Under the noncascade structure, the balance between q-axis current constraint and dynamic performance in
permanent-magnet synchronous motor system has become a critical problem. On the one hand, large transient current
is required to provide high torque to achieve fast dynamic performance. On the other hand, current constraint becomes
a state constraint problem, instead of governing q-axis reference current in the cascade structure directly. Aiming at this
issue, a novel fast terminal sliding mode control (FTSMC)-based controller with current constraint is developed in this
paper. The novelty of this scheme is related to the proposed penalty function based on interior point method, which
is established in control action directly. Unlike ordinary solutions, the suggested solution combined with sliding mode
variable can achieve current constraint of q-axis without scarifying dynamic performance. Furthermore, by adopting the
FTSMC-type surface and new reaching law, the proposed implementation guarantees high performance with significant
reduction of chattering phenomenon and has fast convergence characteristics. Then, the stability proof of the whole
closed-loop system by employing the Lyapunov method is given in detail. Finally, series of simulations are provided to
evaluate the performance of the presented FTSMC-type controller, in terms of current constraint, dynamic performance,
and chattering reduction.

Key words: Permanent-magnet synchronous motor, current constraint, fast terminal sliding mode control, reaching
law

1. Introduction
In real industrial applications, permanent-magnet synchronous motor (PMSM) as a powerful competent has
been extensively investigated in applications of motion control system, due to its merits such as high-power
density, low inertia, and high efficiency [1].

So far, field-orientation control (FOC) framework with two loops has been extensively used for PMSM
control systems [2]. Under this framework, PI controllers of q-axis and d-axis are designed to allow a PMSM to
perform as an excited DC motor [3]. It should be emphasized that conservative parameters should be selected
to reduce system overshoot. It unavoidably leads to weakness in the antiinterference capability and dynamic
performance of PMSM systems [4]. Moreover, PI controllers in cascade structure unavoidably affect the transient
response and dynamic performance of PMSM systems [5]. In addition, the stability proof of two loops is given
in detail, but the stability of the whole cascade system cannot be ensured [6]. Especially the difference of control
frequency between two loops is becoming smaller and even disappeared along with technology development [7].
In such cases, various noncascade approaches with single-loop control structure are developed to overcome the
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shortcomings of cascade control, e.g., modified backstepping control [8], passivity control [9], model predictive
control (MPC) [10], and sliding mode control (SMC) [6], and the system performance is perfected in different
aspects.

Constraint of overlarge current is a critical challenge in the noncascade structure [11]. Because inner loop
and outer loop are integrated, the q-axis current becomes an internal variable instead of the reference signal
of the q-axis controller. Therefore, the overcurrent protection becomes a state constraint problem rather than
restricting the q-axis reference current in the cascade structure directly. Several modern schemes have been
applied to PMSM systems with state constraint [12–15]. In [13], MPC-based PMSM controller with current
constraint was developed to handle the control problem with state constraint. The mechanism of MPC controller
is to produce the control variable by minimizing cost function which is constructed by weight of constrained
states. It should be noted that computation burden of MPC limits the practical application in PMSM systems
[15]. In recent years, backstepping approaches based on barrier Lyapunov function (BLF) have provided us
with an alternative control method for the state-constrained control system by introduction of penalty term
[12]. The principle of BLF is to force the constrained state away from the constraint boundary for achieving
the target of state constraint. Unavoidably, a virtual controller produced in recursive process leads to a more
conservative design [14]. To alleviate the abovementioned drawbacks, a simple PID controller with current
constraint where penalty term is added to control variable directly was proposed in [15]. However, the existence
of a PID controller may weaken the antiinterference ability of the system. While SMC has been regarded as the
most efficient method for disturbance rejection and robustness properties in mechatronic system [16–18], and it
has been applied in PMSM systems successfully.

The SMC method has two main disadvantages [19, 20]. The first obvious shortcoming is asymptotic
convergence to equilibrium point caused by linear features of sliding mode surface, in which the convergence
speed is determined by the control gain [21]. For overcoming this inherent defect, terminal SMC (TSMC) has
been presented to reduce convergence time by introducing the fractional-order nonlinear term, which allows
system states to approach to origin within finite time, regardless of the initial state of system [22]. Compared
with SMC, the addition of nonlinear function in sliding mode variable is to enhance the convergence speed [23].
Particularly, fast TSMC (FTSMC) scheme is developed for further improving control performance. Another
shortcoming that needs to be mentioned is system chattering, which is mainly caused by the discontinuity of
control signal (signum function) near sliding mode surface [24]. Many continuous approximate functions (such
as saturation function and hyperbolic tangent function) are adopted to alleviate the influence of discontinuous
term and reduce chattering, which are at the expense of certain system performance [25].

To overcome the abovementioned problems, inspired by interior point method [26], a novel FTSMC-
based controller with current constraint for noncascade model in PMSM system is designed. In this design,
penalty function is employed in control action directly. The contributions of the paper are summarized as
follows: (1) An FTSMC-type sliding mode variable is adopted to guarantee evolution curve to have finite-
time convergence performance, and scheme with improved reaching law is employed to further achieve faster
convergence performance and chattering reduction. (2) By adopting the idea of interior point method, we
construct the penalty function directly in the control variable to make the control system with state constraints
an unconstrained system. To the best of our knowledge, it is the first time that the penalty function combined
with sliding mode variable is introduced to constrain current in a PMSM system; more importantly, dynamic
performance of the controlled system is preserved. (3) The stability proof of noncascade PMSM system is given
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in detail, rather than giving the stability of inner and outer loop in cascade structure, respectively.
The structure of the paper is designed as follows. In Section 2, the noncascade model and structure of

the PMSM is illustrated in detail. A new reaching law-based FTSMC-type controller with current constraint
is developed in Section 3. Section 4 provides lots of simulations. Finally, the concluding results are shown in
Section 5.

2. A second-order noncascade model for speed regulation system of PMSM

The mathematical model of a surface-mounted PMSM can be formulated as [27]:

i′d =
ud

Ld
−

Rs

Ld
id − ωpniq

i′q =
uq

Lq
−

Rs

Lq
iq − ωpnid −

pnΨf

Lq
ω

dω

dt
=

3pniqΨf

2J
−

TL

J
−

B

J
ω

(1)

where ud and uq are the stator voltages of d-axis and q-axis; id and iq are the stator currents of d-axis and
q-axis; ω and pn are the angular velocity and number of poles pairs; Ld and Lq are stator inductance of d-axis
and q-axis, and Ld = Lq = L ; Rs is the stator resistance; Ψf , TL , J , and B are the rotor flux linkage, load
torque, rotor inertia, and viscous friction coefficient, respectively. From system (1), the dynamics constraint of
the PMSM model between ω and iq is:

dω

dt
=

3pniqΨf

2J
−

TL

J
−

B

J
ω (2)

Taking the derivative of formula (2), we can obtain:

ω̈ =
3pnΨf

2J
i̇q −

ṪL

J
−

B

J
ω̇ (3)

In order to effectively realize decoupling control of stator current and angular velocity, the input signal of d-axis
controller is set as i∗d = 0 . In such case, substituting formula (1) into (3), a noncascade PMSM model is shown
as: 

ω̈ = −f(ω̇, ω)−
b

L
uq − d(t)

f(ω̇, ω) =

(
B

J
−

Rs

J

)
ω̇ −

(
bΨfpn

L
+

RsB

LJ

)
ω

d(t) = −bωpnid −
ṪL

J
−

RsTL

LJ

s.t. |iq| ≤ cm

(4)

where b = 3pnΨf/2J , and uq is direct control variable for noncascade control structure. The structure of
noncascade control for PMSM is shown in Figure 1, the control target is to realize control of speed regulation;
meanwhile, the q-axis current is restricted in safety boundary simultaneously, i.e. |iq| ≤ cm . In noncascade
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control, overcurrent protection cannot simply restrict current by governing the input signals of q-axis current
controller, since current controller in control channel is merged into speed controller.

Figure 1. The structure of noncascade control for PMSM.

Remark 1 cm is the threshold of maximum current, which is always two to three times rated current of PMSM.

Defining x1 = ω∗ − ω , where ω∗ is target value of speed regulation, and x2 = ẋ1 . The second-order
noncascade model is formulated: 

ẋ1 = x2

ẋ2 = ω̈∗ −
b

L
uq + f(ω̇, ω) + d(t)

s.t. |iq| ≤ cm

(5)

where d(t) is the bounded disturbances; uq is the direct control variable that needed to be designed. In the
process of controller design, the current must be less than the maximum allowable current to meet the conditions
|iq| ≤ cm .

3. Controller design
3.1. Fast terminal sliding mode controller design
To provide a finite-time convergence performance, FTSMC-based surface is given:

s = λ1 |x1|α1 sign(x1) + λ2x1 + x2 (6)

where λ1 ≥ 0 , λ2 ≥ 0 ; α1 = q/p < 1 ; p and q are positive odd integers. Once reaching the sliding mode surface,
the system dynamics can be simplified as a stable equation which is independent of the system disturbances.
In such case, the system is rewritten as ordinary differential equation (ODE):

λ1 |x1|α1 sign(x1) + λ2x1 + x2 = 0 (7)

When the system state is far away from the origin, the system equation simplifies as x2 = −λ1 |x1|α1 sign(x1) ,
which has the same performance as TSMC. When system state approaches zero, the dynamics can be approx-
imated to x2 = −λ2x1 , the state of system shows exponential convergence, which drives the tracking error

1824



FANG et al./Turk J Elec Eng & Comp Sci

converge to the origin quickly. In order to intuitively display the convergence performance of FTSMC, the
phase trajectory of FTSMC is given in Figure 2, in which the initial state is (62.8, 0). Obviously, the phase
trajectory converges to the origin with faster speed, which is consistent with the above analysis. According to
the ODE (7), analytically, then the convergence time of the system state is calculated as [28]:

tc =
1

λ2α1

(
ln
(
λ2x1(0)

α1 + λ1

)
− lnλ1

)
(8)

Figure 2. The phase trajectory of FTSMC.

3.2. Proposal of improved reaching law
Next, for the purpose of improving reaching speed and weakening chattering phenomenon, the improved reaching
law (IRL) is designed as:

ṡ = −k1 tanh(l1s)− k2s
(
el2|s| + c

)
(9)

where tanh(s) = (es − e−s) / (es + e−s) ; k1, k2, l1, l2 ≥ 0 ; c ≥ −1 is the critical parameter to eliminate the
effect of second term. One outstanding advantage of the proposed IRL is its capability to vary the reaching
time which depends on the position of the state variable. The farther the distance is, the faster the reaching
speed is, and vice versa.

In order to more intuitively express the effects of two nonlinear terms in IRL, the changing rate of the
two terms are needed to be analyzed. Figure 3 shows the changing rate of two terms when s belongs to [−1, 1] .
It can be seen that the second term with power term plays a major role of reducing reaching time, when s is far
away from zero. When s → 0 , the changing rate mainly depends on the hyperbolic tangent term. Especially,
the existence of tanh(l1s) provides an approximately linear characteristic to approach zero, which weakens the
discontinuity of signum function and realizes ’soft’ switch control. In this way, the chattering phenomenon is
reduced.

The process of improved reaching law shows: 1) Firstly, the original state s0 ̸= 0 and is large, due to
the initial position of system state; 2) Then, the second term −k2s

(
el2|s| + c

)
is able to force s to approach

zero with faster reaching speed compared with −ks , until approaching to bound layer; 3) In addition, selecting
the proper parameters l2 and c to guarantee −k2s

(
el2|s| + c

)
≈ 0 , when s → 0 . In this way, the impact of
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Figure 3. The changing rate of two items in the proposed reaching law.

the second item is eliminated to some certain. 4) Finally, the first term −k1 tanh(l1s) plays the main role of
providing an approximately linear characteristic to approach zero and reducing chattering.

Remark 2 The proposal of reaching law is used to achieve fast convergence and chattering reduction. The
selection criteria of parameters in reaching law are: (I) the gains k1 and l1 should be large enough to handle
the lumped disturbance d(t) in (5) and obtain smaller convergence region; (II) the choice of c is as close to -1
as possible to eliminate the effect of the second term, when s approaches zero. (III) the gain k2 and l2 should
have large positive values to guarantee reaching speed.

3.3. The construction of penalty term based on interior point method

Since q-axis current becomes the internal state of noncascade structure in PMSM control system, in order to
realize current constraint, the penalty function method is introduced. The main purpose of the penalty function
is to prevent the constrained state from leaving the constraint bounds, because the initial constrained states
are within constraint boundary. In this paper, the basic idea of the penalty function method is that constraint
conditions and control variable are combined to construct a new control variable. In such case, a control system
with state constraints becomes an unconstrained system. In this section, we mainly discuss the construction of
penalty term.

For constraining the q-axis current, we introduce the idea of interior point method [26] in optimization
theory. Considering the constrained condition |iq| ≤ cm , the penalty term is constructed as follows:

fpt =
k

(cm − |iq|)2
s (10)

where fpt is penalty term. The penalty factor k is a positive constant representing the penalty force. s is
sliding mode variable. When the q-axis current approaches current threshold ±cm , the penalty term tends to
be infinite, the existence of the penalty function in the control variable is to guide the constrained state to move
towards the trend of satisfied condition, the q-axis current will be constrained in safe range. While sliding the
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mode variable s → 0 , the penalty term has only slight impact on control action, the impact on q-axis current
will be ignored. More importantly, dynamic performance is preserved by employing the FTSMC-type controller
with penalty function, since maximum current is allowed to provide high torque. In this way, the problem of
dynamic performance and current constraint is well balanced, and the contradiction between performance and
current constraint is solved.

Remark 3 First, the existence of sliding mode variable s in penalty term is applied to guarantee the stability
of the whole system. In addition, it provides a convenient way to balance current constraint and dynamic
performance. Finally, the penalty factor k should be carefully chosen by considering the chattering phenomenon
in PMSM system.

3.4. The structure design of FTSMC-based controller with current constraint

The controller structure with current constraint is designed in Figure 4. The control variable contains equivalent
control, switching control, and penalty function. Especially, the addition of penalty function makes the state
constrained system become an unconstrained control system. The whole controller is designed as:

uq = ueq − usw − uPF (11)

ueq =
L

b

(
ω̈∗ + f(ω̇, ω) + λ1α1 |x1|α1−1

x2 + λ2x2

)
(12)

usw = −
L

b

(
k1 tanh(l1s) + k2s

(
el2|s| + c

))
(13)

uPF = −
L

b
fpt = −

L

b

k

(cm − |iq|)2
s (14)

where uPF is the penalty function constructed by penalty term (10). The penalty function plays a role of
current constraint during the phase of start-up, because the current in other phases will not exceed the maximum
allowable current. The results are analyzed in detail in Section 4.

Figure 4. Controller structure with penalty function.

The following gives the convergence proof of new reaching law-based FTSMC-type controller with current
constraint for whole PMSM.
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Assumption 1 The lumped disturbances d(t) is bounded, and a strictly positive constant l ≥ 0 exists to satisfy
0 ≤ |d(t)| ≤ l .

Theorem 1 If the Assumption 1 is satisfied, the sliding mode variable can converge to region (1/l1) atanh(l/k1)

in finite time by adopting the control law (11). Furthermore, the system states x1 and x2 will converge to the
origin.

Proof Defining the Lyapunov function V = 0.5s2 , we can obtain by derivation V̇ = sṡ :

V̇ = s
(
λ1α1 |x1|α1−1

x2 + λ2x2 + ẋ2

)
= s
(
λ1α1 |x1|α1−1

x2 + λ2x2 + ω̈∗ −
b

L
u+ f(ω̇, ω) + d(t)

)
= s
(
k1 tanh(l1s) + k2s

(
el2|s| + c

)
+ d(t)−

k

(cm − |iq|)2
s
)

≤ k1 tanh(l1s)s− k2s
2
(
el2|s| + c

)
+ l |s| −

k

(cm − |iq|)2
s2

= −
( k

(cm − |iq|)2
+ k2

(
el2|s| + c

) )
s2 −

(
k1 tanh(l1 |s|)− l

)
|s|

(15)

Since c > −1 , k2s
(
el2|s| + c

)
> 0 , k/ (cm − |iq|)2 > 0 . Thus, it can be simplified as:

V̇ < −
(
k1 tanh(l1 |s|)− l

)
|s| (16)

The following condition is satisfied to realize the stability of the closed-loop system:

k1 tanh(l1 |s|)− l > 0 (17)

and it leads to
|s| ≥ (1/l1) atanh(l/k1) (18)

It is demonstrated that V̇ < 0 is satisfied, when sliding mode variable satisfies |s| ≥ 1/(1/l1) atanh(l/k1) .
Then s will converge to the region of (1/l1) atanh(l/k1) from the initial state. According to the Lyapunov
stability theory, it is concluded that s reaches the region |s| ≤ (1/l1)atanh(l/k1) with a faster convergence
rate. In addition, the x1 and x2 converge to the origin in finite time. 2

4. Simulation and results analysis
Lots of simulations are provided to validate the superiority and effectiveness of FTSMC-based controller with
current constraint from four aspects: (1) The effectiveness validation of penalty function; (2) The comparative
simulation under different penalty factor k ; (3) The improvement of improved reaching law: reaching rate
and chattering reduction; (4) The superiority validation compared with other SMC schemes. It should be
mentioned that the limit of control signals uq are set as 162 (it is calculated as 311 ∗ 0.9 ∗

√
1/3) to guarantee

fair comparison. The target speed and load torque are set as ω∗ = 600 r/min , TL = 3N.m t ≥ 0.2s . Table 1
shows main parameters of the PMSM.
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Table 1. Main parameters of the PMSM.

Rated power P 2 kW Stator induction L 8.5 mH
Rated current I 5.4 A Viscous coefficient B 0.002 Nms/rad
Flux linkage Ψf 0.17 Wb Pole pairs pn 2
Rotor inertia J 3 kgm2 Stator resistance Rs 1.32 Ω

4.1. The effectiveness validation of penalty function

The FTSMC-based controller with penalty function (k = 10) and FTSMC-based controller (k = 0) in
noncascade structure are compared to validate effectiveness of penalty function, in which other controller
parameters are the same. Table 2 shows the parameters of the FTSMC-type controller with current constraint.

Table 2. The controller parameters.

Sliding mode
λ1 180

IRL
k1 85,000

λ2 100 k2 10,000
variable α1 3/5 l1 0.07
PI controller kp 660 parameters c −0.9
of d-axis ki 42.6 l2 0.02

Figures 5a–5d show response curve of speed ω , q-axis current iq , phase trajectory, and control variable
uq . As shown in Figure 5, the existence of penalty function realizes current constraint, and it guarantees the
PMSM to start up within maximum current 15 A under start-up phase. While the FTSMC-based controller
could achieve higher speed with large current, q-axis current is far larger than the maximum allowable current
cm , and it may damage the hardware circuit.

During the phase of sudden load disturbance, the q-axis current does not exceed the threshold value
of the maximum allowable current, penalty function performs as a small proportional term to accelerate
the convergence speed. The results reveal that the speed converges to the target value in a shorter time
compared with the FTSMC-based controller. When the control system of PMSM enters the steady state, sliding
mode variable converges to bounded region; therefore, penalty function has a slight influence on the dynamic
performance, the chattering variation of q-axis current and control variable is not obvious, since influence of
penalty function on the control variable mainly depends on the convergence bound of sliding mode variable. In
this way, the tradeoff of dynamic performance and current constraint is made by selecting the penalty factor
properly.

Furthermore, the phase trajectory of FTSMC and FTMSC+PF schemes have been compared. Obviously,
the penalty function has the ability of constraining current. The constraint principle of q-axis current can be
expressed as ω̇ = 3pniqΨf/2J − TL/J − Bω/J . In addition, x2 = ω̇∗ − ω̇ . Therefore, when the current is
constrained, the state x2 is also constrained.

4.2. The comparative simulation under different penalty factors k

In this section, three different values of k are selected to verify the effect of the penalty force on PMSM system,
where the same controller parameters are chosen to guarantee fair comparison. Response curve of speed ω ,
q-axis current iq , d-axis current id , and control variable uq are shown in Figure 6.
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Figure 5. The response curve of FTSMC controller and FTSMC controller with current constraint

According to Theorem 1, a strictly positive constant k is needed to realize the stability of PMSM and
constraining current. As is shown, smaller penalty factor (k = 5) may lead to the failure of current constraint;
other two groups (k ≥ 10) have function of current constraint in the PMSM system. However, during the start-
up phase, the penalty function plays an important role to constrain current in control variable; as a consequence,
the increase of penalty factor inevitably results in the increase of chattering in control variable uq , it further
leads to the torque ripple of PMSM. It also brings burden to hardware.

In addition, the increase of penalty factor also increases the chattering of two currents. It is worth
emphasizing that the penalty function cannot improve the convergence speed, because the PMSM starts at
the maximum current. In the stage of sudden load disturbance, the increase of penalty factor leads the faster
response of speed, since the penalty function plays the role of proportion term. Larger penalty factor determines
larger proportional term, and the larger proportion term will result in the faster response of current. Therefore,
faster response of current provides higher torque to reduce convergence time inevitably.
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Figure 6. The response curve of the proposed controller under different penalty factors.

When the speed regulation system enters into the steady state, the s keeps in the convergence region
(1/l1) atanh(l/k1) , so the impact of penalty factor on the dynamic performance depends on convergence region.
Figure 6 demonstrates that the system chattering increases along with the increase of penalty factor, which is
the same as the simulation analysis. Therefore, the penalty factor k should be selected properly by taking the
system chattering into account.

4.3. The superiority validation of IRL

For validating the superiority of the proposed reaching law, the constant plus proportional rate reaching law
(CPPRL: ṡ = −k3sign(s)−k4s) and hyperbolic tangent reaching law (HTRL: ṡ = −k5 tanh(l3s)) are compared.
Table 3 expresses the parameters of two reaching laws. Evolution trajectory of speed ω , q-axis current iq , control
variable uq , and sliding mode variable s are shown in Figure 7.
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Table 3. The parameters in different reaching laws.

CPPRL k3 100,000 HTRL k5 120,000
parameters k4 130,00 parameters l3 0.07
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Figure 7. The response curve of controller with different reaching law.

During the start-up phase, the penalty function plays a major role, permanent-magnet synchronous
motor starts at the maximum allowable current. Therefore, the chattering reduction and faster convergence
performance are not prominent. During the phase of sudden load disturbance, the proposed IRL has a great
advantage in reducing chattering and faster convergence rate compared with the CPPRL, which is consistent
with our analysis. Furthermore, the IRL has faster reaching rate compared with HTRL, since conservative
parameters are required to take account of reaching speed and chattering in hyperbolic tangent reaching law.
The system chattering mainly relies on signum function term or hyperbolic tangent function term under steady-
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state phase; consequently, HTRL and IRL have significant chattering reduction compared with CPPRL; in the
same way, HTRL and IRL have similar performance. From the results, it can be concluded that the improved
reaching law performs satisfactorily and effectively.
4.4. The superiority validation compared with other SMC schemes
In this section, we mainly verify the convergence performance of the FTSMC method compared with SMC

(sSMC = x2 + 180x1 ) and TSMC (sTSMC = x2 + 180x
3/5
1 ) algorithm. For convergence validation (the same

controller parameters are selected to have fair comparison), the speed response ω , q-axis current iq , and phase
trajectory of three schemes are shown in Figure 8. In the start-up phase, all three methods can have higher start-
up speed with the maximum current. When entering the convergence phase, the FTSMC+PF approach can
provide higher starting current to ensure the start-up speed, while the other two methods have relatively small
start-up currents, which inevitably leads to longer convergence time. Obviously, the proposed FTSMC+PF
scheme has a better convergence rate compared with TSMC+PF and SMC+PF methods, which is consistent
with our above analysis.
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5. Conclusions
In this paper, the balance problem between overlarge-current protection and dynamic performance under
noncascade structure in PMSM system has been discussed. At first, an improved reaching law-based fast
terminal sliding mode controller is developed for noncascade structure in PMSM system to guarantee the fast
convergence and chattering reduction. Then, the penalty function established in control action is designed for
constraining current with the aid of the idea of interior point method. In such case, the control system with state
constraint becomes the unconstrained system. In addition, the existence of sliding mode variable in penalty
function keeps the dynamic performance of PMSM system without violating constrained condition. Different
simulations have been carried out for demonstrating excellent performance. More importantly, the proposal of
penalty function builds the bridge between control problem with state constraint and constrained optimization
system.
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