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Abstract: Low-power consumption is becoming a crucial concern that cannot be neglected in system-on-chip (SoC)
designs. Low-power solutions help designers to provide a powerful methodology to analyze, estimate, and optimize
today’s power concerns. Early estimation of power at a high level reduces the redesign cycle and turn-around time.
Power dissipation is a function of input patterns and their characteristics. This paper describes a power estimation
technique by using predefined statistical characteristics-based input patterns, which gives the average power dissipation
of individual intellectual property (IP) blocks and interconnects/buses in an SoC system design. During the power
estimation phase, the discrete water cycle algorithm is implemented to generate optimized input patterns. Then Monte-
Carlo zero-delay simulation approach is used for each individual IP block and buses at a high level. Total system power is
the simple addition of average powers of IP blocks and buses. In experiments of entire IP-based SoC system with buses,
our modified macromodel gives an average error of 7.91%. Accuracy of the proposed model is improved as compared to
our previous model.

Key words: System-on-chip, intellectual property, discrete water cycle algorithm, Monte-Carlo simulation, power
estimation

1. Introduction
In the modern era, consumers demand low-power, emerging, and high-reliability portable systems. Therefore, we
must reduce the power consumption due to the availability of limited resources. In high-performance embedded
electronic systems, power dissipation is an important and top-priority issue. Integrated circuit (IC) design
flow is a very powerful tool for analysis, estimation, and optimization of an increasing demand for power.
Conventional design approaches are not adequate to deal with power estimation and optimization of modern
multicore systems. It is difficult to maintain the balance between speed and efficiency. Therefore, it is a
challenging task to approach a low-power successful system-on-chip (SoC) design [1]. In the initial stages of
system design, electronic design automation (EDA) tools are helpful for designers for power estimation. These
EDA tools improve the performance metrics in IC design. Earlier design analysis has ignored the redesigning
procedure and it also manages the power requirement during the initial design phase [2]. Due to the evolutionary
growth of a system’s complexity, verification of system is a very time-consuming procedure; therefore, power
and performance analysis are very essential for reducing the turnaround time. Design time and cost of the
∗Correspondence: faisal.siddiq@uettaxila.edu.pk
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digital electronic system can be minimized by reusing the predesigned blocks. Intellectual property (IP) blocks
are a solution for the problems that are associated with the SoC design. Designers are at ease by using
prevalidated components and IPs in system design. Reuse of IP is just like a plug-and-play and includes
interconnect buses and hierarchical infrastructures. In the initial design phase, designers are very keen to find
the design space exploration, technology libraries, bus designs, memory sizes, and IP power constraints [3–5].
Such challenges can be handled by power estimation models used at various abstraction levels with variable
power and speed requirements. Among various high-level power estimation approaches, power macromodeling
is a promising technique for handling the difficulties. Power macromodeling is applied on different IP-cores
of an SoC-based system; input patterns with predefined statistical characteristics are required. For better
estimation and accuracy, designers must perform different functional simulations [6]. Therefore, an efficient
power macromodel for IP-based digital systems based on improved and optimized input characteristics at
higher level of abstraction is proposed in this research. It motivates the designers for an early estimate of power
consumption and it also reduces the redesign cycle and turnaround time. The proposed model is also time-
efficient because it reduces the input variables of a macromodel function; the number of functional simulations
and percentage of error are also reduced. This is proved by simulating IP modules and analysis of experimental
results.

2. Literature review
In complementary metal-oxide-semiconductor circuits, total power consumption is a summation of dynamic and
static powers. Dynamic power dominates when there is switching at the circuit inputs and it also propagates
through the circuit. There are two major power estimation techniques: static and dynamic. Dynamic techniques
are efficient because they simulate the circuits with typical input sequences [7, 8]. A fast and scalable method
is presented in [9] for finding a toggle rate for field programmable gate array (FPGA)-based circuits. This
approach uses a novel method for finding spatial correlation by using the XOR-based decomposition method.
The power estimation of the IP-based SoC system at a high level is presented in [6]. It includes the power
models for local and global bus interconnects. Various input patterns are generated by genetic algorithm (GA)
and these patterns have special statistical characteristics. The look-up table (LUT)-based macromodel is used
to estimate the power of the system. Estimated power is independent of the system and it is dependent on
input pattern characteristics. In high-level designs, the bottom-up approaches are the most efficient because
of the reuse of IP cores/blocks. In these models, internal details of IPs are given, and the construction of the
macromodel is easy with the help of power characterizations [10]. The water cycle algorithm is applied for
the harmonic estimation of time-varying noisy signals and for solving the nonconvex problem of hydro-thermal
coordination in power systems [11–13]. Discrete water cycle algorithm (DWCA) is used for optimal detection of
power system stabilizers for power system applications. It finds the optimal parameters with minimum values of
overshoot and settling time within minimum time and also increases the stability of power systems [14]. DWCA
is used for generation of 4-bit optimal coding sequence matrix for wide-band radar cross-section reduction [15].
DWCA is used for constraint handling for generation expansion planning with the least cost and reduced time
compared to other optimization algorithms [16].

At register-transfer-level (RTL), there are several approaches discussed in the literature to find the
switching activities inde the circuit [17]. These approaches are quite accurate, but due to slowness and
expensiveness, they limit the length of the input stream. For an accurate estimate of power dissipation, we need
several lengths of the sample size of input streams. To handle the sample size of the input stream, the vector
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compaction technique reduces the sample size of input streams in the stimulus. Among various high-level power
estimation approaches, the power-macromodeling- and LUT-based approach is a promising technique to find the
average power dissipation [6]. Power macromodeling is applied on different IP-cores of an SoC-based system;
input patterns with predefined statistical characteristics are required. Recently, many researchers proposed
power estimation models to model the exact behavior of the circuit with minimum simulation time and better
accuracy. In [18], a copower estimation technique is proposed for the power estimation of different parts of SoC.
Different speed-up techniques are applied in order to reduce the workload of different simulators. An efficient
and accurate dynamic power estimator is proposed in [19] for embedded multipliers in FPGAs. The efficiency of
this technique is better than other low-level commercial tools. This model is also available for integration with
high-level power optimization techniques. In [20], a power estimation methodology is presented for complex
systems through FPGA accelerators. This technique improves both speed and accuracy and can be integrated
into high-performance FPGA-based simulators.

2.1. Paper summary and contributions
In this paper, we use the predefined-statistical-properties-based input pattern generator to estimate the average
power consumption of different IP blocks and interconnects in an SoC-based design. Previously, we used a GA
for generation of input patterns for estimation of IP-based SoC digital system in [3]. In this work, we propose
a discrete water cycle algorithm (DWCA) for the generation of optimized input pattern generation for better
accuracy of power estimate of any IP-based SoC system. Moreover, there is no precedent study on the adaption
of DWCA for input pattern generation for power estimation of any digital system. The contributions of the
proposed work are as follows:

1. Predefined statistical-properties-based optimized input patterns are generated using DWCA

2. Improved version of IP-based power macromodel for SoC digital system is formulated

3. Full span coverage of input signal statistical properties is tested to model IP-based SoC system design

4. Monte-Carlo simulation is used for the convergence analysis of power model from functional simulations

5. The proposed model is evaluated for IP blocks and interconnects

6. Regression and convergence analysis is used for evaluation of the proposed model

The paper is organized as follows. Section 2 presents the literature review. Section 3 describes the power
macromodeling and analysis of different components of the system. DWCA and its modeling is presented in
Section 4. Section 5 describes the Monte-Carlo simulation approach. The experimental results and discussion
are presented in Section 6. Finally, Section 7 gives the summary, conclusion, and future recommendations of
the research work.

2.2. Problem formulation
The statistical power macromodel is used for the estimation of each IP block and interconnects/buses for any
SoC-based digital system. This model helps designers for an early estimate of the system at a higher level.
DWCA is used for pattern generations with predefined statistical characteristics for the power estimation of
different IP blocks in the SoC system. Power estimation for IP-based SoC system under assumption of zero-delay
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model is stated as: “Given the IP-based SoC system having N number of IP blocks and interconnects/buses,
(IP1, IP2, ...IPN , ....Bus1, Bus2, ...BusN ) under the assumption of zero-delay model provide the early estimate
of the average power for individual IPs and buses by applying statistical-properties-based input patterns as
shown in Figure 1”. The Input signal statistical parameters are explained in the next section.

IP-based SoC

System

Extraction of 

Statistical

Properties

Input

Patterns

Stream

Output

Power

Stream

TD

SP

SV

Figure 1. Early power estimation of IP-based SoC system.

3. Power macromodeling of IP-based SoC system

In any system designing, the choice of model’s parameters and their characteristics are the most important con-
cerns for designers. Selected characteristics have the ability to model the exact features for power consumption
and they also help us for better estimation of power dissipation with higher accuracy.

3.1. Power modeling for IP cores

Previously, we used a GA for generation of input test patterns with characterization of TD , SP , SC , TC

discussed in [3, 6, 21]. TD and SP are the transition density and signal probability of input patterns. The
SC and TC are spatial and temporal correlations. Now we improved our previous work by modifying the input
parameters and by using DWCA for the generation of optimized input patterns. This macromodel has a linear
relationship with input variables and gives the average power dissipation in (1).

PIPBlock−avg = f(TD, SP, SV ) (1)

TD =

∑r
j=1

∑s−1
i=1 qij

⊕
qi+1,j

r ∗ (s− 1)
(2)

SP =

∑r
i=1

∑s
j=1 (qij)

(r ∗ s)
(3)

SV =

∑r
i=1

∑s
j=1 (qij − SP )

2

(r ∗ s)− 1
(4)

Here PIPBlock−avg is the average power of IP block. For each of IP block, the number of inputs are r and binary
input stream q has a length of s. SV is the signal variance of input patterns. TD , SP , and SV cover all the
aspects of the proposed model and its accuracy will also be proved by experimental results. These parameters
also define the correlation factor of the input patterns. They affect the power dissipation of any IP-based SoC
system. This model also reduces the computational complexity. Therefore, accurate modeling of parameters is
required for better accuracy and the exact behavior of the digital system.
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3.2. Power modeling for buses

Various power modeling techniques for interconnects/buses were discussed in [22, 23]. Previously, we introduced
a new statistical power model for buses given in (5):

PBus−avg = f(STDBus
, CTDBus

) (5)

PBus−avg is the average power of buses and it is a function of CTDBus
and STDBus

. The CTDBus
is a coupling

transition density of buses and is dependent on switching activity factor and communication between two
adjacent buses. Similarly, STDBus

is self-transition density and is dependent on local bus components and
covers local components.

3.3. Power modeling for IP-based SoC system

The IP-block–based SoC digital system is shown in Figure 2. The function described in (1) and (5) is a LUT-
based method that is used in the simulation and characterization phase of input patterns. To find the accurate
function and their dependency, we must generate several number of input pattern streams for each individual IP
block and bus. Power model of the IP-based SoC digital system with interconnect/buses is defined in equation
(6):

PSoC−system =

n∑
i=1

PiIPblock−avg
+

k∑
i=1

PiBus−avg
(6)

PSoC−system is the average power of the SoC system having n number of IP blocks and k number of buses.
Our aim is to find the average total power dissipation of IP blocks and buses by applying user-specified input
patterns at single-core level. Power estimation is done by using the Monte-Carlo simulation approach so that
a high-level power estimate satisfies the user-specified confidence interval. We sum up the estimates of all IP
blocks and buses for finding the total power consumption of a single core.
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Figure 2. IP-based SoC system.

4. Discrete water cycle algorithm (DWCA)

4.1. Modeling of DWCA

DWCA was established by Eskandar et al. [24] and is a concept based on water flow in the form of streams,
rivers, and sea. When the rain falls and snow melts from ice glaciers, water flows into streams. Flow of streams
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generates rivers and these rivers eventually fall into the sea. Water from streams is evaporated and the trees also
transpire the water during the photosynthesis process into the atmosphere to generate clouds. The proposed
algorithm starts with raindrops as the initial population. The best raindrop which is chosen is the sea and then
the river and the remaining is considered as streams. The modeling of the algorithm is given in the following
relations: For the solution of the Nj dimensional problem, the array of raindrops Rk is defined as:

Rk =
[
Nk

1 Nk
2 Nk

3 · · · Nk
j · · · Nk

J

]
, ∀k, (7)

where (N1 , N2 , N3 , ..........Nj ) are the decision values with a set of predefined values for discrete and continuous
problems. Population matrix of raindrops is selected as initial population and is given by:

Population =


N1

1 N1
2 · · · N1

J

N2
1 N2

2 · · · N2
J

...
... Nk

j

...
NK

1 NK
2 · · · NK

J

 , (8)

The raindrop’s cost is evaluated using the cost function CW (k) :

CW (k) = fobj (Rk) , ∀k,

= fobj
(
Nk

1 , Nk
2 , Nk

3 , · · ·Nk
J

)
,

(9)

At first, K raindrops are generated and the best individuals with minimum values of rivers and 1 sea are
selected.

Nsr = Nr + 1, (10)

where Nsr is the total number of rivers and sea. The remaining population of raindrops which forms the streams
Nd which flow into the river or flows directly into the sea is calculated as:

Nd = K −Nsr. (11)

Three steps are involved in the movement of water from one place to another. In the first crossover step, streams
move into the sea. Two decision variables are generated from movement of the sea and streams and are given
by: [

Rc1 Rc2

]
= crossover

[
Rs(b) Rsea

]
,

b = {1, 2, 3, · · ·Nd} ,
(12)

where Rc1 and Rc2 are the child decision variables of crossover operations.

Rsea =

{
Rc1 if CW (Rc1) < CW (Rc2)
Rc2 if CW (Rc1) > CW (Rc2)

, (13)

where Rsea is designated as the best child selected as sea variable.
In the second crossover step, two-child decision variables are generated by the movement of the river and

sea. The best cost of one child is designated as sea and movement of steams into rivers and is given by:[
Rc1 Rc2

]
= crossover

[
Rs (b) Rr (c)

]
,

b = {1, 2, 3, · · ·Nd} ,
c = {1, 2, 3, · · ·Nr} ,

(14)
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where Rr is the best river in the population.

Rr =

{
Rc1 if CW (Rc1) < CW (Rc2)
Rc2 if CW (Rc1) > CW (Rc2)

. (15)

In the third crossover step, two-child decision variables are generated from the movement of rivers into
the sea. The best cost of one child is designated as sea and movement of rivers into sea is given by:

[
Rc1 Rc2

]
= crossover

[
Rr (c) Rsea

]
,

c = {1, 2, 3, · · ·Nr} .,
(16)

Rsea =

{
Rc1 if CW (Rc1) < CW (Rc2)
Rc2 if CW (Rc1) > CW (Rc2)

. (17)

After the completion of the above three steps, evaporation makes the new population. The mutation
process is used for evaporation and is applied to both rivers and streams which will be compared to the sea.
The µm defines search range for optimum solution and the best value is set to 0.1. Mutation operator performed
on rivers and streams is given by

Rmu = mutation [if (µm ×Rs (b) ∼= Rsea)] ,
b = {1, 2, 3, · · ·Nd} ,

(18)

where Rmu is the mutation operator of river and streams.

Rmu = mutation [if (µm ×Rr (c) ∼= Rsea)] ,
c = {1, 2, 3, · · ·Nr} .

(19)

4.2. Crossover operators

Three types of crossover operators are mostly used, which include single-point, double-point, and uniform.
These operators are used to generate child agents from the parent population [25]. In the case of single-point
crossover, samples are cut from a single point to make child variables. Two different sets are cut to make child
variables in double-point crossover. Similarly, samples are cut uniformly from parents in order to make child
variables. The crossover of these types is explained in Figure 3.

4.3. Mutation operators

The mutation operator helps us to find a near-optimal solution. It also avoids local search algorithms from
trapping in local optimum solutions. Four different mutation techniques are used, which are swap, insert,
reverse, and random. This operator is applied to the sea, river, and stream. In the swap mutation technique,
two bits are exchanged randomly to form a mutated agent. Some of the bits of the mutated agents are inserted
from one child to another in insert mutation. In reverse mutation, bits are reversed in mutated agents to make
new mutants. Finally, in random mutation, random bits are replaced in the mutated agent [25]. Mutation
techniques are explained in Figure 4. The simulation parameters of the DWCA are shown in Table 1. Similarly,
the flowchart of the DWCA is shown in Figure 5. The steps of the DWCA for input patterns generation are
described in the following pseudocode:
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Figure 4. Mutation strategies: (a) swap, (b) insert, (c) reverse, (d) random

5. Monte-Carlo simulation
The Monte-Carlo zero-delay simulation approach is used for power estimation with a user-defined confidence
interval [26, 27]. This method uses the original samples of input vectors and a simulation method is used
for deriving the average value of samples which is used for finding the average value of the power estimation.
From the central limit theorem, the sample value of power estimates assumes the normal distribution with
length l approaches infinity. If the random variable x is far away from the normal distribution, the basis of
this simulation-based method fails and it may a have larger percentage of error than expected. In this article,
we use the IP-based statistical sampling technique that is based on the Monte-Carlo simulation approach.
Each IP module is described at RTL level and power estimation technique is also applied at the same level of
abstraction. The aim of the proposed approach is to estimate the average power consumption of each IP module
under the user-specified input stream. It is estimated under the user-defined confidence interval and level of
error percentage. It is very important to find the accurate input patterns and also the number of simulations
required for the convergence of power samples. The smaller sample granularity increases the overall efficiency
of this approach. There are two points that should be considered for selection and numbers of simulations
for convergence are (i) reduced sample variance and (ii) small sample granularity for achieving near-normal
distribution of samples. The circuit under test is simulated by applying the input vector stream of predefined
statistical characteristics. The power results are monitored, and sample mean and variance are calculated. The
process terminates if it meets the predefined stopping criteria for simulation. The response of power behavior
is recorded on a power simulator. By using convergence analysis, simulated power converges to its average or
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Algorithm 1: Pseudocode of the DWCA
1 Initialize the random population of K raindrops
2 Compute fitness of each raindrop
3 while iter < maximum iterations do

/* Movement of water raindrops - Crossover Operators */
4 for b = 1 : Nd do
5 Crossover operator is performed between the sea and selected stream // Flow of streams to sea
6 end
7 for b = 1 : Nd do
8 for c = 1 : Nr do
9 Crossover operator is performed between the selected stream and river // Flow of streams

to rivers
10 end
11 end
12 for c = 1 : Nr do
13 Crossover operator is performed between the selected river and sea // Flow of rivers to sea
14 end

/* Evaporation Process - Mutation Operator */
15 for b = 1 : Nd do
16 if selected stream is similar to the sea with probability µm then
17 Mutation operator is performed between the stream and sea // Evaporation from the

streams
18 end
19 end
20 for c = 1 : Nr do
21 if selected river is similar to the sea with probability µm then
22 Mutation operator is performed between the river and sea // Evaporation from the rivers
23 end
24 end
25 Find the best solution among the raindrops
26 end

Table 1. Simulations parameters for the DWCA.

Parameters Values
Probabilities of crossover operators (single-double-uniform) 0.1, 0.3, 0.6
Probabilities of mutation operators 0.1, 0.2, 0.1, 0.6
(swap-insert-reverse-random)
Population size 30
Number of iterations 50
Number of rivers and sea 4

true power value.

PMC =

N∑
i=1

P (i). (20)
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Figure 5. Flow chart of DWCA

PMC is the Monte-Carlo power, N is the maximum number of simulations, and P(i) is the power of individual
IP blocks and buses/interconnects.

The Monte-Carlo simulation method is used for computation of average values of power by combining
the response with its previous values, and it also tells whether the average value converges to its true value
or the model requires more simulations for convergence of predefined criteria [28]. Better results are obtained
by using the convergence analysis and central limit theorem by fitting the normal distribution. The confidence
interval of a normal distribution is set to 95% with the value of α is set to 0.05. The number of simulations
required for each IP-block may be different. It depends on the components in each IP block, and when power
values converge to its true and steady value. For this purpose, full-span coverage and uniformly distributed
input patterns stream are applied for finding all possible real-time responses of the test system.

6. Experimental results and discussion

Previously, we introduced a power macromodel for individual IP blocks and systems in [3]. In this section,
we are presenting an extended and improved version of high-level power macromodeling. Experimental work
is implemented on the IP-based SoC digital system shown in Figure 2. Our macromodel function in equation
(6) gives the average power dissipation of the system. The modified macromodel in (1) gives accurate results
and also consumes less time compared to our previous model. Our previous model has 6250 simulations based
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on sets of input pattern characteristics to be performed, but in the proposed model it is now reduced to 1250
simulations for each IP block. The GA needs 374 s to generate 6250 sets of input patterns, whereas DWCA
needs just 61 s to generate 1250 sets of input patterns. On the other hand, our proposed model also outperforms
the previous model by an average of 4.1 h to 20.8 h of Vivado simulations for each IP block. This work is done
by using multiple platforms by multitasking in order to save time. The comparison is shown in Table 2.

Table 2. Comparison of the proposed model with the existing model.

Sr. No. Parameter Proposed model using DWCA Previous model using a GA
1 Number of simulations 1250 6250
2 Simulation time (s) 61 374
3 Percentage of error (%) 7.91 11.42

During the power estimation phase, several input patterns are generated with defined characteristics of
TD , SP , SV and STDBus

, CTDBus
for individual IPs and buses. By using the proposed model, computational

complexity is reduced, because we reduce the input pattern variables. Therefore, extensive amount of simulations
are also reduced in order to minimize the computational time with better accuracy of results. By using the
LUT approach, functional simulations at the RTL level are performed with power simulators in order to find
the average power dissipation of each IP block or bus. During the characterization phase, optimized input
patterns with characteristic parameter range of [0–1] are generated by using DWCA. During the estimation
phase, a Monte-Carlo zero-delay simulation is performed with several input pattern characteristics for accurate
power estimation. Convergence analysis is performed to find the accurate power estimates so that it satisfies
the defined level of confidence interval [29]. Linear regression analysis is performed to find the quality of the
model’s fit and accuracy. The accuracy of the proposed macromodel is tested by running RTL simulations.
Power macromodeling results are compared with Vivado HLS. In the end, the average power errors and their
fitting are computed. Correlation between estimated and simulated power is shown in Figure 6. Random 25 sets
are taken to validate the correlation and accuracy between simulated and estimated powers for IP-2. Different
IP blocks are connected with local and global buses to construct an IP-based SoC system. The proposed
macromodel makes the power estimation an easy task for designers by simply adding the power estimates of
IPs and buses. It also helps designers to reuse and explore different complex IP blocks in real time in a plug-
and-play fashion. By using the power macromodeling approach, a power estimate for any IP-based SoC system
can be found easily by the simple addition of power estimates of individual IP-blocks. The estimated power
PSoC−system in equation (6) is compared with simulated power PSimulated (Vivado HLS Simulator) to evaluate
the accuracy of power estimation.

Due to randomly generated input patterns, power estimates of the macromodel have certain uncertainties.
To give valid conclusions, error analysis should be performed based on the experimental results. In the
experiments, the accuracy of our power estimates for individual IP blocks and buses are summarized in Tables
3 and 4, respectively. For individual IP blocks/buses, 125 distinct sequences are generated with TD , SP , SV

and STDBus
, CTDBus

over the entire space of [0–1]. An extensive number of simulations for each block helps
us to reveal the accurate relationship of power estimates with input characteristics. The full span of input
characteristics is tested to model the real-time scenarios of the system. It is observed that our macromodel
is more accurate for the span of [0.25–0.75] and less accurate for the span of [0–0.25] and [0.75–1]. For the
verification of randomly generated sequences, PSimulated and PEstimated are compared and a correlation factor
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Figure 6. Correlation between the simulated and estimated powers for IP-2.

is found with a range of 95–99% for each individual IP block as shown in Table 3. Twenty-five different sets
are selected at random for the validity and accuracy of our power macromodel. Several input sequences of 4,
8, 16, 32 bits are generated. A low-power microprocessor/SoC system is implemented and verified @100 MHz
operating frequency. The simulations for test system are performed on a desktop PC: Make HP, Intel Core
i7 @ 3.4 GHz processor, 8 GB RAM and 64 bit operating system (Windows 10). This SoC system can be
used for low-power commercial applications. All the sequences are uniformly generated with a 95% confidence
interval over the entire space of [0–1]. In Table 3, the 2nd column represents the type of IP Block, 3rd column
represents the average power, while errors are demonstrated in columns 4–6. The correlation factor between
simulated and estimated power is presented in column 7. Similarly, Table 4 represents the power estimates for
individual buses/interconnects. Columns 2, 3, and 4 represent the type, size, and power estimates of busses.
Column 5 represents the errors between simulated and estimated powers. For IP block-2, by using the Monte-
Carlo simulation approach, as shown in Figure 7, the first 400 iterations are called the warm-up region. Then
from 500 to 700, this region is called the steady-state region and we take the average of steady-state power
values. Convergence analysis for IP-2 using the Monte-Carlo simulation is also presented in Figure 7. Results
presented below demonstrate that our power macromodel gives designers an early and accurate estimate of
power for an IP-based SoC system. We have used DWCA for the generation of improved and optimized input
patterns with predefined statistical characteristics having full span coverage [0–1] to improve the accuracy of our
previous macromodel. Further improvement in the macromodel can be made by finding another input-dependent
characteristic, which also reduces the error with better accuracy.

Table 3. Power estimates and accuracy for IP blocks.

Sr. No. IP block Avg.power (mW) Avg. error (%) Min. error (%) Max. error (%) Correlation
1 IP-1 87.27 4.59 0.11 12.32 96.8
2 IP-2 47.65 2.04 0.15 7.18 95.6
3 IP-3 108.95 10.06 0.073 17.23 96.7
4 IP-4 26.45 3.91 0.13 11.17 98
5 IP-5 6.35 8.19 0.00006 16.93 98.2
6 IP-6 15.1 15.65 0.22 19.51 98.9

Average 7.4 0.11 14.06 97.3

In this paper, an average error of the entire IP-based SoC system is measured 7.91%. This error can
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Table 4. Power estimates and accuracy for buses.

Sr. No. Bus type Bus size (Width) Avg. power (mW) Avg. error (%)
1 G-Bus 32 64.84 0.9
2 L-Bus-1 32 62.3 0.84
3 L-Bus-2 16 31.7 0.44
4 L-Bus-3 5 11.2 0.4
5 L-Bus-4 5 12.4 0.39
6 L-Bus-5 5 11.5 0.41
7 L-Bus-6 4 8.5 0.35

Average 0.53
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Figure 7. Convergence analysis of IP-2 using the Monte-Carlo simulation.

be further improved by model for propagation delay, glitches, and jitters, etc. For simplicity, we assume our
macromodel with a zero-delay approach.

7. Conclusion and future recommendations
A power macromodeling approach with modified input parameters for the IP-based SoC system is presented.
For better accuracy, the DWCA is used for optimized input patterns with specified characterizations generated.
Two individual power macromodels are used for power estimation of IPs and buses/interconnects. For an entire
system, it is simply an addition of powers of all IP blocks and buses/interconnects. In experiments of entire
IP-based SoC system with buses, our modified macromodel gives an average error of 7.91%. Accuracy of the
proposed model is improved compared to our previous model. One of the important sources of error is delay
elements like glitches and jitters. For simplicity, we perform the zero-delay Monte-Carlo simulation approach
and ignore delay elements, glitches, and jitters. The proposed model can also be used for low-power SoC
commercial applications and it also saves time and budget by giving an early estimate of power consumption.

The proposed model can be used for power estimation of homogeneous/heterogeneous integration of 3D
ICs. The power models for 3D integration includes through-silicon-via and their characteristics. A thermal
model can also be proposed for thermal analysis of system-on-chip for future recommendation. The error
percentage can be further improved by adding models of glitches and jitters.
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