
Turk J Elec Eng & Comp Sci
(2021) 29: 2067 – 2083
© TÜBİTAK
doi:10.3906/elk-2010-133

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Zero knowledge based data deduplication using in-line Block Matching protocol
for secure cloud storage

Vivekrabinson KANAGAMANI1,∗, Muneeswaran KARUPPIAH2

1Computer Science and Engineering, Mepco Schlenk engineering College, Sivakasi, Tamilnadu
2Computer Science and Engineering, Mepco Schlenk engineering College, Sivakasi, Tamilnadu

Received: 30.10.2020 • Accepted/Published Online: 20.01.2021 • Final Version: 26.07.2021

Abstract: In the area of cloud computing, data deduplication enables the cloud server to store a single copy of data
by eliminating redundant files to improve storage and network efficiency. Proof-of-ownership (PoW) is a cryptographic
function that verifies the user who really owns the data. Most of the existing schemes have tried to solve the deduplication
problem by providing the same encryption key for identical data. However, these schemes suffer from dynamic changes
in ownership management. In this paper, we propose an in-line block matching (IBM) protocol based on zero-knowledge
proof for deduplication with dynamic ownership management, which eliminates the unauthorized access of sensitive data.
In this proposed work, for a new file, the uploader randomly chooses a file encryption key and encrypts the file. The
user also computes a unique proof for the uploaded file by dividing the file into number of blocks and stores this proof
to the cloud server. The cloud server computes the group key for the ciphertext and re-encrypts it using this group key.
The cloud server also does the proof verification against the subsequent uploader for an existing file. The cloud server
is honest-but-curious, so the proposed scheme confirms that the cloud server does not know any information about file
encryption key even though it plays a proxy role. The result shows that our proposed scheme protects the data from
both cloud server and adversaries. Also, the computational cost is comparatively less than other existing schemes.

Key words: Data deduplication, proof-of-ownership, zero-knowledge proof, in-line block matching protocol, dynamic
ownership

1. Introduction
In the modern cloud computing era, the enterprises and individuals outsource their data to cloud servers to
reduce the burden of deployment and maintenance of local storage devices [1]. To meet the growing demands,
the cloud service providers are pushed to perform deduplication [2] on files across the client’s data. This increases
the storage requirements and the burden on the network data. Deduplication is a data reduction method that
helps to eliminate the duplicate copies of data. An indexing scheme is designed to retain only one copy of the
data and making provision for the availability of data for all users. This is done by means of maintaining a
ownership list (OL) in the form of a table consisting of entries referring to the single copy of data. By this
method, any cloud user who tries to upload an existing file will be declined by the cloud server. Instead, it
creates an entry in OL, which points to the single copy of the data.

In spite of the advantages of this scheme, there are some security challenges like the consistency of the
users’ data stored in the server. The cloud server is an honest-but-curious entity, which may gather and inspect
∗Correspondence: kvivek@mpcoeng.ac.in

This work is licensed under a Creative Commons Attribution 4.0 International License.
2067

KANAGAMANI and KARUPPIAH/Turk J Elec Eng & Comp Sci

the data stored on the server without the knowledge of the users [3, 4]. To overcome this problem, Douceur [5]
proposed a convergent encryption (CE) algorithm at the client side for implementing the deduplication at the
sever side. The CE is a symmetric encryption algorithm which uses convergent key for encryption and decryption
of the files. The encryption key is obtained by computing the hash value of the file. The identical files produces
an identical convergent key and results in producing the same ciphertext which helps the cloud server to perform
deduplication. Many existing schemes involved in data deduplication support user revocation and user joining.
This process requires a fully trusted third party, which consumes high computing power [6, 7]. In addition, the
cloud server cannot differentiate between the authorized/unauthorized users from downloading the data. To
overcome the ownership management problem, the concept of proof-of-ownership (PoW) [8] was introduced to
verify the users who really owns the file. In our proposed work, we design an in-line block matching (IBM)
protocol to solve the duplication problem where the ownership changes dynamically. The in-line deduplication
scheme requires less network traffic and storage when compared to the existing methods.

The rest of the paper is organized as follows: Section 2 outlines the related works on proof-of-ownership
protocols and different encryption techniques. The cryptographic technique used for the proposed work and the
proposed IBM deduplication protocol is illustrated in Section 3. Section 4 analyzes the security features of
the proposed model. The performance of the proposed scheme is discussed in Section 5. Section 6 concludes
the paper.

2. Related works
The privacy and security concerns of the users’ outsourced data increase inevitably as their data is no more
stored and controlled by them. Encryption is a simple technique used to protect the users’ data, but normal
encryption techniques are not suitable for the deduplication process. To solve this issue, Storer et al. [2]
and Douceur et al. [5] introduced CE as a cryptographic technique for data deduplication. The convergent
encryption is a symmetric encryption algorithm, where the convergent key (CK) for encryption is calculated
from the data itself. By using the CE scheme, the encryption produces identical ciphertext for identical data,
which makes deduplication easier. However, the CE scheme is exposed to tag consistency problems. To solve
the tag consistency problem, the randomized convergent encryption scheme was proposed by Bellare et al. [9].
It is an implementation of message locked encryption that uses an additional tag checking process to verify the
integrity of the user data. Shin and Kim [10] proposed an equality predicate encryption scheme. In the scheme,
the cloud server possesses the token of each file to know the relation between that file and each other file without
the knowledge of the file content. However, this technique is suitable only for single user deduplication.

Wen et al.[11] secured the dynamic update of the data deduplication by proposing a session-key-based
convergent key management and a convergent key sharing scheme. The difficulties faced by the scheme is that
it is hard to change the session key and the replacement of encrypted convergent key. Hur et al. [6], proposed
a secure data deduplication with dynamic ownership management (SDDOM) scheme to solve the dynamic
ownership management issue by re-encrypting the ciphertext using the group key. This scheme secures the file
from unauthorized users who are not present in data ownership list and the honest-but-curious cloud server with
the help of binary key encryption key tree. Jiang et al. [12] proposed a randomized message locked encryption
scheme with a randomized tag. For static and dynamic decision trees, the time complexity of the deduplication
scheme was reduced with the help of interactive protocols. Yu et al. had worked [13, 16] on data deduplication
in cloud storage. To some extent, these schemes tighten the security of the duplicated data, but the complexity
of both the system and the convergent key management increases rapidly.

2068

KANAGAMANI and KARUPPIAH/Turk J Elec Eng & Comp Sci

In a client-side deduplication scheme, for the deduplication check, users upload the hash value of a file
and halt the upload process if the file has been already stored. Any adversary who knows the hash value of
the file could possibly acquire all the data from the cloud. To solve the above-mentioned problem, Halevi et
al. [8] proposed the concept of the proof-of-ownership (PoW) model to assure that, only the data owners can
retrieve the data from the server. Wang et al. [17] proposed a key-sharing method based on proof of ownership
with the help of a Merkle hash tree. For PoW, they divide the file into a set of blocks. However, this scheme
suffers from processing large data which generates many leaf nodes, resulting in the problem of communication
and computation overhead. For the CK management problem, Li et al. [18] proposed a new scheme called
Dekey. In this method users use a ramp secret sharing scheme to divide the CK into multiple shares and
distribute them among multiple servers. This scheme suffers from excess communication and computation
complexity for retrieving the CK from multiple servers. Scalable and reliable key management using pairing-
based cryptography was proposed by Kwon et al. [19]. Here, the CK is divided into three key parts and then
distributed is distributed to the external users. This scheme also faces issues when the curious cloud server
colludes with an adversary, thereby incurring additional communication and computation overhead.

Merkle-tree based PoW scheme for deduplication was proposed by Xu et al [20]. The limitations of
the existing schemes are that it does not verify the ownership of the file upon accessing, and the verification
created by a Merkle tree was built using digest rather than the original file. Files in larger size will take long
computation time for hash calculation. Xu et al. [21] proposed a cross-user client-side deduplication scheme to
protect the sensitive data files from both curious cloud servers and outside adversaries. In this scheme, they use
a hash value of the file for proof-of-ownership, which leads the attackers to gain access to entire file by easily
guessing the hash value. A formalized private data deduplication scheme to improve the proof-of-ownership was
proposed by Ng et al. [22]. In this scheme, the client holds private data and the server holds the summary of
the data to verify the ownership of the file. Clients perform the logarithmic operation on every block to build
a Merkle tree and verify the user against the server. In our proposed work, we strive to solve the problems
mentioned above.

Our contribution: In this paper, we propose an in-line block matching (IBM) scheme based on zero-
knowledge for dynamic user management. In our scheme, the users passing the PoW can only obtain the
ownership of that file. Our contribution to this paper is summarized as follows:
• First, the initial uploader calculates the file encryption key randomly and computes the key-encryption key

with the help of hashing function. The user calculates the unique proof for the file using in-line block matching
method and stores it in the database.

• For a subsequent uploader, the server verifies the proof before adding the user information into the ownership
list.

• The proposed scheme uses the re-encryption technique to avoid the unnecessary accessing of data from the
adversary and curious cloud server.

Compared to other schemes, the proposed work does not require a trusted third party, which reasonably
reduces the computational overhead.

3. Proposed work

3.1. Preliminaries
In this section, we describe the cryptographic techniques and the symbols used in our work.

2069

KANAGAMANI and KARUPPIAH/Turk J Elec Eng & Comp Sci

3.1.1. Notations
Table 1 summarizes the notations used in the IBM scheme.

Table 1. List of various symbols and notations in the proposed work.

Sybmol Meaning
xi The secret key of the user ui

Xi The public key of the user ui

F Original file
E Key encryption key
K File encryption key
T A tag value of the file F
C ′

F The ciphertext of the file F
CK The ciphertext of the key K
IDi Identity of the user ui

Bm The m number of file blocks B
L Least common multiple (LCM) of two numbers
di Secret key information per user i for the file F
e Public key information of the file F
GF Group key of the file F
P Unique proof of the file created on initial upload
R, S Response R and secret value S generated by the subsequent uploader to gain the ownership of files
O Final output calculated from P and R at server side

3.1.2. Convergent encryption algorithm

Convergent encryption is a commonly used encryption technique for data deduplication [23, 24]. The convergent
key (K) is generated by applying the hash function to the file (F), which is denoted by: CE.GenerateKey(F)
→ K. The encryption and decryption of the file are denoted as follows:

CE.Encrypt(F, K) → C and CE.Decrypt(C, K) → F, where F and C refer to the original file and
ciphertext, respectively. The key is available with the owner of the file. Then, the file gets encrypted using the
key and is stored in the cloud, hence no other user can use the file.

3.1.3. Guillou-Quisquater identification protocol

Identification is an interactive process which runs between any two parties, namely a prover (user) and a verifier
(server). The Guillou-Quisquater identification protocol is an zero-knowledge protocol [25] which was defined
in [26, 27] and designed to provide security against impersonation under passive attacks. Initially, the verifier
chooses a random value σ , where σ is the prime exponent of the multiplicative cyclic group G . Let p and q be
two large prime numbers and calculate n = p ∗ q . Prover wants to prove some value v to verifier; he needs to
compute y = v−σ(modn) . Prover chooses a random value k ∈ Zq and calculates secret as secret = kσ(modn) .
The verifier chooses a random challenge value ch ∈ Zq and sends it to the prover. The prover responds to
the challenge by calculating Response = k.vch(modn) . Lastly, the verifier accepts the prover if and only if
secret = Responseσ ∗ ych(modn) .

2070

KANAGAMANI and KARUPPIAH/Turk J Elec Eng & Comp Sci

3.2. Overview of the proposed design

In this paper, we propose a deduplication scheme, which helps to remove duplicate data from the cloud storage
where the ownership changes dynamically. The analysis of how the proposed scheme differs from the existing
works and the system design of our work are shown in Table 2 and Figure 1, respectively.

Table 2. Comparison of the different deduplication schemes with the proposed scheme.

Scheme SDDOM [6] Key-Share [17] Proposed
scheme

Encrypted data deduplication Yes Yes Yes
Access control Yes Yes Yes
User joining No Yes Yes
Proof of ownership No Yes, with fixed

leaf nodes and
time complexity

Yes, with
minimized
time

Dynamic proof computation No No Yes

Data
Uploader

Duplication
check

Re-encryption
 using group key

PoW
verification

Encrypted
 file with unique proof

Pass

Fail

Pass

Cloud Storage

Fail

Figure 1. Proposed system design.

The proposed method consists of two entities as shown in Figure 1.
• Cloud server: The cloud server is an honest but curious entity, and it provides storage services to users.

The service includes elimination of duplicated data and stores only a single copy for each and every file. The
cloud server maintains the ownership list for each data stored in the server. The ownership list contains the
identities of the user who has permission to access the file.

• Users: Cloud users or data uploaders store and retrieve the files whenever needed. Here, the users are
classified into initial uploader and subsequent uploader. Any user who uploads the data at first is called the
initial uploader, otherwise, they are considered as subsequent uploaders.

3.3. Deduplication using in-line block matching protocol

In the proposed scheme, users are divided into two types as initial uploader (IU) and subsequent uploader (SU).
• The initial uploader (IU): With the help of IBM, the initial uploader divides the file into number of

blocks and calculates the proofs for those blocks and sends it to the cloud server. The server uses these
proofs randomly to verify the subsequent uploading of the same file.

2071

KANAGAMANI and KARUPPIAH/Turk J Elec Eng & Comp Sci

• The subsequent uploader (SU): The user who uploads a file which is stored already in the cloud is
denoted as a subsequent uploader. In this case, the subsequent uploader needs to verify the ownership of the
file that he is trying to upload. To prove the ownership, SU needs to run the IBM protocol along with the
server.

The four processes involved in the IBM protocol are explained as follows:
• UPGen(F, σ , n) → P: The unique proof generation process takes place in client side, which takes as input

the file F, the prime number σ , n and generates the proof P. At first, the IU divides the given file into m
number of blocks(B) and calculates the proof for each block. It then sends the proof along with the ciphertext
of the file, ciphertext of the key, tag of the file, and the ownership-id to the server.

• ChallengeGen(r) → B, z: Once the uploader is identified as a subsequent uploader, the cloud server
randomly choose r number of blocks from the m number of blocks for proof verification process. Next, the
server chooses random integer z as a challenge value for each choosen block and sends the values to the
subsequent uploader.

• ResponseGen(r, B, z) → S,R: Using the identification protocol, the subsequent uploader calculates the
secret S by choosing a random value s. The SU also calculates the response (R) for the selected blocks using
the challenge value z and sends both secret (S) and response (R) values to the server.

• VerifyProof(P, S, R) → [True, False]: From the inputs, the server verifies the file ownership by computing
the product of P, R. Then, the server compares the computed value with S and returns the result. If the
result is true, then SU is accepted as a file owner.

3.4. Threat model and security requirements
• Completeness of the protocol: The proposed IBM protocol should return true whenever the honest

verifier is convinced by an honest prover who posses the original file blocks.
• Collusion resistance: Unauthorized cloud users who do not have the valid file blocks should not be able

to pass the verification process even if they collude.
• Zero-knowledge of the protocol: The proposed protocol should be zero-knowledge, whereby knowing the

statement (not secret) is enough for the verifier to visualize that the prover knows the secret.
• Data privacy: The cloud server is a honest but curious entity. Therefore, the cloud server should be

restricted from accessing the plaintext. Additionally, any unauthorized users (who does not have valid
permissions) should also be restricted form obtaining the plaintext.

• Backward secrecy: Any cloud user should be restricted from obtaining the plaintext of the outsourced
data before uploading the data.

• Forward secrecy: Conversely, if a user deletes the data from the cloud, he is no longer the member of the
group. The cloud server also needs to restrict these users from obtaining the outsourced data.

3.5. Scheme construction
In this section, we outline the construction of the proposed scheme.

• Setup:
Let G be a multiplicative cyclic group with prime order t. The algorithm chooses a prime exponent value g,
where g ∈ Zt . Here, we use the convergent encryption algorithm to perform the first level of encryption. The
public and secret keys for each and every user is calculated with the help of ElGamal public-key cryptosystem

2072

KANAGAMANI and KARUPPIAH/Turk J Elec Eng & Comp Sci

[28]. The group key for each and every file is calculated using ElGamal and RSA algorithm. The calculated
group keys are secretly distributed to the downloader by using RSA. Let H be a cryptographic hash function
used for hashing, where H: (0, 1)∗ → {0, 1}n .

• User registration:
Based on successful registration, the server calculates a secret key x and a public key X for the newly joined
user. First, the cloud server randomly chooses a number as a secret key x. Secondly, the public key is
calculated by X=gxmod(t).

• File upload:
In this proposed work, the file upload process is divided into two types based on the uploader.

(1) Initial uploader:
If a user u1 wants to upload the file F, he should encrypt the file before uploading. At first, the key
encryption key (KEK) E is calculated from the file using the hashing algorithm.

E = H(F)

Secondly, the tag value T for the file is calculated with the help of KEK.
T = H(E)

Finally, the user chooses a random file encryption key K to encrypt the file F and get CF . Then, the file
encryption key is encrypted with the help of KEK to get CK .

CF ← CE.Encrypt(F,K)
CK = K ⊕ E

Once the encryption process is done, the user constructs the ciphertext as C= {CF , CK }and uploads the
file to server. The format for uploading a file to the cloud server is {C, T, ID1 , P}. Here ID1 denotes
the identity of the owner who owns the file and P denotes the unique proof of the file. The generation of
unique proof is explained in Algorithm 1.

Algorithm 1: Unique proof generation by user: UPGen(F, σ , n)
Input: The given file F and the prime σ , n
Output: Unique proof P
/* Unique proof generation at user side */

1 F = {B1 , B2 ,..., Bm } // Divide the file into m equal blocks
2 for i=1 to m do
3 hi = H(Bi) // calculation of hash value for each block
4 Pi = hi

−σmod(n) // calculation of unique proof P
5 return P = {P1 , P2 ,..., Pm }

On receiving an upload request from the client, the server initially checks the tag of the current file with
the tag of the existing files in the server. If they do not match, the uploader is treated as an initial
uploader and the server performs the new file insertion process. Using Algorithm 2, the server calculates
the group key GF for an initial uploader.

2073

KANAGAMANI and KARUPPIAH/Turk J Elec Eng & Comp Sci

Algorithm 2: Group key generation by the server for user u1: genGF(e)
Input: The public key e
Output: LCM value L , Secret Key d1 for user u1 , Group key GF

/* Group key generation at server side */
1 Choose two random prime numbers a and b for user u1

2 N1 = a * b ; ϕ(N1) = (a− 1) * (b− 1) // Calculate N1 and ϕ(N1)

3 L = lcm(0, ϕ(N1)) // Calculation of lcm value L

4 ∂ = 1
e mod(L) // Calculation of secret key generator value ∂

5 d1 = ∂ mod(ϕ(N1)) // Secret key of the file for user u1

6 GF = d1 * (X1 mod(t)) // X1 is the public key of the user u1

7 return L , d1 , GF

Once the group key has been calculated, the cloud server once again encrypts the ciphertext CF using
the group key GF and obtains C ′

F .
C ′

F ← CE.Encrypt(CF , GF)
Next the server updates the ciphertext as {C ′

F ,CK , T, ID, P} and key information of the file as {e, L ,
d1 , GF } and stores into the database. After the successful completion of the upload, the server sends
N1 and d1 value to the user for group key retrieval.

(2) Subsequent uploader:
If user u2 wants to upload a file which is already stored in the server, we label user u2 as the subsequent
uploader, and the server initiates the proof of ownership verification process. At first cloud server creates
a challenge for the subsequent uploader by choosing r number of random blocks, where r ∈ 1 ≤ r ≤ m .
The challenge creation is described in Algorithm 3.

Algorithm 3: Challenge generation by server for SU u2: ChallengeGen(r)
Input: r number of blocks to be choosen
Output: Block id j , challenge value z
/* Challenge creation at server side */

1 for i=1 to r do
2 ji = random(1, 2, ...,m) // select a random number from 1,2,...,m
3 choose a random integer zi , where z ∈ 1 ≤ z ≤ 2n // Z is the coefficient for

calculating the response
4 return j = {j1 , j2 ,..., jr }, z = {z1 , z2 ,..., zr }

Using Algorithm 4, the subsequent uploader computes the response and secret value from the challenge
values that are received and sends the results to the server for proof verification.

2074

KANAGAMANI and KARUPPIAH/Turk J Elec Eng & Comp Sci

Algorithm 4: Secret and response creation by SU u2: ResponseGen(r, j, z).
Input: No of blocks to be verify r , block id j , challenge value z
Output: Secret S , Response R
/* Response creation at user side */

1 for i=1 to r do
2 choose a random integer si , where s ∈ 1 ≤ s ≤ n− 1

3 Si = si
−σmod(n) // Calculation of secret value S

4 hi = H(Bji) // Hash value for each selected block
5 Ri = si ∗ hi

zimod(n) // Response calculation
6 return S = {S1 , S2 ,..., Sr }, R = {R1 , R2 ,..., Rr }

Using Algorithm 5, the server calculates the final output O and verifies it against the secret value, then
returns the result as either True or False.

Algorithm 5: Proof verification at server side: VerifyProof(P, S,R)
Input: Unique proof P , Secret S , Response R
Output: True or False
/* Proof verification at server side */

1 for i=1 to r do
2 Oi = (Pi

zi ∗Ri
σ)mod(n) // Final output

3 if Oi = Si then
4 statusi = true

5 return true
6 else
7 statusi = false

8 return false

The cloud server generates a new group key from the existing one upon successful verification of the
proof using Algorithm 6.

Algorithm 6: Group key generation by server for subsequent uploader:
genGF({e, L, d,GF }, status)

Input: Group key generation information {e, L, d,GF }, status
Output: New group key G′

F , secret key d2 for u2 , LCM L′

/* Group key generation at server side */
1 if statusi = true, ∀i = 1, 2, ..., r then
2 Choose two random prime numbers a and b for user u2

3 N2 = a * b ; ϕ(N2) = (a− 1) * (b− 1) // Calculate N2 and ϕ(N2)

4 L′ = lcm(0, ϕ(N2)) // Calculation of new lcm value L′

5 ∂′ = 1
e mod(L′) // Calculation of new secret key generator

6 d2 = ∂′ mod(ϕ(N2)) // Secret key of the file F for user u2

7 G′
F = GF ∗X2∗d2

d mod(t)

8 return L′ , d2 , G′
F

In Algorithm 6, the generation process takes the key information of the file from the database {e, L ,
d , GF } and outputs a new group key G′

F , where e is the public key of the file, L is the LCM value,
d is the file secret key of the last subsequent uploader, and GF is the group key of the file. After the

2075

KANAGAMANI and KARUPPIAH/Turk J Elec Eng & Comp Sci

successful calculation of new group key, the server re-encrypts the ciphertext with new group key G′
F

and generates ciphertext C ′
F .

CF ← CE.Decrypt(C ′
F , GF)

C ′
F ← CE.Encrypt(CF , G′

F)
Once the encryption process is done, the server updates the ciphertext information as well as adds the
identity of the user u2 to the ownership list. Finally, the server updates the key information of the file
F as {e, L′ , d2 , G′

F }.

• File download:

If the user u1 wants to download the file F from the cloud, the user should send the download request as {F,
T, ID1 } to the server. The process of file downloading is described below.

(a) The cloud server initially checks the tag T and identity ID with the files stored in the database. Once
the verification succeeds, the cloud server creates the auxiliary information A.

(b) The cloud server calculates η , which is the product of all the N values of the file owners. The value of
η is updated whenever the ownership of the file changes.

η =
∏

ID∈ownershiplist

NID (1)

(c) Next, the server calculates the auxiliary information A using the formula

A = GF
emod(η) (2)

where e is a public key of the file and GF is the group key of the file.
(d) The server sends the ciphertext to the user with the auxiliary information and it is represented as {C ′

F ,
CK , A}.

(e) At client side, the user calculates the group key GF from the auxiliary information A using the formula

GF = ((Amod(N1))
d1)mod(N1) (3)

(f) The user calculates the file encryption key K from CK using K = CK⊕E , where E is a Key Encryption
Key of the file.

(g) Finally, the user decrypts the ciphertext using both GF , K and gets the original file F.
CF ← CE.Decrypt(C ′

F , GF)
F ← CE.Decrypt(CF , K)

• File deletion:

If the user u2 wants to delete the file F from the cloud, the server needs to update the ownership information
of the file. In the proposed scheme the deletion process is really simple. The cloud server removes the user
ownership information from the file by dividing the value of N2 from η .

η =
η

N2
(4)

2076

KANAGAMANI and KARUPPIAH/Turk J Elec Eng & Comp Sci

By doing this, even if the attacker retrieves the auxiliary information A, they cannot retrieve the group key
GF and will not be able to decrypt the file.

4. Security analysis

In this section, we discuss the security of the proposed system in terms of threat model which are stated in the
Section 3.4.

Theorem 1 The proposed protocol is complete for honest verifier and prover.

Proof Assuming that discrete logarithm is hard, the probability of an attacker to retrieve the secret blocks
Bi from the unique proof Pi (Pi = hi

−σmod(n)) is zero, where hi = H(Bi) .
Completeness means that the honest prover (holds the original file blocks) can convince the honest verifier

that he owns the file by running the verification protocol. If both the verifier and prover follows the protocol
properly, then the final output calculated by the verifier is always equal to the secret value calculated by the
prover. This is because

Oi = (Pi
zi ∗Ri

σ)mod(n)

= ((hi
−σ)zi ∗ (si ∗ hi

zi)σ)mod(n)

= (hi
−σzi ∗ siσ ∗ hi

σzi)mod(n)

= si
σmod(n)

= Si

The probability of verifying the user against the server is one. This is because, users who posses
original file blocks can only pass the verification process. Thus, our protocol is complete for honest verifier and
prover. 2

Theorem 2 The proposed scheme is secure against collusion attack.

Proof If any unauthorized user with forged file blocks tries to collude with the server to pass the authentication
process it results in producing wrong secret value. The probability of server rejecting the adversary proof is
1/2. The possibility of attack is defined as

1. Pick Ri ∈ Zq;

2. Guess z ∈ {0, 1}n;
3. calculate Si = (Pi

zi ∗Ri
σ)mod(n);

This shows for a fixed Si , there will be 2n distinct Ri values corresponding to 2n distinct values of z .
The probability of guessing each z for each selected block Bi is 2n . In the proposed protocol, the user needs
to interact with the server r times to generate proof. If all r responses are verified, the server admits the user
as owner. The probability of the adversary to pass the verification process is 2r∗n . This clearly states that, it
is computationally intractable for the adversaries to collude with the server to pass the authentication process
without having the original file blocks. 2

Theorem 3 The proposed protocol achieves zero-knowledge property against the curious cloud server.

2077

KANAGAMANI and KARUPPIAH/Turk J Elec Eng & Comp Sci

Proof In an honest-verifier zero-knowledge protocol, if the verifier follows the protocol instruction honestly,
then the protocol is perfect. Since the verifier is honest but curious in our system, here we show that the
proposed work is a perfect zero-knowledge . An interactive proof not only returns Accept, but it also produces
a proof transcript which interleaves the prover’s and the verifier’s transcript.

To obtain a proof transcript in a perfect zero-knowledge protocol, we do not have to run the protocol
between the prover and the verifier, such a proof transcript can be produced via random coin flipping in
the polynomial time length of the transcript. An interactive proof is said to be perfect zero-knowledge only
when the proof transcript can be produced by a polynomial-time (in the size of the input) algorithm for any
common input with the same probability distributions. In the proposed IBM scheme, we use the simulator to
produce a simulation of the proof transcript without the interaction of real clients. These proof transcripts are
computationally indistinguishable from real proof transcripts produced by interacting with a real client.

For an input Pi , we can construct a polynomial-time simulator ϵQ(Pi) as follows:

1. ϵQ initialize transcript as an empty string;

2. For i = 1, 2, . . . , r:

a. ϵQ picks Ri ∈ Zq;

b. ϵQ picks zi ∈ {0, 1}t; Ri must be uniform in Zq for either case of zi ∈ {0, 1}t and independent of unique
proof Pi .

c. ϵQ computes secret Si = (Pi
zi ∗ Ri

σ)mod(n) Secret Si should also be uniform and independent of the
unique proof Pi ;

d. Transcript ← Transcript ∥(Si, zi, Ri) Clearly, Transcript (Si, zi, Ri) can be produced by ϵQ in polynomial
time, and the elements and its distributions are the same as those in a real proof transcript.

In other words, in a real proof transcript the client can send the data without telling any information
about it’s private input bits to the server. The elements in the client’s transcript are computed based on how
the server chooses his random challenge bits. Therefore, the protocol is perfect zero-knowledge even if the server
is dishonest. 2

Theorem 4 The proposed scheme assures data privacy against inside and outside adversaries.

Proof In the proposed work, the cloud server (inside adversary) is honest-but-curious. Here, the possibility
for the attacks to be launched can be from a cloud server and an unauthorized cloud user. The form of
ciphertext stored in the cloud server is {C ′

F , CK , T,ID , P} . The server can easily get the ciphertext CF by
decrypting the ciphertext C ′

F . Even though the cloud server has the group key of the files, it is computationally
intractable to guess the key encryption key (E) and it cannot acquire the file encryption key K from CK . The
second form of attack can be launched from an unauthorized user (outside adversary) to acquire the plaintext
in an unauthorized manner. Even though the unauthorized user acquires the file encryption key K from the
data owner, it is computationally infeasible to retrieve the group key and they cannot decrypt the ciphertext
C ′

F . Thus, our proposed deduplication scheme guarantees data privacy from the cloud server and from an
unauthorized cloud user. 2

Theorem 5 The proposed scheme assures the backward secrecy for the stored data.

2078

KANAGAMANI and KARUPPIAH/Turk J Elec Eng & Comp Sci

Proof When a user tries to store a data that has been stored already in the cloud, he needs to follow
the subsequent uploader procedure in order to gain access to the file. Based on the successful verification,
the corresponding group key of the file is updated randomly from GF to G′

F . In addition, the ciphertext
C ′

F = EncGF
(CF) stored in the cloud is re-encrypted with new group key C ′

F = EncG′
F
(CF) . Finally, the

user is added to the ownership list of the file. Therefore, the cloud users who have the original file blocks can
only pass the identity authentication process and obtain the group key. Thus, the backward secrecy of the
outsourced data is guaranteed. 2

Theorem 6 The proposed scheme assures the forward secrecy for the stored data.

Proof If any cloud user deletes or updates an existing data, the server instantly updates the Auxiliary
information A and the identity information ID. Initially, the cloud server removes the users’ N value from the
coefficient η by dividing the N value from η . Therefore, the cloud user will be unable to pass the identity
verification process and cannot obtain the group key from auxiliary information A. Thus, our scheme achieves
forward security. 2

5. Performance analysis
In this section, we compare the performance and efficiency of the proposed scheme with the existing works
namely SDDOM [6] and key-share [17]. The testing environment used to compute cryptographic functions are:
Intel Core i5 processor, 10GB RAM, Windows10 OS.

Table 3 presents the communication and storage overhead of various schemes. For better security, we
set the key and the hashing value to 128-bits. The notations used in Table 3 are defined as follows: SC is
a size of the ciphertext, SK is a size of the key, ST denotes the size of the tag information, SID is a size of
ownership list of the file, ShF is a size of the fingerprint of the file, SP is a size of the unique proof of the file,
Ss is the size of the secret random integer, H is a hashing algorithm, Po is the pairing operation, XG is an
XOR operation on group G, Skw is a size of the data owned key for the file F, DG and MG are division and
multiplication operation on group key G and mod is a modular operation on G.

Table 3. Communication and storage overhead.

Scheme Communication Overhead Storage Overhead
Upload message size Download message size Rekeying Operation Key Size Tag Size

SDDOM [6] SC+SK+ST+SID SC+SK+ST (n-m) log n
n−m SK (log n+1)SK ST

Key-Share [17] SC+SK+ST+SID+Shf SC+SK+Ss 2H+2Po+XG SK+Skw+Ss ST

Proposed Scheme SC+SK+ST+SID+SP SC+SK+SG DG+2MG+mod SG+SK ST

The results in terms of communication and processing time for initial, subsequent upload, and download
process are shown in the figures given below.

Figure 2 shows the time taken to upload the file for the first time. In the graph, the x-axis denotes the
size of a file and the y-axis denotes the time taken to store the file. The time shown in the graph includes the
time taken for unique proof generation and storing the file into the server. From Figure 2, it is understood that
the proposed scheme is a promising one.

Figure 3 shows the uploading time for a file which is already stored in the server. In this case, the
uploader is treated as a subsequent uploader and he needs to perform proof verification process against the

2079

KANAGAMANI and KARUPPIAH/Turk J Elec Eng & Comp Sci

server. In the graph, the results include the time taken to verify the proof against the server and updating the
group key information as well as re-encrypting the stored file in the server. Compared to existing techniques,
the proposed scheme takes lesser time for computation of PoW and group key.

The results so far discussed are the analysis of the file uploading process for two different uploaders. The
computational analysis of the file downloading process is shown in Figure 4.

File size [Mb]

0 20 40 60 80 100 120

T
im

e
(m

s)

0

1000

2000

3000

4000

5000

[SDDOM, 2016]
[Key-Share, 2019]
Proposed Work

Figure 2. File uploading time for initial uploader

File size [Mb]

0 20 40 60 80 100 120

T
im

e
(m

s)

0

1000

2000

3000

4000

5000

6000
[SDDOM, 2016]
[Key-Share, 2019]
Proposed Work

Figure 3. File uploading time for subsequent uploader

2080

KANAGAMANI and KARUPPIAH/Turk J Elec Eng & Comp Sci

Figure 4. Computation time for file download

Compared with the existing schemes, the proposed scheme has access control mechanisms to verify
whether the cloud user is present in the ownership list before downloading. It also uses auxiliary information A

to avoid decrypting of file from nondata owners. The results clearly state that the proposed scheme performs
better.

6. Conclusion
In this paper, we propose an in-line block matching based data deduplication scheme with dynamic user
management. Users encrypt their data using convergent encryption. Using in-line block matching protocol,
the server generates unique proof and calculates the group key and re-encrypts the file using the group key. In
the subsequent uploader case, the user verifies the proof against the server without leaking any information to
the server and re-encrypts using a new group key. Therefore, the confidentiality of the file is assured. We have
reduced the communication overhead with the help of the access control techniques, and we also maintain a
ownership list to prevent the accessing of ciphertext from unauthorized users. The security analysis shows that
the proposed scheme protects the file from being accessed by cloud servers and adversaries. The analysis of
the proposed scheme also proves that the probability of detecting the users’ misbehavior is high. Our scheme
outperforms the existing deduplication schemes in terms of computational time, communication and storage
overhead.

References

[1] Liu X, Deng RH, Choo KKR, Weng J. An efficient privacy preserving outsourced calculation toolkit with
multiple keys. IEEE Transactions on Information Forensics and Security 2016; 11 (11): 2401-2414. dio:
10.1109/TIFS.2016.2573770

[2] Storer MW, Greenan K, Long DDE. Secure data deduplication. In: Acm International Workshop on Storage Security
and Survivability 2008; 1-10. dio: 10.1145/1456469.1456471

2081

KANAGAMANI and KARUPPIAH/Turk J Elec Eng & Comp Sci

[3] He D, Kumar N, Chen J, Lee CC, Chilamkurti N, Yeo SS. Robust anonymous authentication protocol for healthcare
applications using wireless medical sensor networks. Multimedia Systems 2015; 21: 49-60. doi: 10.1007/s00530-013-
0346-9

[4] Zhang Y, Xu C, Li H, Yang K, Zhou J, Lin X. Healthdep: an efficient and secure deduplication scheme
for cloud-assisted ehealth systems. IEEE Transactions on Industrial Informatics 2018; 14 (9): 4101-4112. dio:
10.1109/TII.2018.2832251

[5] Douceur JR, Bolosky WJ, Theimer MM. Encryption systems and methods for identifying and coalescing identical
objects encrypted with different keys. US Patent 7266689; 2007

[6] Hur J, Koo D, Shin Y, Kang K. Secure data deduplication with dynamic ownership management in
cloud storage. IEEE Transactions on Knowledge and Data Engineering 2016; 28 (11): 3113-3125. doi:
10.1109/TKDE.2016.2580139

[7] Yan Z, Ding W, Yu X, Zhu H, Deng RH. Deduplication on encrypted big data in cloud. IEEE Transactions on Big
Data 2016; 2 (2): 138-150. doi: 10.1109/TBDATA.2016.2587659

[8] Halevi S, Harnik D, Pinkas B, Peleg AS. Proofs of ownership in remote storage systems. in: Proceedings of the
18th ACM Conference on Computer and Communications Security; Chicago, Illinois, USA; 2011. pp.491-500

[9] Bellare M, Keelveedhi S, Ristenpart T. Message-locked encryption and secure deduplication. In: Proceedings of
International Conference on the Theory and Applications of Cryptographic Techniques; Athens; 2013. pp.296-312

[10] Shin Y, Kim K. Equality predicate encryption for secure data deduplication. In: Proceedings of Conference on
Information Security and Cryptology; Seoul, Korea; 2012. pp.64-70

[11] Wen M, Ota K, Li H, Lei J, Gu C et al. Secure data deduplication with reliable key management for dy-
namic updates in CPSS. IEEE Transactions on Computational Social Systems 2015; 2 (4): 137-147. doi:
10.1109/TCSS.2015.2514088

[12] Jiang T, Chen X, Wu Q, Ma J, Susilo W et al. Secure and efficient cloud data deduplication with randomized tag.
IEEE Transactions on Information Forensics Security 2017; 12 (3): 532-543. doi: 10.1109/TIFS.2016.2622013

[13] Li Y, Yu Y, Min G, Ni J, Susilo W. Fuzzy identity-based data integrity auditing for reliable cloud storage systems.
IEEE Transactions on Dependable Secure Computing 2019; 16 (1): 72-83. doi: 10.1109/TDSC.2017.2662216

[14] Xue L, Yu Y, Li Y, Au MH, Du X et al. Efficient attribute-based encryption with attribute revocation for assured
data deletion. Information Sciences 2019; 479: 640-650. doi: 10.1016/j.ins.2018.02.015

[15] Yu Y, Li Y, Yang B, Susilo W, Yang G et al. Attribute-based cloud data integrity auditing for secure outsourced stor-
age. IEEE Transactions on Emerging Topics in Computing 2017; 8 (2): 377-390. doi: 10.1109/TETC.2017.2759329

[16] Yu Y, Xue L, Li Y, Du X, Guizani M et al. Assured data deletion with fine-grained access control for
fog-based industrial applications. IEEE Transactions on Industrial Informatics 2018; 14 (10): 4538-4547. doi:
10.1109/TII.2018.2841047

[17] Liang W, Baocang W, Wei S, Zhili Z. A key-sharing based secure deduplication scheme in cloud storage. Information
Sciences 2019; 504: 48-60. doi: 10.1016/j.ins.2019.07.058

[18] Li J, Chen X, Li M, Li J, Lee PPC et al. Secure deduplication with efficient and reliable convergent key management.
IEEE Transactions on Parallel and Distriuted System 2013; 25 (6): 1615-1625. doi: 10.1109/TPDS.2013.284

[19] Kwon H, Hahn C, Koo D, Hur J. Scalable and reliable key management for secure deduplication in cloud storage.
in: 2017 IEEE 10th International Conference on Cloud Computing; Honolulu, CA, USA; 2017. pp.391-398.

[20] Xu J, Chang EC, Zhou J. Leakage-resilient client-side deduplication of encrypted data in cloud storage. Cryptology
ePrint Archive, Report 2011/538; 2011. http://eprint.iacr.org/.

[21] Xu J, Chang EC, Zhou J. Weak leakage-resilient client-side deduplication of encrypted data in cloud storage. ASIA
CCS ’13: Proceedings of the 8th ACM SIGSAC symposium on Information, computer and communications security;
Hangzhou, China; 2013. pp.195-206. doi: 10.1145/2484313.2484340

2082

KANAGAMANI and KARUPPIAH/Turk J Elec Eng & Comp Sci

[22] Ng WE, Wen Y, Zhu H. Private data deduplication protocols in cloud storage. in: Proceedings of the ACM
Symposium on Applied Computing; SAC 2012, Riva, Trento, Italy; 2012. pp.441-446.

[23] Douceur JR, Adya A, Bolosky WJ, Simon P, Theimer M. Reclaiming space from duplicate files in a serverless dis-
tributed file system. In: Proceedings 22nd International Conference on Distributed Computing Systems; Redmond,
WA; 2002. pp.617-624.

[24] Li J, Li YK, Chen X, Lee P, Lou W. A hybrid cloud approach for secure authorized deduplication. IEEE Transactions
on Parallel and Distributed Systems 2015; 26 (5): 1206-1216. doi: 10.1109/TPDS.2014.2318320

[25] Yang C, Zhang M, Jiang Q, Zhang J, Li D etal. Zero knowledge based client side deduplication for en-
crypted files of secure cloud storage in smart cities. Pervasive and Mobile Computing 2017; 41: 243-258. doi:
10.1016/j.pmcj.2017.03.014

[26] Wenbo M. Modern Cryptography: Theory and Practice. Prentice Hall; 2003

[27] Guillou L, Quisquater JJ. A paradoxical identity-based signature scheme resulting from zero-knowledge. Advances
in Cryptology – CRYPTO’88; 1998. pp.216-231. doi: 10.1007/0-387-34799-2

[28] Elgamal T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on
Information Theory 1985; 31 (4): 469-472. doi: 10.1109/TIT.1985.1057074

2083

	Introduction
	Related works
	Proposed work
	Preliminaries
	Notations
	Convergent encryption algorithm
	Guillou-Quisquater identification protocol

	Overview of the proposed design
	Deduplication using in-line block matching protocol
	Threat model and security requirements
	Scheme construction

	Security analysis
	Performance analysis
	Conclusion

