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Abstract: Several remote sensing applications require high-spatial-high-spectral resolution multispectral (MS) images.
However, most MS sensors provide low-spatial-high-spectral resolution MS images together with high-spatial-low-spectral
resolution panchromatic (PAN) bands. In order to increase the spatial resolution of MS bands to the resolution of
PAN images and to obtain high-spatial/spectral resolution MS bands, either MS and PAN images are fused (i.e.,
pansharpening) or super resolution (SR) is performed using MS bands only. Nevertheless, existing methods do not
utilize the available temporal and spatial information together. In this paper, we propose a multiframe SR algorithm
using high-spatial/spectral resolution MS images (i.e., pansharpened), taking advantage of both spatial and temporal
data, in order to exceed the spatial resolution of the available PAN bands. We first employ a wavelet-based pansharpening
method on a set of MS and PAN images captured at different times. Then, we utilize these pansharpened MS bands
in a wavelet-based multiframe SR scheme. The proposed method reveals the inter-wavelet-subband relationship of
multitemporal images for SR. We demonstrate our results with comparisons on a Landsat 7 ETM+ dataset.
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1. Introduction
In remote sensing imaging, spatial resolution indicates the ground area captured in one pixel; whereas, spectral
resolution denotes the electromagnetic bandwidth of the signals [1]. Most multispectral (MS) sensors such
as QuickBird, IKONOS, and Landsat 7 ETM+ capture a few bands, typically providing low-spatial-high-
spectral resolution for the MS and high-spatial-low-spectral resolution for the panchromatic (PAN) images.
However, several remote sensing applications, such as weather forecasting, change detection, map updating,
and environmental monitoring require high-spatial/spectral resolution MS bands.

In order to obtain high-spatial resolution MS images, a large body of research is devoted to fuse infor-
mation of MS and PAN bands, which is called pansharpening. The goal of pansharpening is to combine high
frequency information of the PAN images with MS bands. Pansharpening methods can be categorized into five
groups [1] as component substitution, relative spectral contribution, high-frequency injection, image statistics-
based, and multiresolution. Most pansharpening techniques upsample the MS bands to the size of PAN ones as
a first step. After the upsampling step, component substitution based methods [2, 3] transform the MS bands,
perform histogram matching on MS bands and PAN images and substitute components of MS with the PAN
bands. These methods perform backward transform on the substituted components as a final step. Relative
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spectral contribution methods [4] employ a linear combination of bands instead of using substitution after the
histogram matching step. Methods in the high-frequency injection group [5] apply a low-pass filter to the PAN
image, and find the difference between the original and filtered PAN images (i.e. high-frequency information).
This difference is then added to the MS bands to obtain the pansharpened ones. Image statistics based models
[6] use the statistical relationship between each band of the MS and PAN images generally using the Bayesian
approach. Finally, multiresolution methods can also be categorized into two sets as Laplacian pyramid and
wavelet-based. Laplacian pyramid based methods [7] find the pyramid for the PAN image, and add the details
from the pyramid to the MS bands after determining weights for the pyramid coefficients. Moreover, wavelet-
based methods [8, 9] perform forward transform on MS and PAN images, apply fusion on the coefficients in the
transform domain, and finally perform inverse transform.

Pansharpening methods do not take advantage of the temporal information captured by the MS sensors.
On the other hand, multiframe super resolution (SR) methods, in general, are used to fuse a sequence of degraded
or aliased low resolution (LR) images of the same scene that can be taken at different times, to obtain a high
resolution (HR) image. Approaches to solve the SR problem can be classified into interpolation, regularization,
learning-based, and frequency domain methods [10]. Interpolation-based methods [11, 12] fuse information from
all LR images using a general interpolation technique (e.g., nearest neighbor, bilinear, bicubic). To stabilize the
ill-posedness of SR problem, regularization-based methods [13] optimize a cost function with a regularization
term by incorporating prior knowledge. Learning-based methods [14] obtain an HR image from generally a
single image by utilizing training sets of LR/HR images. Frequency domain methods can be categorized into
two groups as Fourier and wavelet domain techniques. Fourier-based methods [15, 16] use the aliasing property
of LR images. Wavelet-based SR techniques [15, 17, 18], on the other hand, use the LR images to model
the lowpass subbands of an unknown HR image. This assumption allows reconstruction of the high frequency
information of the HR image, which is lost during image acquisition.

To incorporate SR methodology into remote sensing, and to take advantage of the temporal information
provided by MS sensors, Li et al. [19] propose a wavelet-based multiframe SR technique, where temporal
information of low-spatial-resolution MS images are used to increase their spatial resolution. The authors
propose using an SR method based on maximum a posteriori (MAP) framework with a universal hidden
Markov tree model as a preprocessing step for MS image classification. SR is applied band-by-band to MS
images captured on different dates. However, although their method uses the temporal information, it does not
take the available high-spatial resolution PAN image into account.

In this paper, we propose a wavelet-based multiframe SR method that takes advantage of both temporal
and spatial information captured by MS sensors, in order to obtain a high spatial resolution MS image, which
exceeds the spatial resolution of the PAN image while keeping the high-spectral resolution. To achieve this goal,
we first apply a wavelet-based pansharpening method to a set of MS and corresponding PAN images taken at
different times, to obtain high-spatial resolution (i.e., pansharpened) MS images. We then propose a wavelet-
based approach for SR which is applied band-by-band on the pansharpened MS images, in order to achieve a
higher spatial resolution MS image. For the proposed SR method, we assume that pansharpened MS images
(i.e. LR) correspond to the approximation coefficients of the first level discrete wavelet transform (DWT) of
unknown higher spatial resolution MS images (i.e. HR). For the SR process, we use the closed-form expressions
derived by Aydin and Foroosh [20] where the relationship between high frequency information of the reference
HR image and low frequency information in the given sequence of LR views is defined. We then solve the SR
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problem in a modified iterative back projection (IBP) manner.
The remainder of this paper is organized as follows. In Section 2, a brief summary of related research is

provided. In Section 3, the pansharpening method utilized in this paper and the proposed approach for SR are
presented. In Section 4, the experimental results and comparisons are demonstrated. Finally, discussion and
concluding remarks are provided in Section 5.

2. Related work
In this section, we overview the pansharpening techniques and wavelet-based SR methods. We also address the
use of SR in remote sensing.

One of the pioneering methods in component substitution group is the Intensity-Hue-Saturation (IHS)
pansharpening [21], which utilizes the IHS color space. Later, this method is enhanced to decrease the spectral
distortion [2]. Gram–Schmidt (GS) spectral sharpening [3] can be put in the component substitution group,
as well, where Gram–Schmidt method is used to reduce the redundancy in MS bands. The Brovey transform
[4] is one of the classical methods in relative spectral contribution group, which uses chromaticity transform.
One of the works in high-frequency injection group is proposed by Chavez and Pat [22], where high-frequency
information is extracted from the PAN image using a high-pass filter and injected into the MS bands. High-
frequency modulation method [5] performs injection of high-frequency information using a modulation coefficient
[1]. Another group of pansharpening methods focuses on the statistical properties of MS bands and PAN
images. One of the first works in this group is proposed by Price [6], where a linear model is used to obtain
the statistical relationship between low-spatial resolution MS, high-spatial resolution PAN, and high-spatial
resolution MS bands. In addition, Fasbender et al. [23] propose a pansharpening method based on the Bayesian
framework, where the statistical relationship between MS and PAN images are used in a weighted scheme, in
order to match the user needs. Finally, wavelet-based methods include the works by Kim et al. [8] where an
improved additive-wavelet fusion method is proposed using the à trous algorithm, which does not decompose
the MS image to preserve the radiometric data, and Otazu et al. [24] who propose a wavelet-based method
that incorporates the ’physical electromagnetic spectrum responses of sensors’ in order to suppress the artifacts.
Garzelli and Nencini [7] model the relationship between the wavelet coefficients of MS bands and PAN images at
a coarser resolution, and later use this relationship to estimate the high-spatial resolution MS bands. Alparone
et al. [25] compare several pansharpening methods and conclude that the multiresolution based ones and the
methods that employ adaptive models for the injection of highpass details outperform all the others.

We can summarize the wavelet-based SR approaches, as follows. Robinson et al. [15] apply a combined
Fourier-wavelet deconvolution and denoising algorithm to multiframe SR, in order to reduce noise in SR methods.
On the other hand, to reduce degradation artifacts such as blurring and the ringing effect, Temizel and Vlachos
[26] utilize zero padding in the wavelet domain followed by cycle spinning. For deblurring, Chan et al. [27]
derive iterative algorithms, which decompose HR image obtained from an iteration into different frequency
components and add them to the next iteration. Jiji et al. [28], as an example to learning-based methods,
handle the problem of representing the relationship between LR/HR frames by training their dataset with HR
images by learning from wavelet coefficients at finer scales, followed by regularization in a least squares manner

SR methods are also widely utilized for remote sensing. Demirel and Anbarjafari [17] use DWT and
an intermediate stage for estimating high frequency information for satellite image super resolution. Patel and
Joshi [29] propose a learning-based approach for SR of hyperspectral images using the DWT, where application-
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specific wavelet basis (i.e. filter coefficients) are designed. Moreover, Zhang et al. [30] propose a MAP-based
multiframe SR method for hyperspectral images, where principle component analysis is employed in order to
reduce the computational complexity. A comprehensive review on single-frame SR techniques for remote sensing
applications is provided by Fernandez–Beltran et al. [31].

3. Super resolution of pansharpened multispectral images
In this section, we will explain the employed pansharpening method and the proposed super resolution technique.

3.1. Pansharpening

We choose additive wavelet luminance proportional (AWLP) [24] method for the pansharpening step of our
algorithm, based on the comparisons by Alparone et al. [25] and Bovolo et al. [32].

The AWLP method is an extended version of the additive wavelet luminance technique (AWL), which is
designed for three-band (RGB) multispectral images and works in the IHS domain. This method injects high
frequency information of the PAN image to MS images proportional to their original values in order to preserve
the radiometric signature of MS images. The AWLP method generalizes the AWL method to include arbitrary
number of bands, as in the formula below:

APi = Ai +
Ai∑L

i=1 Ai

n∑
j=1

w(P), (1)

where A and AP are low resolution and pansharpened MS bands, and P shows the PAN image,
respectively. L is the number of MS bands, w is the Discrete Wavelet Transform decomposition, and n is
the number of DWT levels. Pansharpening step (for four sets of MS and PAN bands) is demonstrated in Figure
1.

3.2. Super resolution
General SR observation model can be described as follows:

ak = ΛkMkBki + nk, (2)

where ak shows the observed LR images, and i demonstrates the unknown HR image in lexicographical order.
Λ , M, B, and n indicate downsampling, motion, blur, and noise for each LR image. Subscript k indicates
the number of images in the LR set, for k = 1, ..., K. Throughout the paper, uppercase bold letters indicate
matrices; whereas, lowercase bold ones show vectors.

Since our goal is to increase the available spatial resolution of PAN images while keeping the spectral
resolution provided by MS bands, we propose using temporal, spectral, and spatial information accessible via
most MS sensors. In order to achieve our goal, we use pansharpened MS images as LR images in the general
SR scheme.

Now, we can update the SR observation model to use the pansharpened MS images, as follows:

aPi,k = ΛMi,kBi,kii + ni,k, (3)

where aP shows the pansharpened MS images (i.e., the observed LR images in Eq. (2)) and i demonstrates
the desired HR MS image (i.e., the unknown HR image in Eq. (2)), in lexicographical order. Λ , M, B, and n
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indicate downsampling (assuming same scale for all images), motion, blur, and noise, as before, and subscript i
indicates the number of bands, for i = 1, ..., L. Figure 1 shows a pictorial explanation of the proposed method.

Figure 1. Flowchart of the proposed method for super resolution of pansharpened multispectral images.

We assume that the pansharpened MS bands (aP in Eq. (3) and AP in Figure 1) are the lowpass
subbands of DWT of unknown HR MS bands ( i in Eq. (3) and I in Figure 1). The goal is to reconstruct the
unknown highpass subbands of these HR MS bands. We can write the iterative procedure to reconstruct the
unknown information as follows:

In+1
i = In

i + λ
∑

k
(APi,k − ÂPi,k)hBP, (4)

where ÂP , λ , and hBP show estimated pansharpened MS images, regularization parameter, backprojection
kernel in the iterative back projection based SR technique, proposed first by Irani and Peleg [11], respectively.
Superscript n demonstrates the iteration number. We can rewrite the above formula using Eq. (1), as follows;

In+1
i = In

i + λ
∑

k


Ai,k +

Ai,k∑L
i=1 Ai,k

n∑
j=1

w(P)k

− tr(Xi)

hBP, (5)
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where tr denotes the trace of X . Eq. (5) shows the relationship between the low-spatial resolution MS bands
(A), PAN images (P), and the unknown higher-spatial resolution MS bands (I) that we want to recover. We
define X , based on the derivations by Aydin and Foroosh [20], as follows:

X =


Fyk

Fyk
Kyk

Kyk




Ai,1 +
Ai,1∑L

i=1 Ai,1

∑n
j=1 w(P1)

Ĥn

V̂n

D̂n




Fxk

Kxk

Fxk

Kxk

 (6)

Eq. (6) demonstrates the calculation of pansharpened estimates (ÂPi,k ), for k = 2, ..., K, by using a
reference image (i.e., Ai,1 ) and wavelet transform horizontal, vertical, and diagonal subbands (i.e., H,V,D)
using the methodology derived by Aydin and Foroosh [20], assuming the reference image corresponds to the
approximation subband of the wavelet transform. Here, the displacements between images are assumed to be
subpixel, and matrices, Fx and Kx are defined, as follows;

Fx =
1

2ℓx+1



2ℓx+1 −|sx|
|sx| 2ℓx+1 −|sx|

|sx|
. . . . . .

|sx| 2ℓx+1 −|sx|


,

Kx =
1

2ℓx+1



−sx
sx −sx

sx
. . . . . .

sx −sx


where sx and ℓx demonstrate integer shift amount and the number of wavelet transform levels to be added to
the original images to reach the integer shift amount, for x direction. Fx and Kx are of size n × n, while Fy

and Ky are the matrices used for y direction, and of size m × m. Derivations are explained more in detail in
Aydin and Foroosh [20]. The matrices for y direction are defined in the same manner.

SR process consists of two parts as image registration and image reconstruction. Since satellite images
are assumed to have only translational shifts between them, we generalize the in-band (i.e., in the wavelet
domain) subpixel shift method by Aydin and Foroosh [33] to pixel level shifts. We first perform full search for
pixel accuracy, by using the in-band shift method by Aydin and Foroosh [34], which use the same inter-subband
relationship defined above in Eq. (6). In order to decrease the computational complexity, we divide the search
into two steps. First, full search for every five pixels is performed. The result obtained in the first step is later
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refined to pixel accuracy with full search for every pixel, in a [−5, 5] range. Finally, we perform the subpixel
registration method by Aydin and Foroosh [33].

Since we assume that MS image bands captured by the same sensor are already aligned, we perform
registration between MS images taken at different dates, on one band only, and apply the same registration
parameters to all bands. We perform the proposed SR scheme on each band of multitemporal pansharpened
MS images.

The proposed algorithm can also be explained step by step as in Algorithm - super resolution using
pansharpened MS images.

Algorithm SR using pansharpened MS images

• Input: Multitemporal MS and PAN bands

• Objective: Obtain high resolution MS images, exceeding the PAN band spatial resolution

• Output: High-spatial/high-spectral resolution MS images

▶ Pansharpening

⋄ Perform AWLP pansharpening, on a set of MS bands and PAN images, taken at different dates

▶ Super resolution

⋄ Image registration

∗ Register the first band of all target images to the first band of reference pansharpened image

⋄ Image reconstruction (do for all bands)

∗ Initialize high-frequency information for the unknown HR image
∗ Construct coefficient matrices (F and K) for all LR images, using registration parameters

found for translation
∗ Until a predefined number of maximum iterations, do:

· Use wavelet subbands with constructed matrices to estimate LR images (ÂP ), using Eq.
(6)

· Update HR image (I), using Eq. (5)

In the next section, experimental results on both simulated and real dataset will be demonstrated.

4. Experimental results

We test our proposed method using Landsat 7 ETM+ images, which have seven MS bands together with a PAN
band. The spectral resolution of MS bands range from 0.45µm to 2.35µm, while PAN bands span 0.52−−0.9µm
spectrum; and, the spatial resolution of MS bands are 30 m, whereas PAN bands are 15 m. We select four
multispectral image groups together with their PAN bands from a region in İstanbul, Turkey, captured on July
2, September 4 in 2000 and May 18, August 6 in 2001, for which the pansharpened versions are shown in Figure
2 (Images are courtesy of USGS Glovis). We conduct two sets of tests which are categorized as simulated and
real experiments. All tests are carried after MS and PAN bands are fused in the pansharpening step.
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Figure 2. Real pansharpened MS images (RGB bands only).

4.1. Simulated dataset
Since there is no ground truth for the proposed method, first test is a simulated experiment where one of the
pansharpened MS images is chosen as reference, all its bands are shifted in horizontal, vertical, and diagonal
directions for one pixel, convolved with a Gaussian filter, and downsampled, which is a conventional method
used for simulated SR experiments [30]. The pansharpened MS image bands chosen as reference is then used
as the ground truth in comparisons.

For image registration, one of the bands of the reference pansharpened MS image is chosen as the reference
band, and image registration is performed for the same band of all other groups of images. The proposed in-band
method is defined using subpixel displacements between images; therefore, image regions are adjusted after the
registration step, in order for all images to cover the same area. We then initialize our HR estimate using
the inverse wavelet transform on known reference LR and upsampled wavelet subbands (i.e., wavelet subband
estimations) of this LR image. The iterative method described in Section 3.2 is then applied in order to estimate
the reconstructed HR image. We compare our results both qualitatively and quantitatively with conventional
interpolation techniques and the iterative back projection (IBP) method [11], since the proposed method is a
modified IBP model. All compared methods are given the same pansharpened MS images, and the registration
parameters as input, if needed. Quantitative comparisons are based on Peak-Signal-to-Noise-Ratio (PSNR) and
Structural Similarity Index (SSIM) [35].

All figures for simulated and real experiments show a composite of R, G, and B bands. Figure 3 shows
reference HR and reference LR images together with the compared methods including Bilinear interpolation,
Bicubic interpolation and IBP method. In order to comprehend the results, Figures 4 and 5 provide zoomed
areas of all images in Figure 3. As can be seen from these figures, the proposed method preserves spectral
information of the MS bands while increasing the spatial resolution. Comparisons of the figures confirm that
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the proposed method reconstructs edges better than the compared ones, while preventing ringing artifacts as
in the compared IBP method.

Figure 3. Simulated dataset comparison.

Table 1 demonstrates the results based on PSNR and SSIM values for each band, for a resolution
enhancement factor of two. Since pansharpening methods use MS bands numbered 1, 2, 3, 4, 5, and 7 for Landsat
7 ETM+, we compare the results for these bands. Quantitative comparisons also validate the qualitative ones.
In general, the proposed method preserves the spectral information better while increasing the spatial resolution.

Table 1. Comparison of proposed method with other methods in PSNR and SSIM.

Band Linear Bicubic IBP Proposed
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 32.47 0.87 34.12 0.90 27.62 0.72 37.08 0.95
2 34.61 0.92 36.71 0.95 29.51 0.82 40.21 0.97
3 36.15 0.93 38.22 0.95 31.54 0.84 41.70 0.98
4 33.20 0.94 35.04 0.96 27.04 0.85 37.88 0.98
5 31.79 0.81 33.23 0.85 27.03 0.64 35.88 0.92
7 32.49 0.85 34.23 0.89 27.41 0.69 37.21 0.94

Since pansharpening and image registration methodologies are performed once for our experiments, and
the results of these techniques are utilized for all compared super resolution methods when needed, we examine
the computational complexity for the proposed super resolution method only. Time complexity of the image
registration model can be found in [33]. The computational complexity of the proposed method is determined
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Figure 4. Zoomed areas of simulated dataset results in Figure 3.

Figure 5. Zoomed areas of simulated dataset results in Figure 3.
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by the matrix multiplications in Eq. (6); therefore, the complexity of the proposed algorithm is O(m2n2 ),
where m and n are the size of LR images in x and y directions. We compare the average time taken by
the proposed method and the compared ones. The time taken by the proposed method is 26.46 seconds (s),
while IBP method is 6.003 s, nearest neighbor interpolation is 0.003 s, linear interpolation is 0.005 s, and
bicubic interpolation is 0.007 s. The time taken by the proposed super resolution method can be tolerated
since the proposed algorithm outperforms the compared ones in resolution quality based on the qualitative and
quantitative results, as discussed above.

4.2. Real dataset
For the second test, we use pansharpened MS bands as our LR image set, and estimate an HR image without
a ground truth; where we compare the results qualitatively. Figure 2 shows the real dataset used for the
experiments.

Figure 6 demonstrates the reconstruction results obtained by Nearest Neighbor, Bilinear and Bicubic
interpolation, IBP method, and the proposed model. When ground area changes over time (e.g., in Figure 2,
caused by the ships), the accuracy of SR decreases due to the fact that multitemporal images are fused. The
zoomed subregions in Figures 7 and 8 of the results in Figure 6 demonstrate the reconstruction details better
since these areas have mostly constructions and forests with the least change during the used time period.

Experiments with the real dataset also approve the ones with the simulated ones. One can see that
the edges of roads and constructions in Figure 6 (f) are well reconstructed. As seen in the zoomed areas in
Figures 7 and 8, proposed method smoothes jaggy artifacts, generates sharper edges while keeping the spectral
information at the same time.

Figure 6. Real dataset results comparison.
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Figure 7. Zoomed areas of real dataset results in Figure 6.

Figure 8. Zoomed areas of real dataset results in Figure 6.
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5. Discussion and Conclusion
Several multispectral satellite imaging applications require high-spatial/spectral resolution MS images; yet, most
MS sensors provide high-spectral-resolution MS and high-spatial-resolution PAN images, separately. Methods
used to increase the spatial resolution of MS bands either use the spatial information of PAN images in
pansharpening or the multitemporal data in MS bands in super resolution. Our goal is to exceed the resolution
of available PAN images provided by the sensors, to reach a higher resolution that could be captured by different
sensors, in a more costly manner. Therefore, in this paper, we propose employing pansharpening and SR methods
together, to exceed the spatial resolution in the PAN bands, by using both spatial and temporal data captured
by multispectral sensors. Experimental results conducted on real datasets captured by Landsat 7 ETM+
satellite demonstrate that the proposed method reconstructs details as well as keeps the spectral information.
The findings of this study suggest that wavelet-based pansharpening and super resolution methods performed
in satellite imagery have encouraging results. The proposed model has promising results based on quality;
however, it requires higher runtime compared to the other methods due to the fact that matrix multiplications
are performed in the super resolution step; therefore, further research focused on the computational cost of
the algorithm should be undertaken. Another possible area of future work is to explore the reconstruction of
nonstationary objects using single image super resolution techniques. The main goal of the present study is to
exceed the spatial resolution of the available PAN images provided by satellites. The results obtained in this
study will be of interest to many remote sensing applications that require high-spatial/spectral resolution, such
as map updating and change detection since more detailed remotely sensed images are obtained by using the
already available information provided by sensors.
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