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Abstract: Compressed sensing is widely used to compress electrocardiogram (ECG) signals, but the major challenges
of the compressed sensing algorithms are their highly complex signal reconstruction processes. In this paper, a re-
configurable high-speed and low-power field-programmable gate array (FPGA) implementation of the least support
denoising-orthogonal matching pursuit (LSD-OMP) algorithm for the real-time reconstruction of the ECG signals is pre-
sented. The contribution of this study is two-fold: Firstly, LSD-OMP can pick more than one element at each iteration
and reconstruct the sparse signal using less number of iterations as compared to the standard OMP algorithms. Latency
of the proposed design is therefore reduced by exploiting the multiple index selection feature of LSD-OMP. Secondly, the
proposed architecture is the first reconfigurable LSD-OMP reconstruction architecture which can take different signal
sizes and different sparsity levels. The proposed design also includes an efficient inverse wavelet transform (IWT) module
to convert the reconstructed signal back into the time-domain. Together with the overhead of the IWT module, the
proposed design demonstrates faster execution times while consuming lower power than the existing FPGA implemen-
tations; therefore, it can be utilized in wireless body area networks as a back-end unit to reconstruct the compressed
ECG signals.
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1. Introduction
Cardiovascular diseases (CVD) are the leading cause of death globally according to the World Health Orga-
nization. Patients with CVDs require extensive healthcare resources both at home and ambulant conditions.
Therefore, CVDs increase the medical costs associated with monitoring, diagnosis, and treatment. Electrocar-
diogram (ECG) recordings are used to monitor and assess the electrical activity generated by the heart and
to diagnose CVDs both manually and automatically. Since ECG monitoring is important to provide medical
assistance for patients with CVDs, developing low cost, low-power, and real-time systems is important.

Wireless body area networks (WBAN) make it possible to record the ECG signal of a patient by using
the biomedical sensors attached to their body. Recent advances in wireless communication and mobile devices
provide an opportunity for ambulatory monitoring using WBANs. Ambulatory ECG monitoring enables the
medical professionals to inspect ECG recordings of patients during their routine activity. Compared to the
standard ECG, the ambulatory ECG offers precise detection of cardiac anomalies as a result of long recording
periods of 24–48 h [1]. In such networks, recorded signals can be transferred to a host system in a real-time
fashion to provide ambulatory monitoring for the patient. The compression of the ECG signals is therefore
required for efficient storage of the large amount of ECG data and for the effective transmission over a
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communication channel. One such channel, the wireless transmission channel, is quite important for WBANs
and demands efficient signal compression. Recently, compressed sensing (CS) [2] is applied to compression of the
ECG signals [3, 4] by using smaller number of measurements for sampling. Using CS, it is possible to reconstruct
a signal by using fewer samples than needed by the Nyquist–Shannon sampling theorem. The only condition is
that the signal must show sparsity in some domain. Since it is possible to sparsely represent the ECG signals
in the wavelet domain, compression utilizing the CS theory is a suitable method for ECG monitoring. In this
way, compressed ECG data can be transferred over the wireless channel and reconstructed at the receiver side.
In addition, clinical relevance of the ECG signals that are reconstructed using CS is investigated for detection
and monitoring purposes and promising results have been reported [5, 6].

Reconstruction of a compressively sampled signal is a complex process. Algorithms are iterative and
involve a lot of matrix operations (multiplication, inversion etc.). To build an effective CS reconstruction
system, hardware implementations of such algorithms have been proposed in the literature.

The orthogonal matching pursuit (OMP) algorithm was implemented on a field-programmable gate
array (FPGA) device in [7–11]. These studies basically differ in terms of the technique used to design the
architecture (manual hardware description language (HDL) or high-level synthesis (HLS)) and the algorithm
(QR decomposition (QRD) or Cholesky decomposition (CD)) used to obtain the least square (LS) solution.
Design with HLS tools is performed with a programming language where the behavioral description of the
architecture is given and the HLS tools automatically generate an HDL description. Compared to the manual
HDL technique, it is easier and less time-consuming but the performance and the efficiency of the resultant
hardware is inferior to the manual HDL design depending on the expertise of the designer. The first hardware
implementation of the OMP algorithm was presented in [7]. The authors in [7] reported that their architechture
performed better than the CPU counterpart. However, the design was not reconfigurable and the results were
given for just one fixed configuration where the signal length was 128 for a sparsity of 5. The designs presented
in [8, 9] are two similar architectures where the work in [9] sacrifices the signal quality to lower the complexity
of the hardware. Both designs support the sparsity level of up to 8 and the signal length of 256 and utilize
QRD for the LS solution. Another hardware architecture that implements the OMP and the approximate
message passing algorithms was proposed in [10]. Their architecture can reconstruct signal with sparsity of
36 with a signal length of 1024 using QRD for the LS solution. Different from the other works, the authors
in [11] proposed implementation of the OMP algorithm using the HLS technique and utilized CD for the LS
solution. Compared to the other studies discussed here, the design in [11] achieves better timing and latency
results. It is a reconfigurable architechture and supports sparsity levels of up to 36 and the signal length of up
to 1024. The architectures presented in [7–9] are implemented on Xilinx Virtex-5 FPGA and those in [10, 11]
are implemented on Xilinx Virtex-6 FPGA. Application-specific integrated circuit (ASIC) implementation of a
modified algorithm, projection-based atom selection (POMP) was presented in [12]. It was implemented on 90
nm CMOS and uses QR decomposition for the LS solution.

Apart from the work presented in [12], existing implementations use the base OMP algorithm where
only one element of the estimated signal is determined and none of the implementations includes an inverse
wavelet transform (IWT) module. Different from the existing studies, the proposed work is tailored for the
real-time ECG signal reconstruction application targeting WBAN. It contains an IWT module for fast and
efficient domain transform for the ECG signals and it is the first reconfigurable FPGA implementation of the
least support denoising-orthogonal matching pursuit (LSD-OMP) algorithm where multiple index selection is

1888



POLAT and KAYHAN/Turk J Elec Eng & Comp Sci

utilized with the novel sorting module for low power and fast signal reconstruction. The synthesis results in
Section 4.3 demonstrate that the proposed work achieves better synthesis results than the discussed existing
work with good reconstruction quality that is analyzed in Section 4.2.

The OMP algorithm needs at most K iterations to reconstruct a sparse signal, with K being the
sparsity of the signal. The LSD-OMP algorithm [13, 14], on the other hand, can select more than one atom at
each iteration without knowledge of the sparsity value and it can reconstruct the sparse signal in less than K

iterations. This significantly reduces the number of iterations and the latency of the reconstruction and provides
faster execution time for real-time applications. In this paper, a reconfigurable hardware implementation of
the LSD-OMP algorithm, with an integrated IWT unit, has been presented for the first time. The proposed
architecture is reconfigurable, that is, it can support different sparsity values (K ), input signal sizes and sampling
matrix sizes. The size of the input signal and the sampling matrix determine the number of the multipliers,
RAM blocks, adders and layers in the adder tree and the number of the many more structural parameters. The
proposed work is designed as scalable for all these parameters by using manual HDL coding. Thus, it does not
require any HLS tool for reconfiguration. In addition to that, the proposed system contains an integrated IWT
unit where the reconstructed signal is converted into time-domain without any additional software involved
outside the hardware device.

The rest of the paper is organized as follows. Section 2 describes the LSD-OMP algorithm. The proposed
hardware architecture for the LSD-OMP algorithm is presented in Section 3. Performance evaluation and
implementation results are described in Section 4. The paper is concluded in Section 5.

2. LSD-OMP
A sparse signal x is sampled using a random matrix Φ to obtain the measurement vector y :

y = Φx (1)

If the dimension of x is N and the dimension of y is M , x can be reconstructed using a M × N random
matrix Φ provided that M ≪ N and x is sparse in the domain indicated by the random sampling matrix
Φ . Various algorithms are proposed in the literature to solve the system given in Equation 1. One of the
widely used such algorithms is the greedy OMP [15] algorithm. The basic procedure in OMP is to find the best
correlated column of the sampling matrix with the measurement vector and remove its contribution from the
residual at each iteration. OMP ensures that the residual is orthogonal to the estimated signal x̃ to prevent
selecting the same column for the following iterations.

Since the speed of the base OMP algorithm is directly dependent on the sparsity level of the signal; a lot
of extensions to OMP are proposed to improve the reconstruction speed while maintaining complexity and the
signal quality. LSD-OMP is one of such extensions. It reconstructs a sparse signal in L iterations by finding L

indices which are maximally correlated with the residual, in each iteration. Since L is smaller than the sparsity
value, LSD-OMP finishes its operation faster than the base OMP algorithm. The value L is chosen as the
minimum of K/2 and M/16 . Pseudocode of the LSD-OMP algorithm is given in Algorithm 1.

3. Architecture
Compared to the base OMP implementations, the main challenge for the LSD-OMP implementation is to
support multiple index selection at each stage of the algorithm. These stages are interdependent on each other
and involve a lot of matrix-vector multiplications and additions. The dot product between the transpose of
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Algorithm 1 Least support denoising-OMP
Input: y : M dimensional measurement vector.

Φ : M ×N dimensional sampling matrix.
K : Sparsity of the signal to be reconstructed.
L : Least support parameter L

Output: x̃ : N dimensional estimated signal.
1: r0 ← y, I0 ← ∅ J0 ← ∅
2: for t = 1 to L or stop condition do
3: Jt ← arg max

t=1...L
|ϕT

t , rt−1|, It ← [It−1 ∪ Jt]

4: x̃ = argmin ∥y − Φ̃Itx∥
5: rt ← y − Φ̃Il x̃
6: end for
7: return x̃ .

the sampling matrix and the residual vector accounts for the most of the clock cycles whereas the least squares
(LS) unit is responsible for the increased hardware complexity due to irregular memory access required for the
matrix inversion. In addition to that, the LSD-OMP demands a sorting circuit to find the L most correlated
columns at each iteration.

In this section, implementation details of the proposed design are presented. The top level diagram for
the proposed design is shown in Figure 1. Both the dot product stage and the LS unit were designed to support
variable number of columns for selection per iteration. Control was accomplished by finite state machines (FSM)
working in cooperation with each other. Fixed point notation was used throughout the architecture to reduce
the hardware complexity.

3.1. Sorting circuit and index selection

A vector multiplier is needed for every stage of the algorithm to compute multiplications between various vectors
and matrices. The dot product between ΦT and r in step 3 of Algorithm 1 requires M parallel multipliers
to perform a vector-vector multiplication per clock cycle. For this task, parallel DSP slices with reconfigurable
number were utilized as the vector multiplier unit and they were controlled by a main FSM to perform desired
operations at each step of the algorithm. DSP slices are sophisticated logic circuits found in FPGAs that provide
efficient implementation of signal processing functions such as multiplication and addition.

Multiplication results from each of these multipliers were forwarded to an adder tree implemented by
instantiating 4-input individual adders. The size of the adder tree depends on the parameter M which is also
the number of multipliers utilized. Each output from M multipliers must be summed up to obtain the result of
dot product. Adder tree is implemented by connecting small individual 4-input adders in a tree-like structure
where the outputs of one layer are the inputs for the next layer. For M = 32 , there are 8 individual adders in
the first layer. The outputs from these 8 adders are connected to 2 individual adders in the second layer and
these 2 adders are connected to a single individual adder in the last layer. Thus, for M = 32 , there are 3 layers
for a total of 11 individual adders. Since each individual adder completes its operation in 2 clock cycles, addition
for a single column completed in p clock cycles where p is calculated by multiplying the number of layers with
2. Since the dot product between the residual and every column of the matrix ΦT has to be calculated, the
adder tree completes its operation in N + p+2 clock cycles at each iteration of the LSD-OMP algorithm for N

columns. Note that the proposed design is pipelined thus at each clock cycle new data (multiplication results)
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Figure 1. Top level diagram of the proposed design.

are forwarded to the adder tree without waiting for the previously inserted data to reach the final register. This
greatly decreases the latency of the dot product from N ∗ p clock cycles to N + p+ 2 clock cycles as described
above.

The dot product results are forwarded to the sorter circuit in a pipelined fashion. L maximum correlated
columns must be identified and sorted before sending them to the LS unit. The sorting circuit was derived
from the work presented in [16]. It consists of L individual cells each holding a dot product value and the
corresponding index value. Basic operation of the sorter is to perform a comparison between the input data
from the adder tree with the data stored in the sorting cell. The sum value obtained from the adder tree for
each column is presented to all of the sorting cells.

If the forwarded data is greater than (or equal to) the current data but smaller than the data stored in
the previous cell, this new data is claimed by the corresponding cell and the current data is shifted to the next
cell. In the case that the new data is greater than (or equal to) both the current cell data and the data stored
in the previous cell, then the corresponding cell automatically shifts its data to next cell and claims the data
shifted from the previous cell (since the previous cell will also shift its data). If the new data is smaller, the cell
performs no operation. Initially all cells are cleared to zero so they will accept any data that is forwarded. Since
the algorithm involves the absolute value of the dot product, there is no possibility for a negative value. First
cell is configured to accept new data only if it is greater than its current data (no other check is performed).
An example is shown in Figure 2 for a six-cell sorting circuit.
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Figure 2. Sorting circuit example.

1892



POLAT and KAYHAN/Turk J Elec Eng & Comp Sci

After the dot product phase is completed, index value of L most correlated columns that are identified
in the sorting circuit is shifted out one by one starting from the left most cell (the largest dot product value).

These index values are used to construct the augmented matrix Φ̃ which is then used in the LS unit.

3.2. Least squares solution

LS estimation is used to compute the estimated signal x̃ from the augmented matrix Φ̃ such that:

y = Φ̃x̃ (2)

The system in Equation 2 can be solved by computing the pseudo inverse of Φ̃ .

Φ̃† = (Φ̃T Φ̃)−1Φ̃T (3)

Multiplying both sides with the pseudo inverse, the following equation is obtained:

(Φ̃T Φ̃)−1Φ̃Ty = x̃ (4)

Letting C = Φ̃T Φ̃ , inverse of the matrix C can be found by using the CD method. The matrix C can be
factorized into two matrices; an upper triangular matrix L and a diagonal matrix D .

C = LDLT (5)

The matrices L and D are computed using the following equations:

Lij =
1

Djj
(Cij −

j−1∑
k=1

LikLjkDkk), for i > j (6a)

Dii = Cii −
i−1∑
k=1

L2
ikDkk (6b)

The estimated signal is then computed by using the CD of the matrix C to obtain C−1 = (L−1)TD−1L−1

and inserting it into Equation 4. The inverse of D is computed by taking its reciprocal whereas the inverse of
L is computed by using the formula:

L−1
ij = −

i−1∑
k=1

LikL
−1
kj , for i ̸= j (7)

CD was implemented by instantiating a set of individual processing elements (PEs) to perform the
necessary arithmetic operations. The matrix C is stored in K parallel RAM blocks each holding a separate
column. At each iteration, L columns corresponding to the L most correlated indices are loaded to these RAM
blocks for the LS operation. The PEs for the decomposition matrices L and D contain 2 multipliers while
the PEs for the matrix L−1 uses 1 multiplier. These PEs compute the decomposition matrices according to
Equations 6 and 7. The structure of the LS unit is scalable and reconfigurable to support varying level of
sparsity.
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The matrix C−1 is computed from L−1 and D−1 similarly by utilizing parallel PEs that use 2 multipliers.
The LS unit is activated by the main FSM as soon as the matrix C is stored in the RAM. It can compute the
inverse of C whose size can range from 1× 1 to L×L depending on the configuration. The high level diagram
of the LS unit is shown in Figure 3.

Figure 3. The LS unit.

The estimated signal x̃ is computed in three steps using Equation 4. Firstly, the dot product between
the augmented matrix Φ̃ and the measurement vector y is done using the vector multiplier. The obtained
result is a column vector whose length is L× i where i is the iteration number. The second step is to multiply
each row of C−1 with this column vector. Since C−1 is a symmetric matrix, only the lower triangular part
is stored in memory to avoid repeated computation. Therefore, each column of C−1 is stored in a separate
RAM block such that each one contains elements from the lower part in addition to the diagonal ones. The first
element of every RAM block is multiplied with the first element of the column vector (Φ̃y) and added together
to obtain the first element of x̃ . Similarly, other elements of C−1 are multiplied with the corresponding part
of the column vector and summed up to obtain other parts of the estimated signal. A third step is needed to
compute the multiplication between the upper part of the matrix C−1 and the column vector. Thus, RAM
blocks are accessed two times to complete the operation. Finally, the results of the matrix-vector multiplications
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are added together using an adder tree similar to the one used in index selection.

After the computation of x̃ is finished, the main FSM checks the current iteration number and, depending
on the value, it either switches to residual computation or goes to inverse wavelet stage where the final ECG
signal is computed. A flowchart is given in Figure 4 which shows the state transitions of the main FSM and
operations performed at these stages.

Figure 4. Flowchart of the main FSM.
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3.3. Inverse wavelet transform
The last step of the ECG reconstruction is to convert the estimated signal in frequency domain into the time
domain. The CS theory dictates that a signal x̃ that is sparse in a domain can be reconstructed using the
randomly created sampling matrix Φ (Equation (1)). The measurement vector y is created by multiplying
a random matrix (for sampling) with a basis matrix (for sparse representation) with the sampled signal such
that:

y = ΦΨx̃
′

(8)

x̃ = Ψx̃
′

(9)

where Ψ is the basis matrix for wavelet transform. Here, the signal x̃ is obtained as output from the LSD-OMP
algorithm. Similar to the matrix Φ , each row of the wavelet matrix ΨT has to be stored in a separate memory
block. Discrete wavelet transform (DWT) is performed on the original ECG signal by using the orthogonal
symlet wavelets. Since the wavelet matrix is orthogonal, its transpose can be used as the inverse wavelet matrix
to obtain the time domain ECG signal x̃

′ . Thus, IWT is performed by multiplying the inverse wavelet matrix
with the estimated signal such that:

x̃
′
= ΨTx̃ (10)

Dimensions of the matrix ΨT is N × N . This requires N3 multiplications to complete the matrix
multiplication in Equation 10. There are two limitations that arise in this process. The first limitation is that
the number of parallel multipliers required for the operation exceeds the number of available multipliers (M ).
Secondly, at least N clock cycles are required to multiply every column of Ψ with the estimated signal, which
will increase the latency. Rather than increasing the number of multipliers by utilizing more DSP slices, the
first limitation was solved by storing more than one row of the matrix ΨT in each memory block. The number
of rows to be stored in each block was determined by the compression ratio (CR):

CR = N/M (11)

In this structure, by storing more than one row of the matrix ΨT in every memory block, each column of
ΨT is divided into segments of M elements and each segment is multiplied separately with the corresponding
element of the estimated signal and added together to obtain the ECG signal.

Since K ≪ N , majority of the elements of the estimated signal is zero. Thus, only the nonzero elements
are multiplied with the corresponding columns of ΨT . This way, the latency is reduced to CR×K clock cycles
instead of CR×N . The computation of IWT of the estimated signal is visualized in Figure 5.

4. Performance evaluation and implementation results
In this section, the implementation results of the proposed LSD-OMP circuit are given together with the
performance analysis for different metrics. Comparisons with the existing studies are also described with
respect to the synthesis results of the proposed design. The circuit was designed and verified by using the
Verilog HDL for Xilinx Virtex-5, Virtex-6, and Virtex-7 FPGA devices. The data format was determined as
fixed point 18-bit due to the specifications of the DSP slices available in these devices and also for an efficient
hardware implementation.
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Figure 5. IWT Process

4.1. Timing analysis

The latency of the proposed design is dependent on the number of iterations performed (depending on the
parameters) and the size of the sampling matrix Φ . The least support parameter L and the sparsity value K

determines the number of iterations required to complete the algorithm. It was assumed that the algorithm will
run for K/L iterations (rounded to nearest greater integer), picking L columns at each iteration to simplify
the hardware implementation. Index selection is completed in N + p+2 clock cycles at each iteration where p

is the delay introduced by the adder tree. The LS step takes 6i+29 clock cycles for the ith index used to form
the matrix C . Total latency of the LS step, therefore, depends on the sparsity value K . Additional latency
introduced by the sorting circuit and L is 5K clock cycles for L > 1 . IWT takes CR × K clock cycles to
reconstruct the ECG signal. The latency is therefore:

T = ceil(K/L) ∗ (N + p+ 2) +K ∗ (34 + CR) +

K∑
i=1

6i (12)

Although higher L values indicate lower iteration count due to higher number of columns selected, they
also increase the area utilization of the proposed circuit due to increase in the matrix size of C in the LS unit.

4.2. Reconstruction efficiency

The reconstruction performance of the proposed design was evaluated with fixed point simulations that were
repeated for 100 times for different values of K and L . The ECG signal taken from the MIT-BIH Arrhythmia
Database (MIT-BIH 117) [18, 19] was converted into frequency domain using the wavelet matrix Ψ and sampled
with the random matrix Φ . Note that the original ECG signal can be acquired by using the matrix Θ such
that:

Θ = ΦΨ (13)

by providing the matrix Θ as the sampling matrix. Thus, the ECG signal acquisition can be performed without
separately multiplying the basis matrix Ψ for domain conversion. The resultant measurement vector y is passed

1897



POLAT and KAYHAN/Turk J Elec Eng & Comp Sci

into the LSD-OMP algorithm via the wireless channel for the signal reconstruction. In the proposed design,
the matrices Φ and Ψ are readily available in the block memory. Therefore, signal reconstruction using the
LSD-OMP algorithm is first performed by the proposed hardware to obtain the frequency domain signal x̃ and
then this signal is multiplied with the basis matrix ΨT as described in the Section 3.3 to obtain time domain
ECG signal x̃

′ . The ECG sampling and reconstruction using the CS theory and the LSD-OMP algorithm is
shown in Figure 6.

Figure 6. The ECG sampling and reconstruction process for WBAN application using CS and LSD-OMP.

In the literature, there are many different metrics to evaluate the signal quality and accuracy of the ECG
signals. An extensive study was performed in [20] for the assessment of the ECG signals. After detailed testing
of different metrics for ECG evaluation, the authors of [20] recommended some of them for the assessment
of the compressed ECG signals. These metrics are divided into two main groups: subjective methods and
objective methods. Subjective methods include an expert in the area such as a cardiologist to evaluate the
signal accuracy with visual inspection. Objective methods are computed according to mathematical formulas
and they are categorized into two subgroups: metrics with diagnostic information and metrics without diagnostic
information. They also determined the thresholds for these metrics which correspond to the quality level of the
evaluated ECG signal. Among the recommended metrics, three methods without diagnostic information and
one method with diagnostic information were chosen for the assessment. Percentage root mean square difference
normalized (PRDN1), signal to noise ratio (SNR1), and mean square error (MSE) are the objective methods
without diagnostic information whereas wavelet-energy based diagnostic distortion using stationary wavelet
transform (WEDD SWT) is the chosen objective method with diagnostic information. PRD and its variants are
quite popular for the assessment of the ECG signals and widely used in the literature. The normalized version,
PRDN, was used since it is recommended over the basic PRD method [20]. PRDN is computed as:

PRDN =

√∑n
i=1[x(i)− x̃(i)]2∑n
i=1[x(i)− x2]

(14)

where x is the original signal, x̃ is the reconstructed signal, and x is the mean of the original signal. SNR
measures the error between the original and the reconstructed signal. According to [20], it is more accurate
than PRD methods when compared with subjective methods where cardiologists or researchers evaluate the
ECG signal visually and the mean score is calculated. MSE was chosen as another metric to evaluate the error
between the original and reconstructed signal. SNR and MSE are given in Equations (15) and (16), respectively.
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SNR = 10log10(

∑n
i=1[x(i)− x]2∑n

i=1[x(i)− x̃(i)]2
) (15)

MSE =
1

n

n∑
i=1

[x(i)− x̃(i)]2 (16)

WEDD SWT is a wavelet-based technique where the ECG signal is divided into frequency bands and a
weight score is computed for that band depending on its diagnostic quality. WEDD SWT is then calculated by
multiplying the weight for each band (Equation (17)) with the PRD of that particular band (Equations (18)
and (19)) [21]. WEDD SWT is sensitive to any distortion related to diagnostic quality of the ECG signals and
SWT version is recommended for the ECG signal evaluation [20].

wj =

∑n=j
i=1 |cj(i)|∑j=NB

j=1

∑n=j
i=1 |cj(i)|

(17)

WPRDj =

√∑n=j
i=1 (ci − c̃i)2∑n=j

i=1 c2i
× 100 (18)

WEDD SWT =

j=NB∑
j=0

wjWPRDj (19)

cj and c̃j in Equations (17)–(19) are the wavelet coefficients for the j th band of original and reconstructed
signals respectively.

The simulation results are shown in Figures 7a–7c for varying values of L and K and for a CR of 4
(M =64, N =256). Figures 8a–8c present the same analysis for a CR of 2 with M = 128 and N = 256. In the
study presented in [20], each algorithm has a recommended threshold value which was determined by two experts
by visually evaluating the reconstructed ECG signals. Each figure is highlighted based on the recommended
quality levels to better analyze the reconstruction efficiency. The green and yellow areas indicate very good and
good quality levels, respectively. The blue area represents the acceptable quality and beyond that the signal
quality is very bad that it is deemed unacceptable. Note that there are two different recommended levels by
two experts in [20] and the values determined by expert 1, which is stricter than the other, were used in this
paper. It was observed that the best performance is obtained for L = 2 though the difference decreases with
the increased sparsity value. This quality difference is more apparent for higher CR of 4, compared to the CR
value of 2. The reconstructed signal qualities reach ”good” level for all three metrics (PRDN, SNR, and MSE)
with the increased sparsity level for CR=4 (Figures 7a–7c). As expected, for a CR value of 2 (Figures 8a–8c),
the signal qualities reach ”very good” level for all three metrics since the CR value is decreased.

The same analysis was performed for varying values of CR and sparsity with N = 256 in Figures 9a–
9c. All CR levels excluding CR = 4 reach ”very good” signal quality with the increased sparsity level. The
WEDD SWT evaluation is shown in Figure 9d, which is a method sensitive to diagnostic information. The
results of the WEDD SWT are consistent with the other metrics where the signal qualities reach ”very good”
level with decreased CR and increased sparsity. Another observation was that the optimum value is obtained

1899



POLAT and KAYHAN/Turk J Elec Eng & Comp Sci

0 5 10 15 20 25 30 35 40

P
R

D
N

 (
%

)

0

5

10

15

20
L=2

L=3

L=4

L=5

L=6

L=7

L=8

0 5 10 15 20 25 30 35 40

S
N

R
 (

d
B

)

10

15

20

25

30

35

L=2

L=3

L=4

L=5

L=6

L=7

L=8

0 5 10 15 20 25 30 35 40

M
S

E

0

200

400

600

800

1000

1200

L=2

L=3

L=4

L=5

L=6

L=7

L=8

Figure 7. The signal quality versus sparsity for various values of the parameter L , CR = 4 (a) PRDN versus sparsity
for M = 64, N = 256, CR = 4 (lower is better), (b) SNR versus sparsity for M = 64, N = 256 (CR = 4), (c) MSE versus
sparsity for M = 64, N = 256, CR = 4 (lower is better).

with a sparsity level of 20–25 for all CR levels. Further increasing the sparsity level usually provides negligible
performance gain in terms of the signal quality.

The LSD-OMP algorithm normally checks the signal quality before stopping the algorithm from further
iterating. Without this check, the iteration count is fixed to ceil(K/L) and the signal quality may decrease
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Figure 8. The signal quality versus sparsity for various values of the parameter L , CR = 2 (a) PRDN versus sparsity
for M = 128, N = 256, CR = 2 (lower is better), (b) SNR versus sparsity for M = 128, N = 256, CR = 2, (c) MSE
versus sparsity for M = 128, N = 256, CR = 2 (lower is better).

or converge to a value as shown in 7a–7c, 8a–8c. On the other hand, incorporating quality check causes the
algorithm to stop at uncertain number of iterations. From a hardware viewpoint, it must be ensured that the
proposed system supports the maximum number of possible indices that can be chosen. This greatly increases
the resource usage and timing performance of the circuit due to increased complexity. In addition, slight decrease
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in the signal quality is negligible compared to performance gain in hardware. Because of that, the proposed
design assumes ceil(K/L) iterations and L indices at each iteration.

The same ECG signal was read into a memory array in the testbench file for the simulation of the proposed
design. The output of the circuit was read into a text file from the testbench and plotted for comparison. In
Figure 10a, the ECG signal was reconstructed using a 256 × 1024 sampling matrix and compared with the
original signal for the sparsity value of 36 and least support parameter of 2. In Figure 10b, the same process
was performed for a matrix size of 64 × 256 . In this case, the ECG signal was divided into 4 segments and
each segment was reconstructed separately. There is a trade-off that must be taken into account for both
approaches. The first approach produces better signal quality at the cost of increased hardware complexity.
While the second method produces lower quality signal, it is area-efficient and faster than the first one, and also
convenient for parallel reconstruction of all the segments by using more than one core. The visual quality of
the reconstructed signal also depends on CR where the increased CR value corresponds to the decreased signal
quality. This is further demonstrated in Figure 10c in which the same ECG signal was reconstructed with CR
= 2 and N = 256 and visually better fits the original signal compared to Figure 10b. Since the proposed design
is reconfigurable, the synthesis results for different matrix sizes and sparsity levels are given and compared with
the existing literature in the following section.

4.3. Synthesis results

The proposed design was synthesized for various problem sizes and sparsity levels to compare its performance
with the existing implementations. The synthesis results obtained after the place and route stage are given in
Table 1 for the least support parameter L = 2 . Note that all the results shown in Table 1 for the proposed design
include the overhead of the integrated IWT module. Synthesize options were configured to achieve the fastest
reconstruction speeds. Most of the compared studies are implementations of the base OMP algorithm whereas
the work presented in [12] uses POMP algorithm where it picks more than one index initially and later picks the
most suitable index among those. For a fair comparison, the same sampling matrix size and sparsity value were
used for the proposed design. Two results are presented in each case, one using the same FPGA device family
for the comparison and the other using Virtex-7 FPGA to assess the performance of the proposed design on a
resourceful and faster device. Due to reduced number of clock cycles required to complete the reconstruction
operation, the proposed LSD-OMP implementation achieves better execution time than the existing studies for
the corresponding problem size. Power consumption of the proposed design was also analyzed by using the
Xilinx Power Analyser tool. As shown in Table 1, dynamic power consumption of the proposed design is lower
than those of the existing FPGA-based designs.

Area utilization of the proposed design is presented in Table 2. The number of occupied slices, DSP
slices, and block RAM usage are listed. Comparisons are made with the data reported for the existing studies.
Although the slice utilization is slightly higher than those of the existing studies, the DSP and block RAM
utilization is on comparable levels while also maintaining the high speed. Note that the RAM utilization also
includes the extra wavelet matrix stored in the device, which is not included in the existing studies.

5. Conclusion
In this study, FPGA implementation of the LSD-OMP algorithm for real-time ECG reconstruction is presented.
The architecture is reconfigurable and can be synthesized for different values of M×N (the size of the sampling
matrix), K (the sparsity value), and L (the least support parameter). The IWT process was integrated into
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Figure 9. The signal quality versus sparsity for various CR values (a) PRDN versus sparsity N = 256 with varying CR
(lower is better), (b) SNR versus sparsity N = 256 with varying CR, (c) MSE versus sparsity N = 256 with varying CR
(lower is better), (d) WEDD SWT versus Sparsity N = 256 with varying CR (lower is better).

the proposed hardware in an efficient manner to provide full ECG reconstruction ability in one chip. The
reconstruction efficiency is assessed with four recommended metrics (PRDN, SNR, MSE, WEDD SWT) for
the varying values of L and CR. The signal quality of the reconstructed ECG signals easily reaches good
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(a) FPGA reconstructed ECG signal and the original signal for M=256, N=1024, K=36 and L=2, CR=4
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(b) FPGA reconstructed ECG signal and the original signal for M=64, N=256, K=36 and L=2, CR=4
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(c) FPGA reconstructed ECG signal and the original signal for M=128, N=256, K=36 and L=2, CR=2

Figure 10. FPGA reconstructed ECG signal (a) CR = 4, N = 1024, (b) CR = 4, N = 256, (c) CR = 2, N = 256.
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Table 1. Comparison of latency and power with the existing works (L = 2 for the proposed design).

Implementation Φ size Sparsity Technology Clock
cycles

Max.
frequency

Processing
time

Dynamic
power
(Watt)

FPGA [17]

32× 128 5

Virtex-5 1680 107.33 MHz 15.65 µs NA
FPGA [8] Virtex-5 820 85/69 MHz 10 µs NA
FPGA [10] Virtex-5 NA NA 16 µs NA
Proposed Virtex-5 688 121 MHz 5.69 µs 0.456
Proposed Virtex-7 688 171 MHz 4.02 µs 0.505
FPGA [8]

64× 256 8
Virtex-5 2260 85/69 MHz 27.14 µs NA

Proposed Virtex-5 1584 114 MHz 13.89 µs 0.737
Proposed Virtex-7 1584 160 MHz 9.90 µs 0.867
ASIC [12]

64× 256 12
90nm CMOS 8995 141 MHz 63.8 µs 0.0825†

Proposed Virtex-5 2520 105 MHz 24 µs 0.799
Proposed Virtex-7 2520 150 MHz 16.8 µs 0.895
FPGA [10]

256× 1024 36

Virtex-6 63000 100 MHz 630 µs NA
FPGA [11] Virtex-6 40788 120 MHz 340 µs 3.233
Proposed Virtex-6 23976 100 MHz 239.76 µs 2.107
Proposed Virtex-7 23976 130 MHz 184.43 µs 1.986

†: Reported average power consumption of the ASIC design.

Table 2. Comparison of resource usage (L = 2 for the proposed design).

M = 32, N = 128, K = 5 M = 64, N = 256, K = 8 M = 256, N = 1024, K = 36

Implementation [17] [8] Proposed Proposed [10] [11] Proposed
FPGA XC5VSX50T XC5VL110T XC5VLX155T XC5VLX155T XC6VLX240T XC6VLX240T XC6VLX240T
Occupied slices NA NA 3407 4065 32010 6208 20191
DSP slices 134 51 63 105 516 589 437
BRAM/FIFO 42 NA 96 170 261 576 694

levels despite the CR values of as low as 4. Diagnostic distortion is also investigated with the WEDD SWT
method and the results are consistent with the other three metrics. Combined with its reduced latency as a
consequence of the multiple index selection and its reconfigurable features, the proposed design demonstrates
faster reconstruction times and lower power consumption which makes it suitable for real-time ECG signal
reconstruction tasks in CS applications where it can especially be utilized in WBAN applications as a back-end
unit.
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