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Abstract: A composite core contains large and small heterogeneous microengines. The most important property of
composite cores is their ability to select the most proper microengine for running applications to save power without
sacrificing too much performance. To achieve this, a composite core tries to predict the performance of the passive
microengine by collecting various processor statistics from the active microengine at runtime. In the method proposed in
the literature, the microengine, which is more ideal for running the rest of the application, is determined by a migration-
decision circuitry that is bound to collected statistics and complex functions, which are run in a sequential manner. In
this study, we propose the ShapeShifter architecture that holds a single out-of-order core to switch its mode of instruction
execution between out-of-order and in-order modes. With a simple mode-change decision circuitry, which is bound to
only two processor statistics, we can save more than 25% power, more than 21% on energy-delay product, and more
than 16% on energy-delay-square product on the average, by only sacrificing less than 5% of performance.
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1. Introduction
In the literature, the first study on composite cores was presented by Lukefahr and his team [1]. The big.LITTLE
heterogeneous multicore architecture produced by ARM is a good example of the composite core architecture.
In this architecture, a 3-wide out-of-order Cortex-A15 superscalar microprocessor (large) and a 2-wide in-order
Cortex-A7 superscalar microprocessor (small) are located in the same core. In his work, Lukefahr and his team
define a composite core as a heterogeneous multicore architecture, consisting of one large and one small compute
microengine, which can provide both high performance and high energy savings.

In the existing big.LITTLE architecture of ARM, core migration is described as coarse-grained. In this
architecture, many power-saving opportunities are missed when it comes to running applications that often
change behavior as cross-core application migration occurs after billions of instructions are executed. Similarly,
an application that demands instant high performance while working on the small microengine also remains
attached to the small microengine for long periods of time. In summary, the current method does not have the
reflex to follow the instant behavior changes in running applications.

At this point, Lukefahr and his team propose a fine-grained decision mechanism for core-to-core migration,
and ultimately offer a method that is more agile to adapt to the needs of running applications. Here, we refer
to the work proposed by Lukefahr and his team as the composite core (CC) study. The basis of the method
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proposed in the CC is based on predicting the performance of the passive microengine using a function obtained
by machine-learning methods that integrate statistics collected from the active microengine.

The collected statistics include a range of statistics from the L2 cache miss and hit rates to the mispredic-
tion percentage of the branch prediction mechanism, from the ınstruction-level parallelism (ILP) obtained from
the ıssue queue (IQ) to the roughly calculated memory-level parallelism (MLP) using the miss status holding
register (MSHR). To collect these statistics, complex tables such as a dependency table should be integrated
into the small core. The decision circuit, which is called the reactive online controller, contains the performance
estimator, the threshold controller, and the core switching control mechanisms. At this point, there are two
main factors that motivate our work.

1.1. Low complexity

In this study, we show that, by providing a single out-of-order core and using only two processor statistics,
we can surpass the complexity and performance results reported in the CC. The complexity of the hardware
trained by a machine-learning method is quite high in that paper [1]. The authors also state that the method
is not generic, and the performance prediction function may be trained offline for each and every embedded
application.

In the ShapeShifter architecture that we propose in this study, there is no area required to keep an
in-order core along with the large out-of-order core. This results in a great amount of complexity reduction on
the die area. Our decision circuit for the execution mode switch does not require any machine-learning method
and any table that needs to be kept in the hardware, as in the CC. In the CC, the total area of the control
circuit covers about 3% of the processor area; whereas, the ShapeShifter utilizes a negligible number of logic
gates and has a negligible area.

1.2. Low power

Since the ShapeShifter utilizes considerably less number of transistors and does not require a core migration
facility to transfer state information between cores at a decision point, its power requirements are far less than
the power figures reported in the original composite core study. The authors of the CC roughly estimate that
the in-order core dissipates three to five times less power than the large out-of-order core. We also assume
similar power savings once our ShapeShifter processor switches to the low-power in-order execution mode.

1.3. High prediction accuracy

In the CC, statistical data for instruction-level and memory-level parallelism are gathered with rough estimations
for the performance estimation of the passive microengine. Then, functions that are trained by an offline
machine-learning method are fed with this inaccurate data. Moreover, the calculated error margins are obtained
based on the performance results of the large microengine. In the end, the performance of the passive
microengine is calculated with the prediction functions fed by imprecise statistics. Since the prediction results
obtained for the large microengine are also used in error calculations as if they are the actual values, no comment
can be made about the extent of the actual error.

In our proposed prediction method, we avoid such a multilevel calculation strategy that can create an
avalanche effect accumulating small prediction errors into a large one. Our estimation method is based on the
ability to simultaneously monitor both in-order and out-of-order instruction selection traffic using the number
of ready instructions in the ıssue queue (IQ). The proportion of instantaneous ready instructions that can be
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issued to arithmetic-logic units for out-of-order and in-order execution methods gives us an accurate guess for
the instruction-level parallelism (ILP) currently present in the running application. If the ILP level is high, this
ratio becomes large. Otherwise, if the ILP level in the instruction stream is low, the ratio converges to 1, since
an out-of-order execution engine cannot outperform an in-order execution engine in such cases.

2. Related work
There are various studies in the literature focusing on energy, power, or area efficiency. One of the main solutions
to reduce the energy consumption of the processor is to dynamically turn on and off processor resources according
to the running workload [5], [6], [7], [8]. In addition, leading studies in the literature try to select an appropriate
core in multicore systems based on the needs of running applications [6], [9], [10]. Another area of research is
based on architectural techniques to achieve similar performance figures of out-of-order processors with the help
of simpler datapath structures requiring less power and area [2], [11], [12],[13],[14],[15],[16].

The use of heterogeneous cores in multicore systems is another approach that is quite popular today.
The most popular studies in the literature aim to put high-performance and low-performance cores together
on a single chip [1], [17], [18]. Another approach focuses on the adaptive sharing of resources among these
heterogeneous cores [9], [19]. There are also studies that take this approach a step further and fuse adjacent
cores to form large out-of-order cores [20], [21].

The composite core study proposed by Lukefahr and his team suggests a heterogeneous core architecture
that hosts a high performance and a low power microengine that shares most of the datapath resources [1], [2].
The proposed architecture is based on accurately predicting the performance of the passive microengine after
collecting some run-time statistics from the active microengine and running a migration-decision circuit.

Similarly, Afram and his team suggest the FlexCore architecture. The FlexCore is a multicluster
architecture with two small cores. These cores can turn into a wide and out-of-order processor when needed.
The out-of-order processor can also turn into a simultaneous multi-threading (SMT) core. However, to achieve
this configuration, there must be sufficient thread-level parallelism (TLP) between the existing threads. Similar
to our proposed method, various run-time statistics are collected to make an accurate estimate of the proper
configuration. Cores can also switch to a low-power in-order mode [10].

In another study, Khubaib and his team proposed an architecture based on a large out-of-order core for
running single-threaded programs. The processor switches to an out-of-order SMT core to accelerate parallel
threads. When the number of running threads exceeds a certain threshold, the algorithm reconstructs the
relevant core as a multithreaded out-of-order SMT core. This method takes advantage of the thread-level
parallelism (TLP) to improve the performance of the processor [16].

Finally, as in prior work, we proposed the interactive mood detection engine (iMODE) processor with a
similar configuration with trial in-order and out-of-order modes to detect the most viable execution mode issued
to be next[22]. In that study, there was no prediction logic present, and we only relied on the results of the trial
execution modes achieving around 17% power savings. The existence of the trial execution modes in iMODE
either unnecessarily degrades performance or misses precious power-savings opportunities. In the ShapeShifter
architecture, we get rid of those trial execution modes and make use of an accurate prediction logic, instead.

3. Architecture
The composite core architecture focused in the CC contains two heterogeneous microengines, one small and
one large, tightly connected to each other. In that study by Lukefahr and his team, the fetch logic, the branch
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prediction unit, L1 instruction, and data caches are shared [1]. However, datapath structures that are only
utilized by the out-of-order microengine, such as register alias table (RAT), physical register files (PRF), and
load/store queue (LSQ), are not shared. In the article version of the CC, which is published later by the same
authors, it is seen that the authors also suggest adding a tiny L0 cache to the small microengine [2]. The
reactive online controller proposed in the CC relies on a dependency table embedded on the in-order core. The
dependency table requires a static random-access memory (SRAM) space almost as large as the size of the
re-order buffer (ROB) since it requires 128x32x2 bits.

In our ShapeShifter architecture, there is a single out-of-order microengine that acts like an in-order
microengine whenever is needed. The ShapeShifter requires a smaller area with no extra structures for the
prediction hardware. Besides, there is no need for any core-migration logic since there is a single core that
can switch between execution modes. The mode switch process from the in-order execution mode to the out-
of-order execution mode happens almost instantly since the datapath structures holding live instructions can
continue their work without any interruption. For instance, the ıssue queue (IQ) that schedules instructions in
the program-order can continue its work when the out-of-order scheduler is activated. However, the opposite
mode switch (i.e. from the out-of-order execution mode to the in-order execution mode) may require some time
to happen. In such a case, the fetch stage must be throttled, and all the datapath structures that currently run
instruction in an out-of-order fashion must be drained, first. Then, the in-order execution mode can take place.

3.1. Mode switching logic

At the heart of the ShapeShifter architecture, the mode switching logic makes rational choices between the
out-of-order (large and high-performance) and the in-order (small and low-power) execution modes, to meet the
high-performance and low-power objectives of the system as much as possible. The decision mechanism is run
as often as possible to capture the behavioral changes of the applications as suggested in the CC. The statistics
collection process is also run at certain sampling intervals instead of being run in every cycle, and therefore, the
additional power dissipation caused by the decision circuit is minimized.

3.2. Statistics
Two processor statistics feed the decision circuit: 1) instruction dispatch ratio, and 2) commit over fetch ratio.
At this point, we would like to explain these statistics in detail.

• Instruction dispatch ratio (IDR): The most important feature that distinguishes out-of-order and in-order
execution modes is that out-of-order mode can schedule any of the ready instructions waiting in the IQ
independent from the original program order, while in-order processors have to schedule them in strict
program order. For example, if any of the customers entering a market completes their shopping, they can
complete their transaction at the cash register regardless of their order of entry. The logic of out-of-order
processors exactly matches this scenario. The shopping process can be simplified when the cash register
starts dealing with customers in their order of entry into the market. However, this time, we may need
to delay some of the customers who have completed their shopping earlier than the ones who entered the
market earlier. The logic of the in-order execution mode exactly matches this second scenario. We can
collect the IDR value with the help of a counter used to measure the ILP level in the CC.

As a result, when we divide the number of instructions that are currently waiting for out-of-order execution
by the number of instructions that are waiting for in-order execution, we can calculate the potential
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speedup of an out-of-order processor over its in-order counterpart. If we perform this sampling often
enough (n times) over a period of time, we can obtain a sufficiently precise IDR value as shown in
Equation (1) below.

IDR =

∑n
i=0 Number of Ready Ins.in IQi∑n

i=0 Number of Ready Ins.at the head of IQi
(1)

The most important point to consider when collecting samples is that if sampling is done too often,
the same instructions that are ready in the same IQ configuration can be repeatedly counted creating
a misleading IDR value. For example, we set the sampling interval to 100 cycles during the tests. A
slow running application like bwaves from SPEC2006 CPU suite can wait hundreds of cycles without
any progress in the IQ. In such a case, we face the danger of counting and accumulating the number of
ready instructions we already count at consecutive sampling times. To solve this issue, we remember the
program counter (PC) of the instruction waiting at the head of the IQ at a sampling period and compare
it with the PC value of the instruction waiting at the head of the IQ at the next sampling period. If these
two PC values match, we recognize that the same instruction still waits at the head of the IQ, and there
is no change since the previous sampling period.

• Commit over fetch ratio (CFR): The commitment stage is the last step of the instruction completion
process. Some of the instructions cannot reach this stage. In particular, in speculative processors with
a dynamic branch prediction mechanism, when a branch instruction is mispredicted, many instructions
following that branch instruction on the mispredicted path must be discarded to continue with the healthy
execution of the application. At this point, we consider the ratio of the number of instructions committed
to the number of instructions fetched over a given period, as shown in Equation (2) below. If this ratio
is close to 1, we can claim that all instructions that entered the processor were also been successfully
committed. However, if this ratio is close to 0, we can conclude that the speculations made by the
processor were constantly wrong, and very few instructions could reach the commitment stage. In such a
case, the remaining instructions should be removed from the processor. We can easily calculate this ratio
with counters that collect statistics multiplied by some constant regression coefficients in the CC.

CFR =
Number of instructions that commit in a period

Number of instructions that are fetched in a period
(2)

When running an application, we need the instruction commit over fetch ratio as well as the instruction
dispatch ratio to determine how well the out-of-order mode performs compared to its in-order counterpart.
Equation (3) shows us that the product of these two ratios can give us the speedup value (S) of the out-of-order
mode over the in-order mode.

S = IDR · CFR (3)

First of all, we do not expect that the speedup value obtained from Equation (3) becomes less than 1,
given the obvious performance advantage of the out-of-order mode compared to the in-order mode. However,
due to the value of CFR, which indirectly expresses the percentage of instructions inserted into the processor
due to mispredictions in the dynamic branch prediction mechanism, the S value can get very close to 0. In
such cases, we can see that the out-of-order mode loses its advantage over the in-order mode, and that might
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be the best time to switch from the out-of-order mode to the in-order mode to save more power. Equation (4)
shows the effect of the S value in the mode selection stage of the decision circuit. The decision circuit chooses
the out-of-order mode when the calculated S value is greater than a fixed threshold value (α). Otherwise, the
in-order mode is selected.

mode =

{
out− of − order, S > α
in− order, S ≤ α

(4)

At this point, it is clear that low threshold values give us more out-of-order, and high threshold values
give us more in-order mode selections. In the tests and results section, we report the effect of this threshold
value on performance.

Another option is to calibrate the threshold value to the requirements of applications running at runtime.
In this case, it may be possible to prevent performance loss of applications over a certain upper limit and
to reveal a more stable and robust decision mechanism. We leave investigating mechanisms to dynamically
adapting the threshold at runtime for future work.

3.3. Periodic operation

When collecting statistics, we use two distinct periods, the sampling period (SP) and the decision period (DP).
Each DP contains many SPs. As shown in Figure 1, we collect and accumulate the number of ready instructions
in the IQ at the end of each SP. At the end of a DP, we calculate both IDR and CFR values and compare the S
value with the threshold value. Then, we decide which execution mode is more suitable to run our application
until the next DP. If a mode switching decision is made, we continue to work in the target mode.

Figure 1. Periodic operation of the ShapeShifter

The DP and the SP parameters play a critical role in the performance of the ShapeShifter architecture.
If SP is chosen to be too short, the additional energy consumption caused by the sampling logic outweighs
the potential energy savings provided by switching to the in-order execution mode. If the SP is chosen to be
too long, the accuracy of the sampling deteriorates too much to provide useful insights on the behavior of the
workload.

The concerns regarding DP are similar to SP; choosing a too short DP causes frequent decision points
that may cause inaccurate decisions to be made before collecting sufficient information on the behavior of the
workload, and may also cause switching overheads in terms of performance. Selecting a too long DP, on the
other hand, causes the system to switch infrequently, where the ShapeShifter logic may become late to timely
switch execution modes and miss potential energy-saving opportunities.
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Achieving optimal performance from ShapeShifter will require the SP and the DP to be selected carefully.
In line with our experimental results, we choose DP to be 10K cycles, and SP to be 100 cycles as shown in
Table 1.

3.4. Hardware
In the CC, miss and hit rates collected from the L2 cache, the misprediction rate of the dynamic branch
prediction mechanism, counters that collect instruction-level and memory-level parallelism levels, multiplier-
accumulator (MAC) that performs the performance prediction function trained by the offline machine-learning
method, the reactive online controller circuit that also takes into account the error rate, and a dependency table
to collect ILP information missing in the in-order processor require extra hardware that takes up about 3% of
the total processor area. However, the ShapeShifter architecture proposed in this study consists of a pipelined
division circuit utilized in IDR and CFR calculations, a multiplication circuit to calculate the S value, and a
comparison circuit to compare it with the threshold value.

Although we assume a hardware solution for the implementation of the ShapeShifter mechanism, we
can describe the operation of ShapeShifter in terms of pseudocode, which is presented in Algorithm 1. In the
pseudocode, variables depicted as current commit count and current fetch count represent the commit and
fetch counts already collected by many modern processors. Instead of sampling fetch and commit counts in
every sampling period (which is more frequent than the decision period), ShapeShifter remembers the fetch and
commit counts at the beginning of the previous decision period (represented as prev fetch and prev commit).

The decision algorithm requires two subtraction and two division operations. In order to reduce the
hardware complexity, these operations can be executed back to back, allowing a single subtractor and a single
divider to suffice for the algorithm. Essentially, a comparator is a subtractor. Since the subtractions and
comparisons are dependent operations, the same unit can be used for both operations. Similarly, this subtractor
can be used as an adder for the sampling periods. As a result, the ShapeShifter algorithm can be executed with
just a comparator (used for subtraction, comparison, and addition operations in the algorithm), a divider, and
a multiplier. It is also worth noting that due to the relatively short sampling and decision periods, these units
need not be full 32-bit units, and simpler computation units might be sufficient.

In summary, in the method we proposed, there is neither a MAC circuit nor a dependency table
complexity, except for the two statistical values already collected in the CC. Therefore, we can claim that
the ShapeShifter is in an advantageous position compared to the circuit in the original operation, both in terms
of delay values, area, and power consumption.

4. Experimental methodology

Gem5 simulator is used to test and evaluate the proposed composite core architecture with the ShapeShifter
architecture [3]. SPEC CPU2006 applications are compiled in x86 architecture and run with reference input
files until each completes 100 million instructions [4]. The properties of the simulated in-order and out-of-order
processors are given in Table 1.

Simulation results are evaluated with three criteria: performance, power savings, and energy efficiency.
While calculating the energy consumed by the processor per unit time, it is assumed that the out-of-order mode
uses four times the energy of the in-order processor, as assumed in the CC. Power expenditure (PE) is calculated
as shown in Equation (5) assuming W is the percentage of time spent in the in-order processor. Power savings
(PS) reported in the results section is calculated according to Equations (6) and (7) gives the formula of the
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Algorithm 1 Operation of ShapeShifter decision mechanism
if current cycle mod 10000 == 0 then

total_commit← current commit count− prev_commit
total_fetch← current fetch count− prev_fetch
prev_commit← current commit count
prev_fetch← current fetch count
IDR← total_ready / total_ready_head
CFR← total_commit / total_fetch
S ← IDR · CFR
total_ready ← 0
total_ready_head← 0
if S > α and current execution mode is in-order then

Switch to out-of-order execution mode
else

if S ≤ α and current execution mode is out-of-order then
Switch to in-order execution mode

else
if current cycle mod 100 == 0 then

if current PC head ! = prev_pc_head then
total_ready + = number of ready instructions in IQ
total_ready_head + = number of ready instructions at the head of IQ

Table 1. Processor specifications

Processor microarchitecture x86
Processor frequency 2 GHz
Machine width 4
Re-order buffer size 192
Issue queue size 64
Load queue/store queue size 32
Physical register file size 256 int, 256 fp
L1 instruction and data cache 4-way LRU, 16 KB each
L2 cache 8-way LRU, 128 KB
Decision period (DP) 10000 cycles
Sampling period (SP) 100 cycles
a Thresholds 1, 3, 5

slowdown rate (SR) of the ShapeShifter processor compared to the baseline out-of-order processor in terms of
the average instructions per cycle (IPC) metric. Finally, Equations (8) and (9) express the efficiency formula
in terms of energy-delay product (EDP) and energy-delay-square product (ED2P) representation, respectively.

PE = 1/4 · W + (1−W ) (5)

PS = 1− PE (6)

SR =
IPCbaseline

IPCadaptive
(7)
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EDP = PE · SR (8)

ED2P = PE · SR2 (9)

5. Tests and results
In this section, we evaluate our proposed decision logic in terms of performance, power savings, and energy-delay
product savings. The results are collected for three threshold values (1, 3, and 5).

Table 2 shows the percentage of performance drop of applications when running in the in-order mode
compared to its out-of-order counterpart. Performance drop percentage in some applications is almost negligible
(bwaves 0.3%, leslie3d 1.4%, and sjeng 1.8%). We expect the ShapeShifter processor to prefer the in-order
mode when running such applications to save more power. For some other benchmarks, we observe a large
percentage of a performance drop (gromacs 68.5%, and gamess 65.6%) while running in the in-order mode.
When running such applications, we expect the ShapeShifter to select the out-of-order mode to give the best
possible performance.

Table 2. Performance drop of the ın-order mode

Application Performance drop % Application Performance drop %
astar 59.4 h264 62.5
bwaves 0.3 hmmer 65.1
bzip2 16.1 leslie3d 1.4
calculix 50.3 libquantum 17.4
gamess 65.6 mcf 59.7
gems 44.6 milc 50
gobmk 23.3 namd 43.2
gromacs 68.5 sjeng 1.8

Average 39.3

We also determine the best (or near to best) alpha thresholds that enable the ShapeShifter to limit the
performance drop of each benchmark by around 5%. Table 3 shows these threshold values. Excluding the
threshold-insensitive benchmarks and large values of the alpha threshold for bwaves, leslie3d, milc, and sjeng
benchmarks, the average threshold value is 4.3.

The bar chart in Figure 2 shows the runtime percentages of the in-order mode when running applications
on the ShapeShifter processor. As can be seen from the figure, the mechanism we proposed fully meets our
expectations. While bwaves, leslie3d, and sjeng applications are running, the in-order mode matches the
performance of the out-of-order mode, and, therefore, the in-order execution mode monopolizes the entire run.
However, in applications where the performance difference between the two modes is large, the out-of-order
mode is preferred, as expected. We also observe that when the threshold value is increased and performance
losses can be tolerated more, the in-order mode is given more chance. The last column on each benchmark
shows the effect of the near-optimal alpha threshold (best alpha) value retrieved from Table 3. As seen from
the graph, the results for the fixed alpha threshold of 3 and the best alpha threshold that always gives us
around a 5% performance penalty are very close to each other. Definitely, with the fixed threshold value of 3,
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Table 3. Near-optimal thresholds

Application α Application α

astar 7.0 h264 4.0
bwaves insensitive hmmer 7.0
bzip2 5.0 leslie3d insensitive
calculix 3.0 libquantum 4.5
gamess 3.0 mcf 3.7
gems 2.5 milc 35.0
gobmk 3.0 namd 3.6
gromacs 5.0 sjeng insensitive

we lose some power-saving opportunities in astar, bzip2, gromacs, h264, hmmer, libquantum, mcf, milc, and
namd benchmarks. On the contrary, in gems benchmark, we give more power-saving opportunities in the fixed
threshold case, and we pay for its large performance impact as shown in Figure 3.
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Figure 2. Runtime percentage of the in-order mode in ShapeShifter for various alpha thresholds. The best alpha
represents the best performing alpha value for each benchmark, respectively.
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Figure 3. Percentage of performance drop of ShapeShifter compared to baseline out-of-order processor for various alpha
thresholds. The best alpha represents the best performing alpha value for each benchmark, respectively.

1973



TOKATLI et al./Turk J Elec Eng & Comp Sci

Figure 3 shows the degree of performance loss for three fixed threshold values and the near-optimal
threshold (best alpha) that we study. Here, we see that if the threshold value is selected as 1, the performance
loss of the system is only 0.25% on average and the highest performance loss is 1.8% in sjeng benchmark.
However, this threshold value causes many power-saving opportunities to be missed. As can be seen from the
chart, the performance loss tolerance of applications to the in-order mode varies greatly. For example, bzip2
application spends almost 50% of its entire time in the in-order mode, but we observe only a 0.12% performance
drop compared to the baseline out-of-order processor. With the fixed threshold of 3, calculix shows a serious
loss of performance over 7%, although it only runs on the in-order mode 14% of its overall runtime. Moreover,
some applications, such as milc and hmmer, are almost insensitive to studied threshold values and prefer the
out-of-order mode at all times. In summary, the ShapeShifter processor senses that the loss of performance
will be high if we switch to the in-order mode, and, in such cases, it keeps selecting the out-of-order mode to
always stay on the safe side. The only exceptional case is encountered with the gems benchmark. The fixed
alpha threshold of 3 seems to be a little too much for this benchmark (the best alpha value is 2.5 as shown
in Table 3), and we observe more than a 15% performance drop. Finally, the ShapeShifter also identifies slow
benchmarks that are totally insensitive to any alpha threshold (i.e. bwaves, leslie3d, and sjeng) and runs them
in in-order mode 100% of the time.

Figures 4 and 5 report the results of power savings and energy-delay product (EDP) savings, respectively.
As can be seen from the figures, while the threshold value is 1, the average power and EDP savings are almost
15%. However, when the threshold value is selected as 3, we observe that average power savings suddenly
inclines to 21.5% although the average performance loss stays around 2.7%. The same observation is true
for the EDP criterion, as well. When the threshold value is increased from 1 to 3, the average EDP savings
increases to 19.1%. Note that these results are very close to the results of the near-optimal alpha threshold that
is empirically found for each benchmark. Of course, the average power and EDP savings for the alpha threshold
of 5 are the highest. However, this threshold value comes with a cost of 11.4% average performance penalty,
which might still be tolerable in battery-operated devices, such as laptops and smartphones.

Figure 6 reports the results of energy-delay-square product (ED2P) savings. This metric is less latency-
tolerant, and it is more appropriate to apply this to desktop processors. As can be seen from the figure, ED2P
savings becomes worst when the alpha threshold goes up. In many benchmarks (i.e. calculix, games, gems,
gromacs, h264, hmmer, mcf, and namd) we have negative savings meaning it is not worth saving power since the
performance penalty that we get is not tolerable in these benchmarks. In the end, the best results are obtained
from the fixed alpha threshold of 3 and the near-optimal threshold configurations with more than 16% savings,
on average. As it is expected, the savings of the fixed threshold of 5 are worst, since it is the configuration with
the highest average performance penalty.

The simulation results also show that applications come into two main categories when their performance
loss and potentials for power savings are considered. The first category of applications requires high performance
and they heavily rely on the out-of-order mode of execution. In these applications, there is a big trade-off between
power savings and loss of performance. As a result, it is not possible to achieve remarkable power savings in
this first group of applications without tolerating a considerable loss of performance. The second category of
applications, on the other hand, shows a limited ILP. These applications are suitable to use the in-order mode in
those low ILP program phases and are good candidates for providing significant power savings in exchange for
a very limited performance loss. When the percentage of performance drop of an application is less than 30%
between the out-of-order and the in-order mode, we assume that such an application is in this second category
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Figure 4. Percentage of power savings of ShapeShifter compared to baseline out-of-order processor for various alpha
thresholds. The best alpha represents the best performing alpha value for each benchmark, respectively.
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Figure 5. Percentage of EDP savings of ShapeShifter compared to baseline out-of-order processor for various alpha
thresholds. The best alpha represents the best performing alpha value for each benchmark, respectively.
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Figure 6. Percentage of ED2P savings of ShapeShifter compared to baseline out-of-order processor for various alpha
thresholds. The best alpha represents the best performing alpha value for each benchmark, respectively.

of applications. Applications bwaves, bzip2, gobmk, leslie3d, libquantum, and sjeng are in this category.
The performance loss, power savings, and energy-delay product savings results are obtained when the

applications from both categories are evaluated together. However, if we focus on the second group of appli-
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cations, for the fixed threshold value of 3, the average performance loss is as low as 2.4%, the average power
savings is 47.2%, the average EDP savings is 45.7%, and the average ED2P savings reaches 44%. If we move
to the threshold value of 5, the average performance loss inclines to 4.4%, the average power savings becomes
55%, the average EDP savings rise to 52.2%, and, finally, the average ED2P savings goes beyond 49%.

6. Conclusion
In this study, we propose the ShapeShifter architecture, which is an out-of-order superscalar processor that
sometimes acts as if it is a smaller in-order superscalar processor. At certain decision points, the mode switching
circuit decides which execution mode is more suitable for running an application until the next decision point.
The ShapeShifter achieves better power and energy-delay savings with the help of just two processor statistics
compared to the relatively complex and power-hungry control circuit within a composite core architecture that
is previously proposed in the literature. Average performance loss of the ShapeShifter compared to a fully
out-of-order baseline processor is kept below 5% while saving more than 25% of overall processor power across
all simulated SPEC CPU benchmarks. This result is better than the average power savings of 18% of the
composite cores architecture and the average power savings of the iMODE study, which is reported as less than
20%, for similar performance drop levels.

In future work, we are planning to study the effect of resource partitioning for achieving further power,
EDP, and ED2P savings on the ShapeShifter architecture.
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