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Abstract: This letter presents the complete mathematical formulation for the closed-form evaluation of the time domain
physical optics (PO) integral on linear triangular patches using Radon transform (RT) interpretation. The incident field
is assumed to be an impulsively excited plane wave and scattered fields are observed at far-zone. The PO integral
is evaluated in closed-form as the intersection of the triangle and the plane formed by the incident and observation
directions. In addition, a formula is suggested for the special case, which occurs if there is no intersection of the plane
and all scatterer. Accuracy of the closed-form expressions is demonstrated via numerical examples.

Key words: Closed-form evaluation, physical optics approximation, Radon transform interpretation, time domain
analysis

1. Introduction
Accurate and fast evaluation of the physical optics (PO) integral is very important on the application of PO
approximation to the analysis of electrically large scatterers [1–7]. In the literature, it is possible to find plenty
of works that searched for an approximate or exact expression to the PO integral both in the time and frequency
domains for different geometric formations [1–9]. An elegant way to evaluate the closed-form expression of the
PO integral for linear triangular patches in time domain (and also Fourier transformed to frequency domain) is
presented in [2] using the Radon transform (RT) interpretation. In [2], the PO integral over a linear triangular
surface is reduced to a line integral over the intersection of the linear triangle and the plane formed by the
propagation direction of the incident plane wave and the observation direction, called kr -plane, then it is
concluded that the closed-form expression to the line integral should be a triangle function since the domain of
the PO integral is a linear triangle. This approach is also extended to non-uniform rational basis spline (NURBS)
surfaces [8], quadratic triangular patches [9], different source and observation configurations [3, 4], even applied
to time domain integral equations [10]. However, the closed-form expression presented in [2] can be obtained
mathematically following the steps applied in [9] for exact evaluation of the PO integral for quadratic triangles.
In addition, for a time domain simulation, it is possible to encounter with a case such that all scatterer can
be completely fit into two consecutive time samples, resulting in no intersection. This case is not the specular
reflection case (i.e., the special case that the kr -plane is parallel to the triangular patch) and strongly depends
on the choice of the time step size, the incidence, and observation directions. This case is called under-sampled
reflection (USR) case in this letter. Note that USR case has not been encountered in [2] since all examples in
[2] are produced in frequency domain even the formulation is partially in time domain.
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The contributions of this letter are in threefold: (i) the mathematically complete formulation of the
closed-form evaluation of the PO integral for a linear triangular patch in time domain step by step without
any interpretation is presented. The incident field is assumed to be an impulsively excited plane wave and far
scattered fields are observed as in [2]. Note that the formulation presented in this letter is based on the exact
evaluation scheme in [9] and its simplification to linear triangles, which yields a less complex formulation and
closed-form evaluation. (ii) For the USR case, a formula, which has a rectangular shape in time, is proposed.
Specifically, the temporal integral of the proposed formula yields the area of the linear triangle, which is also
same as the temporal integral of the PO integral. The accuracy of the proposed formula for the USR case is
analyzed via numerical examples. (iii) In addition, it is shown that the accuracy of the scattered field obtained
using the time domain PO approximation strongly depends on the norm of kr , besides the time step size. Note
that this observation might be crucial to maintain the accuracy at the same level for all incident/observation
directions.

The rest of the letter is organized as follows: Section 2 presents the formulation for closed-form evaluation
of the PO integral in time domain and the suggested formula for USR case. In Section 3, numerical examples
are presented, and in Section 4 conclusions are drawn.

2. Formulation
Let S denote the surface of a perfect electrically conducting (PEC) scatterer that resides in an infinite
homogeneous background medium with permittivity ε0 and permeability µ0 . The electric field component of the
impulsively excited incident plane wave Einc(r, t) = p̂δ(t−k̂i ·r/c) , where k̂i and p̂ are the propagation direction
and polarization of the incident wave, respectively, δ(·) denotes the Dirac delta function, and c = 1

/√
ε0µ0 is

the speed of light. In the PO approximation, the current density is assumed as J(r, t) = 2n̂(r)×Hinc(r, t) ;
r ∈ Slit , and J(r, t) = 0 ; r ∈ Ssha , where n̂(r) denotes the outward pointing unit normal vector of S , Hinc(r, t)

denotes the incident magnetic field intensity, Slit and Ssha denote the illuminated and shadowed parts of S .
Assuming that Slit is discretized with linear triangular patches, Slit ≃

⋃
N
n=1Sn , the scattered electric field

intensity at far-zone can be determined as

Esca(r, t) = − 1

2πc

∂tδ(t− r/c)

r
∗
[
k̂s × k̂s × (k̂i × p̂)×

∑N

n=1
n̂nhn(t)

]
, (1)

where r = rk̂s and k̂s is the observation direction, ∂t and “∗” denote the time derivative and convolution,
respectively, n̂n = n̂(r) ; r ∈ Sn , denotes the unit normal vector of the nth triangular patch, and hn(t) denotes
the PO integral:

hn(t) =

∫
Sn

δ
(
t− 2c−1kr · r′

)
dr′. (2)

Here kr = (k̂i − k̂s)/2 . Note that in (2) the argument of the Dirac delta function defines a plane with a time
dependent location t = 2c−1kr · r′ , called kr -plane. Considering the infinite time integral of hn(t) yields the
area of the triangular surface Sn , time samples of hn(t) are the intersection of the kr -plane and the triangular
surface Sn . Since Sn is a linear triangular surface, the result of the integral should be a triangle function [2]
(see Figure 1 in [2]). Next the closed-form evaluation of hn(t) is shown.
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2.1. Evaluation of hn(t)

A linear triangular patch is defined by three nodes r1 , r2 , r3 , and assume that these nodes are ordered
in intersection time of the node and the kr -plane as t3 > t2 > t1 , where ti = 2c−1kr · ri , i = 1, 2, 3 ,
as shown in Figure 1 in [2]. Any point on Sn can be pointed using barycentric coordinates of Sn , i.e.
r′ = (r2 − r1)α + (r3 − r1)β + r1 , where (α, β) denote the barycentric coordinates as shown in Figure 1.
The coordinate system can be rotated as (x, y, z) → (xp, yp, zp) such that kr ∥ x̂p . As a result intersection time

can be given as ti = 2c−1 |kr|xp,i , i = 1, 2, 3 , and using the Dirac delta function’s property δ(ax) = |a|−1
δ(x)

[11], hn(t) can be written as

hn(t) =
c

2 |kr|

∫
Sn

δ

(
ct

2 |kr|
− x′

p,i

)
drp. (3)

The argument of the Dirac delta function in (3) determines the location of the kr -plane:

0 =
ct

2 |kr|
− x′

p,i =
ct

2 |kr|
− [(xp,2 − xp,1)α+ (xp,3 − xp,1)β + xp,1] . (4)

A coordinate transformation as shown in Figure 1 is applied to (3) and (4),

Figure 1. Intersection of the kr -plane and Sn in the barycentric coordinates.

α = u cosΩ− v sinΩ (5)

β = u sinΩ + v cosΩ,

where Ω = tan−1[(xp,3 − xp,1)/(xp,2 − xp,1)] . Note that since t3 > t2 > t1 (also xp,3 > xp,2 > xp,1 ),
Ω ∈ [0, π/2) . Substituting (5) into (4) yields

u =
1

τ

[
ct

2 |kr|
− xp,1

]
, (6)

where τ =
√

(xp,2 − xp,1)
2
+ (xp,3 − xp,1)

2 . Applying the coordinate transformation in (5) to the PO integral

(3) yields

hn(t) =
ctAn

τ |kr|

∫
u

δ

(
u− ct

2 |kr| τ
+

xp,1

τ

)∫
v(u)

dvdu. (7)
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Here, An = 0.5 |(r3 − r1)× (r2 − r1)| denotes the area of the triangle, 2An is the Jacobean of the transfor-
mation. The integral w.r.t. u in (7) can be evaluated analytically using the Dirac delta function’s property∫
f(x)δ(x− x0)dx = f(x0) [11] as

hn(t) =
ctAn

τ |kr|

∫
v(u)

dv

∣∣∣∣∣
u= ct

2|kr|τ
− xp,1

τ

. (8)

Note that in (u, v) , kr ∥ v and the integral in (8) represents the line that is formed as a result of the intersection
of the kr -plane and Sn . In addition, since t3 > t2 > t1 ; the kr -plane first intersects with r1 (where α = 0

and β = 0), then intersects with r2 (where α = 1 and β = 0), and lastly intersects with r3 (where α = 0 and
β = 1). This order determines the limits of the integral in (8). Hence the integral in (8) should be evaluated
for two regions: for t2 > t > t1 , the lower and upper limits are on β = 0 and α = 0 lines, respectively. For
t3 > t > t2 they are on α = 0 and γ = 1 − α − β = 0 lines, respectively. For a given u , intersection of the v

axis with β = 0 , α = 0 , and γ = 1− α− β = 0 lines can be found using the inverse transformation of (5) as

vβ(u) =
−u sinΩ

cosΩ
=

−u(xp,3 − xp,1)

(xp,2 − xp,1)
, (9)

vα(u) =
u cosΩ

sinΩ
=

u(xp,2 − xp,1)

(xp,3 − xp,1)
, (10)

vγ(u) =
1− u[cosΩ + sinΩ]

cosΩ− sinΩ
(11)

=
τ − u[xp,2 + xp,3 − 2xp,1]

xp,2 − xp,3
,

respectively. As a result, the closed-form expression of hn(t) in (8) can be determined for t2 > t > t1 as

hn(t) =
ctAn

|kr| τ
[vα(u)− vβ(u)]u= ct

2|kr|τ
− xp,1

τ
(12)

=
ctAn

|kr| τ2

[
ct

2 |kr|
− xp,1

] [
τ2

(xp,3 − xp,1)(xp,2 − xp,1)

]

=
ctAn

|kr|

ct
2|kr| − xp,1

(xp,3 − xp,1)(xp,2 − xp,1)

= 2An
t− t1

(t3 − t1)(t2 − t1)
,

and for t3 > t > t2 as

hn(t) =
ctAn

|kr| τ
[vγ(u)− vα(u)]u= ct

2|kr|τ
− xp,1

τ
(13)

=
ctAn

|kr|

ct
2|kr| − xp,3

(xp,3 − xp,1)(xp,2 − xp,3)

= 2An
t− t3

(t3 − t1)(t2 − t3)
.
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If t > t3 or t1 > t , then there is no intersection and hn(t) = 0 . Consequently, hn(t) can be given as follows

hn(t) =


2An(t−t1)

(t2−t1)(t3−t1)
, (t1 < t < t2)

2An(t−t3)
(t2−t3)(t3−t1)

, (t2 < t < t3)

0, elsewhere.

(14)

As a special case if t1 = t2 = t3 , i.e. the specular reflection case, where n̂n ∥ kr and kr · r′ is constant all over
Sn , (2) can be written as

hn(t) =

∫
Sn

δ (t− 2kr · r1/c) dr′ (15)

= δ (t− t1)

∫
Sn

dr′

= Anδ (t− t1)

With (14) and (15), the closed-form expressions in [2] are obtained.

2.2. Under-sampled reflection (USR) case

For a time domain simulation a time step size ∆t should be selected considering the desired higher limit of
the frequency band of the simulation, i.e. fmax . The intersection of the scatterer and the kr -plane occurs in a
time interval t ∈ [tmin, tmax] , where tmin = min{2c−1kr · r} and tmax = max{2c−1kr · r} , ∀r ∈ S . Note that
tmin and tmax depend on the kr direction, which is not a unitary vector and also depends on the incidence and
observation directions. If the time step size ∆t samples the interval [tmin, tmax] , i.e. the kr -plane intersects
with the scatterer at any time sample, then the closed-form expressions given in the previous subsection can
be used. However if (m + 1)∆t > tmax > tmin > m∆t for an integer m , then samples of the kr -plane has no
intersection with the scatterer. As a result, the scatterer is totally neglected as it does not exist. This case is
named as under-sampled reflection (USR) case in this letter.

In order to remedy this problem, a simple formula is suggested considering the PO integral hn(t) for a
triangle patch is in triangle form in time as in (14) and its temporal integral yields the area of the patch, then
hn(t) can be represented by

hn(t) =

{
An

t3−t1
, t3 > t > t1

0, elsewhere,
(16)

where the temporal integral of (16) yields An and the Fourier transform of (16) is similar to the Fourier
transform of (14) for the frequency f < fmax , since ∆t is large enough [12].

2.3. Computational complexity
The computational complexity and memory requirement of the PO approximation are different than the
marching on-in-time (MOT) based time domain integral equation solvers [13, 14], since, in PO approximation,
the solution is obtained without solving a matrix equation. The solution with time domain PO approximation
requires O(NtNp) operations and O(NT ) memory, where Np is the number of triangles, Nt is the maximum
number of time steps that the kr -plane and a triangle intersects, NT is the total number of time steps that
samples the scatterer in [tmin, tmax] , in other words total number of time steps that the kr -plane and the
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scatterer intersects. For the USR case, both the computational complexity and the memory requirement are
O(Np) . Np , Nt , and NT depend on ∆t , size of the scatterer, norm of kr , and discretization size. Also it
should be emphasized that USR case might be used if the scatterer and the kr -plane does not intersect, in
other words NT = Nt = 0 ; therefore, it might not be conclusive to compare the computational complexity and
memory requirement of the USR case given in Section 2.2 and the time domain PO formulation in Section 2.1.

3. Numerical examples

In all examples presented in this section, a p̂ = x̂ polarized plane wave traveling to k̂i = −ẑ direction illuminates
the scatterers. The upper frequency limit for simulations fmax = 2 GHz (the minimum wave length λmin =

0.1499 m) and the time step size is determined by ∆t = 1/(2fmaxNos) , where Nos denotes the oversampling
factor. When Nos = 1 , ∆t = 250 ps is the Nyquist sampling limit for 2 GHz. In all figures, TD denotes the
time domain results obtained using (14) and (15), FD denotes the frequency domain results obtained using the
formulas given in [2], and USR denotes the case in Section 2.2. Analytical PO solutions for the unit sphere and
rectangular plate are given in [15] and [16], respectively. While calculating errors, discrete Fourier transformed
TD, FD, and analytical results are calculated at f = [10 MHz, 2 GHz] with ∆f = 10 MHz interval, then norm
of the relative error in radar cross section (RCS), where all the frequency samples are taken into account.

3.1. Unit sphere

First example analyzes the change of the error in the backscattered RCS ( k̂s = −k̂i and kr = k̂i ) w.r.t.
analytical PO solution as the number of triangles increases. The illuminated part of the unit sphere is discretized
with 1188 to 172700 triangles, where the average edge lengths change from 0.77λmin to 0.06λmin . Figure 2
shows the relative errors of FD and TD results for ∆t = {0.55, 50, 100, 250} ps. Note that the relative errors in
TD for ∆t = {50, 100, 250} ps saturate and do not decrease as the number of triangles increases, even though
time step sizes satisfy the Nyquist sampling criterion. This error is not caused by the discretization since the
error of FD results, where time step size has no effect, is lower. The behavior of the error for ∆t = {50, 100, 250}
ps is caused because most of the triangles are not taken into account since these triangles do not intersect with
the kr -plane. If the time step size is chosen as small as there is an intersection with all triangles, i.e. TD result
for ∆t = 0.55 ps, then the error levels coincide with FD results.

Figure 3 shows the relative error in backscattered RCS obtained by TD w.r.t. FD results to investigate
the dependence of the accuracy to kr (or k̂s ). k̂s is swept between θ = [0◦, 180◦] (ϕ = 0◦ ) and the illuminated
part of the unit sphere is discretized with 9307 triangles as shown in Figure 3. Note that |kr| changes from 1 to
0 with θ and the spatial step that the kr -plane takes in a time step changes as ∆x = 0.5c∆t|kr|−1 . Figure 3
plots the relative error for ∆t = {5.0, 10.0} ps and ∆x = {0.749, 1.5} mm. The former results are obtained by
keeping ∆t fixed and for the latter ones, ∆t is updated to keep ∆x fixed, also in these cases no triangles are
omitted. It can be seen in Figure 3 that for θ < 80◦ the error levels for associated ∆t and ∆x are coinciding
but for θ > 80◦ , the error for the fixed ∆t increases as the error for the fixed ∆x remains in the same level.

3.2. Inclined plate

As a second example, backscattered fields ( k̂s = −k̂i ) of an inclined plate with corners r1 = (−0.5,−0.5, 0) ,
r2 = (0.5,−0.5, 0) , r3 = (0.5, 0.5, 0.1) , and r4 = (−0.5, 0.5, 0.1) , modeled with 4 linear triangles (see inset of

2525



AKTEPE and ÜLKÜ/Turk J Elec Eng & Comp Sci

Figure 2. Relative error in the backscattered RCS of the unit sphere.

Figure 3. Relative error for θ = [0, 180]◦ interval in backscattered RCS.

Figure 4) are analyzed. Figure 4 plots the time domain behavior of
∑

n̂nhn(t) for different ∆t . It is known
that the total PO integral should be in the form of a rectangle function for the plate [8, 16] and, as it can be
seen from Figure 4, that the TD results are not satisfactory until ∆t = 3.91 ps (Nos = 64). Figure 5 shows
the relative error in backscattered RCS obtained by TD results w.r.t. the analytical PO solution as the time
step size changes. The relative errors for USR and FD results are also plotted. Note that USR and FD results
do not change with ∆t . It can be seen from Figure 5 that as the time step size increases, the TD results
begin to deteriorate and for ∆t > 0.667 ns, the scatterer fits in two consecutive time steps, TD results become
inconclusive, and the error is unitary, since there is no intersection of the kr -plane and the plate, i.e. hn(t) = 0 .
For ∆t > 0.667 ns, USR result, which coincides with the FD result very well, can be used in time domain. The
error level of TD results coincide with FD result for ∆t < 0.0153 ps (Nos > 16384). In addition, this limit is
higher as the inclination of the plate decreases to obtain enough intersections. Eventually, if the plate is normal
to kr , the formula for the specular reflection case in (15) should be used.
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Figure 4. Norm of the total PO integral of the plate.

Figure 5. Comparison of the relative error in the backscattered RCS.

4. Conclusion
The complete formulation of the closed-form evaluation of the PO integral on linear triangular patches in time
domain is presented. Numerical examples show that even the closed-form expressions are used, time step size
should be chosen considering the triangle sizes, incident and observation directions (or spatial steps), since for
a fixed time step size, the accuracy of the solution depends on the norm of kr . If the scatterer fits into two
consecutive time steps and the kr -plane does not intersect with the scatterer at all, the formula for the USR
case can be used.
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