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Abstract: In the event of a natural disaster, arrival time of the search and rescue (SAR) teams to the affected areas is of
vital importance to save the life of the victims. In particular, when an earthquake occurs in a geographically large area,
reconnaissance of the debris within a short-time is critical for conducting successful SAR missions. An effective and quick
situational awareness in postdisaster scenarios can be provided via the help of unmanned aerial vehicles (UAVs). However,
off-the-shelf UAVs suffer from the limited communication range as well as the limited airborne duration due to battery
constraints. If telecommunication infrastructure is destroyed in such a disaster, maximum coverage to be monitored by a
ground station (GS) using UAVs is limited to a single UAV’s wireless coverage regardless of how many UAVs are deployed.
Additionally, performing a blind search within the affected area could induce significant delays in SAR missions and thus
leading to inefficient use of the limited battery energy. To address these issues, we develop a multiagent Q-learning based
trajectory planning algorithm that maintains all-time connectivity towards the GS in a multihop manner and enables
UAVs to observe as many critical areas (highly populated areas) as possible. The comprehensive experimental results
demonstrate that the proposed multiagent Q-learning algorithm is capable of attaining UAV trajectories that can cover
significantly larger portions of the critical areas summing up to 43% than that of the existing algorithms, such as the
extended versions of Monte Carlo, greedy and random algorithms.
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1. Introduction
Today, hardly a week passes by without news and scenes of natural disasters disrupting and destroying people’s
lives around the world [1–3]. Although many countries have significantly devoted efforts with a view to reducing
the severe impact of natural disasters, technical and scientific solutions are still in the long queue of debate.
With this in mind, industry, governments, and academia have been heavily dedicating their resources to disaster
management processes, from mitigation, preparedness, and response to recovery and reconstruction, one of which
is building critical applications using unmanned aerial vehicles (UAVs) [4].

Owing to their low cost, flexible maneuverability, and high vantage point capability, UAVs have been
extensively used in disaster recovery applications to strengthen the assessment of a particular disaster [3].
However, commercial off-the-shelf UAVs suffer from the restricted communication range and battery capacity
in the use of surveillance over a relatively large area. In particular, if the telecommunication infrastructure is
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disrupted in a postdisaster scenario, this further prevents the use of the UAVs by the search and rescue (SAR)
team from fulfilling their missions.

Many of the existing works about the multi-UAV based surveillance focus on how to design optimum
trajectories for the UAV networks considering the constraints, i.e. battery energy and connectivity [5–7]. Other
researchers also aim at designing optimum paths considering these constraints but rather for constructing an
aerial base station network providing an emergency call service for people within the disaster area [8]. Moreover,
to design optimal trajectories for the UAVs, while many existing works attempt to exploit mathematical
optimization tools [5, 7], others take advantage of the reinforcement learning techniques, such as Q-learning [8, 9].
None of the existing works focus their attention on how to provide coverage for prioritized targets with optimal
UAV trajectories accounting for the energy and connectivity constrains, except [10]. However, Zhang et al. [10]
stress on the access to the prioritized areas using a single UAV within a shorter time period without considering
the aforementioned constraints.

Figure 1. An example of postdisaster scenario leveraging UAVs.

To narrow down this gap, we focus on a research question that is how we can design multiple UAV
trajectories covering a maximum number of higher priority areas by considering both the connectivity and
energy constrains for the UAVs flying over the affected area for the sake of a quicker and more efficient situational
awareness.

To address this issue, first we propose a UAV-based situational awareness framework, as portrayed in
Figure 1, where a predetermined number of UAVs are leveraged for the observation of the affected area by
means of relaying the gathered critical information through the multihop wireless communication towards the
first responders. This approach also paves the way for covering more areas than their standard capacities.
Second, we propose a multiagent Q-learning based UAV trajectory planning algorithm, namely MQUTP, which
provides trajectories for the UAVs to maximize the number of discovered critical areas, i.e. highly populated
areas (higher priority), during their first flight (Before the first battery replenishment) in a postdisaster scenario.
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Additionally, during the flight of the UAVs, the proposed Q-learning algorithm ensures that each UAV remains
connected to the ground station (GS), either directly or via relaying over a multihop communication. This
is to ensure that all the gleaned critical information is communicated towards the first responders for a quick
assessment of the disaster so as to respond with the most suitable SAR mission [3, 4].

Finally, we perform a comprehensive experiment to assess the performance of the trajectories provided by
the proposed algorithm with regards to the coverage of the critical areas in a prioritized map. The performance of
the proposed algorithm is also compared to extended versions of Monte Carlo, random and greedy algorithms,
each of which is implemented to provide trajectories for the UAVs while maintaining all-time connectivity.
The results demonstrate that the proposed UAV trajectory design algorithm, the so-called MQUTP, provides
optimum UAV trajectories visiting significantly higher number of the critical areas up to 43% in comparison to
the existing algorithms in their first flight. The main contributions of this paper are outlined as follows.

• We propose a novel framework for UAV-based situational awareness, where the UAVs are able to fly
beyond their communication range with the aid of multihop communication towards the GS exploiting a
population based prioritized map, which helps the first responders to observe more of the prioritized areas
than the existing off-the-shelf UAVs.

• We develop a multiagent Q-learning algorithm for designing efficient UAV trajectories so as to observe
maximum number of critical areas taking into account the communication range and battery limitations.

• The effectiveness of the proposed multiagent Q-learning based algorithm has been extensively studied by
means of benchmarking against several existing algorithms.

The remainder of this paper is structured as follows. In Section 2, we provide the related work for Q-
learning based UAV trajectory design. Section 3 describes the UAV network model and the assumptions, while
the proposed multiagent Q-learning algorithm is elaborated in Section 4. Simulation details and performance
analyses are provided in Section 5, while the paper is concluded in Section 6.

2. Related work
A paucity of contributions on the trajectory design of multiple UAVs leveraging multiagent reinforcement
learning (RL) has been proposed within the scope of several applications, such as resource allocation including
sum transmit rate maximization, and the selection strategies of user, power level and subchannel [8, 11, 12],
efficient spectrum management [1], fast and accurate localization [2, 13] and maximum data collection [14].

For resource allocation, Liu et al. [8, 15] propose a framework for jointly optimizing the trajectory and
power control of multiple UAVs relying on user’s mobility information, where a multiagent Q-learning-based
algorithm is developed for identifying the most beneficial positions of UAVs according to the initial position
of users. Within this framework, a throughput gain of about 17% is achieved. Similarly, Liu et al. [16, 17]
propose a novel UAV-based communication framework for maximizing mobile user experience by optimizing
3D deployment and dynamic movement of multiple UAVs, where first user-based cell partitioning is realized,
then RL-based deployment of UAVs is performed, followed by a RL-based UAV movement algorithm when
users are roaming. The findings introduce useful guidelines for the deployment and movement of UAVs in the
interest of increased mobile user satisfaction. Another attempt of a multi-UAV resource allocation problem is
formulated in [11, 12] focusing on the maximization of long-term awards jointly providing user, power level and
subchannel selection strategies taking into account uncertainty and dynamic nature of the environment, where
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each UAV acts as a learning agent and each iterative solution is an action performed by the respective UAVs.
Their proposed multiagent RL framework solely based on the local information provides reasonable performance
when compared to the scenario considering global information exchange among UAVs.

A spectrum sharing mechanism is proposed in [1] to satisfy the demand for high-throughput real-time
data transmission for disaster monitoring applications. Authors apportioned UAVs into relaying (spectrum
owners) and sensing (performing disaster relief missions) segments on which the tasks are assigned according
to remaining resources. UAV positions are determined by the level of priority of the impacted areas, where
UAVs autonomously adapt their position with a RL algorithm with the goal of maximized throughput and
lifetime. Similarly, authors of [18] devise an effective trajectory for multiple UAVs using RL algorithm so as to
fairly distribute the limited spectrum resources in a decentralized manner, which is built upon a sense-and-send
protocol. Compared to its single- and multiagent counterparts, the proposed algorithm converges faster and is
more beneficial to UAVs while performing their tasks.

In [13] UAV swarms are leveraged for the localization and tracking of an radio frequency-based mobile
target using a multiagent RL algorithm, which is capable of eliminating redundant trajectory paths considering
the uncertainty of channel estimate. Higher localization probability and shorter searching time performances
are exhibited against single agent RL algorithm. Similarly, Ebrahimi et al. [2] propose a RL-based trajectory
design strategy enabling UAVs to autonomously adapt their positions so as to improve the localization accuracy
of multiple target objects with the shortest time and path length, and the lowest energy dissipation possible.

Cui et al. [14] formulated a RL problem for solving optimal trajectory design with the goal of maximized
collected data in the presence of uncertainty factors under flight-time constraints. Finally, a compelling
application of UAVs performing SAR missions in a postdisaster scenario can be observed in [19], where a
UAV is navigated towards a wireless signal source, based on the received signal strength (RSS) levels fed to RL
algorithm, that is attached to the victim without relying on GPS coordinates. Their RSS-based RL algorithm
outperforms the location-based counterpart in terms of convergence speed, required steps per episode and total
length of the final trajectory.

None of the abovementioned studies have investigated the research question that is how to design
trajectories providing a maximum coverage of critical areas considering the energy and connectivity constraints
in the UAVs’ first flight for performing situational awareness. Therefore, in this study, we address this research
question by developing a UAV-based situational awareness framework and a multiagent Q-learning based
trajectory design algorithm.

3. System model

In this section, we first introduce the system model, and then identify and formulate the problem.

3.1. System description

We consider a network composed of a ground station (GS) and N = {N1, N2, ..., Ni} UAVs, which horizontally
fly at a certain altitude with the purpose of providing situational awareness in a postdisaster scenario. We
assume that each municipality can leverage a few commercial UAVs for situational awareness, whilst it may
be impractical for each municipality to acquire a plethora of UAVs maintaining the uninterrupted connectivity
over a large target area. Therefore, by establishing a UAV mesh network towards the GS and maintaining the
connectivity between them, GS can monitor much larger and farther areas in an energy efficient manner owing
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to multihop communication. Restricted communication range of UAVs is depicted by D , where each UAV is
required to communicate to either GS or any other UAVs by keeping the distance within D in order to ensure
ongoing connectivity. Moreover, to incorporate battery-capacity constraint of UAVs, without loss of generality,
a UAV Ni can fly maximum Ki number of units in the grid, whose Euclidean distance is proportional to its
distance to GS. Furthermore, we consider a slotted-time monitoring of the units, i.e. T = {t1, ..., ti} , while
remaining airborne at a certain altitude. For the sake of simplicity and tractability, we assume that each UAV
contains the same battery-energy and that consumption rate of the energy during its flight is fixed to be the
same for each time-slot tn .

Moreover, we consider that each UAV can fly up to a certain time, i.e. Tmax = 100 t , due to the
battery limitation. During the training process, the proposed algorithm allows the last UAV to travel from
and return back to the GS within Tmax . To this end, we limit the number of the grid cells that a UAV can
fly, using the formulation Ki = Tmax / 6 (N +1 - i), which allows UAVs to fly certain numbers of grid cells
proportional to flying order of UAVs. By doing so, we implicitly enforce the UAVs to maintain their connection
with corresponding UAV(s) during their travels. However, during their travel, instantaneous communication
failures may occur due to the instant violation of communication range. The main reason for this issue is due to
the training of the UAVs in a sequential way. However, the UAVs autonomously fly to their destination without
requiring telemetry connection. They require the communication to instantly deliver the monitoring data to
the ground station. Therefore, the monitoring data that is missed during the instantaneous communication
failures can be delivered from the records stored on UAVs once connection is recovered. Furthermore, after
UAVs returning back to the GS (when Tmax is reached), their batteries are replenished for the second flight.

Figure 2. An exemplifying grid-based map utilized for our postdisaster scenario.

Given that the cities include areas with diverse populations, devising intelligent trajectory for UAVs
against arbitrary or sub-optimal paths could increase the likelihood of finding more victims under debris. To
this end, we build a priority areas map as in [20, 21] by taking into account the population of a part of İstanbul
(Maltepe-Pendik-Sultanbeyli) obtained from ArcGIS website 1. The priority map is split into M fine-grained

1ArcGIS (2021). Population Density Map of Istanbul [online]. Website https://www.arcgis.com/apps/View/index.html [accessed
23 November 2020]
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units.
In order to fulfil the task using the Q-learning algorithm, we convert the said real-world population

density map into grid-based priority areas allotting corresponding rewards to cells of the grid based on the
density of population. Then, the task is converted into a game, in which each agent (UAV) is expected to
conduct a jointly-decided energy-efficient trajectory and gain maximum reward while sticking to the objectives
providing uninterrupted connectivity, and ensuring to observe as many priority areas as possible.

3.2. Problem formulation
The task of the UAVs in this game is to observe as much areas, with high priority owing to their high population
density, as possible within their first-time battery usage without replenishing. However, while performing this
task, the agents should obey the restrictions listed below in order to gain maximum reward, indicating the
maximum number of visits over the highest priority grids potentially without repetitions due to battery-energy
constraint.

• Minimizing the number of visits for the areas already visited by either other UAVs or itself.

• A certain transmission range between a given UAV and any other UAV (or GS) cannot be violated to
ensure the desired ongoing connectivity.

• The maximum UAV flight time, thus the maximum number of cells that can be visited, is constrained by
the battery-capacity of the UAVs.

In the priority map, as exemplified in Figure 2, we divide the grid cells into four different priority classes,
i.e. high p1 , medium p2 , low p3 risk areas, and empty p4 areas. We can simply generalize the task with the
following equation;

Y e
i (R)←

∑
K

max(R(s′)), (1)

where Y e
i (R) keeps maximum total reward earned for ith UAV Ni for K steps in each episode (e). Here,

s′ ∈ S represents the next state where the UAV moves from the current state s ∈ S . R(·) indicates the reward
function that calculates a reward for a given state.

The simple problem, introduced in Eq. (1), can be solved by leveraging dynamic programming techniques.
However, UAVs do not have access to the full state transition and reward model in a simple form. In other words,
when the grid cell is already observed by a UAV, then the priority of that particular grid cell is decreased a
certain point for other UAVs planning a visit to the grid cell. Moreover, since each agent struggles to maximize
its reward individually, the total reward of the agents (UAVs) might be not maximum in most cases and is
suboptimal. In particular, this case is likely to happen when UAVs maintain the connectivity among each other,
and the closest UAV to GS moves towards an undesired direction (albeit it may be a better decision for this
individual UAV), the remaining UAVs could follow that particular UAV at the expense of the total reward. To
circumvent this issue, the solution algorithm must generate the paths of UAVs covering as high priority grid
cells as possible with the aid of collaborative decisions of UAVs rather than an individual one.

4. Q-learning based UAV trajectory design
In this section, we first introduce Q-learning preliminaries and then the description of how we model the problem
as a game. Finally, we elaborate on how a single agent and multiagent UAV network play this game.
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4.1. Q-learning preliminaries

Reinforcement learning (RL) is a goal-driven technique by which an agent is expected to learn for a successful
completion of a specific task within a dynamic environment, whereby a numerical reward mechanism is employed
through trial-and-error interactions with no prior knowledge [16]. The core motivation behind RL is to enable
an agent to efficiently decide on a series of actions in order to discover a way of maximizing the overall reward
value, which represents the success level of an action when having completed a requested task. Generally
speaking, each agent decides on actions according to the reward received from its environmental observations,
which is then followed by a representative form of the environment’s state. Therefore, an agent includes two
main components; i) a policy which is a mapping approach to select the appropriate actions with respect to
outputs of the environment, and ii) a learning algorithm that is responsible for finding an optimal policy based
upon the reward using actions and states.

In the literature, there are subsequent learning algorithms under the umbrella of RL, one of which is
the Q-learning algorithm that seeks for the best action to be taken based on the current state. Q-learning is
considered as an off-policy since it learns from actions that are not within the current policy, e.g., arbitrary
actions. More explicitly, it estimates the reward for future actions given the current state and appends the
learned-value to the new state without obeying any greedy policy, which is obtained based on an equation, in
particular using Bellman equation [12]. Q-learning relies on an agent that learns from an environment through
episodes without relying on any prior knowledge. The agent learns with the aid of a table, the so-called Q[S, A],
where S indicates the set of states, whereas A records the set of actions [12]. Q-learning algorithm iterates with
the help of corresponding values in Q(s, a) table, namely Q-table, representing the anticipated reward when an
agent carries out an action a in a given state s . The Q-table is updated after each action a of the agent in a
state s , i.e. Q(s, a) using the following formula [22, 23];

Qt+1(st, at) = Qt(st, at) + α(rt + γmaxaQt(st+1, at)−Qt(st, at)), (2)

where rt is the reward granted while moving from state st to the state st+1 . The maximization operator is
utilized for the action value a which then can be used for the forthcoming state st+1 , and γ, α ∈ (0, 1] is
the discount factor and the learning rate, respectively. Learning rate can simply be described as the fitness of
the new value compared to the previous value. The discount factor is used to balance immediate and future
rewards [23] 2.

To explorer the environment, the agent exploits an epsilon greedy method rather than exploiting the
Q-function equation above for the action selection process. At the start of this method, the epsilon rates are
expected to be higher, as the environment is unknown. The agent will gradually explore the environment with
arbitrary actions. As soon as the agent learns the environment, the epsilon rate declines and the agent attempts
to leverage the Q-function for the action selection process [1].

4.2. Game formulation
In this paper, our main goal is to attain a quick situational awareness within a municipal area in the event of
a disaster by means of exploiting multiple UAVs having constrained resources, such as battery-energy capacity
while maintaining all-time connectivity. The real-world population density map of the target area is split into

2Toward Data Science (2021). Simple Reinforcement Learning: Q-learning [online]. Website
https://towardsdatascience.com/simple-reinforcement-learning-q-learning-fcddc4b6fe56 [accessed 10 November 2020]
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M grid cells with their respective priority scores based on the population density determining the critical level
of the concerned areas as depicted in Figure 2.

To model our problem using game theory, we use the following notations:

• A UAV in the group of UAVs N is represented with Ni .

• S states represent M cell in the game, S = {s1...sM} .

• a is an action that an UAV can perform in a state s and a ∈ A , where A includes four actions, i.e. up,
down, left, and right.

• r(s, a) denotes the immediate reward when the agent fulfil the action a in the s .

• Ki is the number of the cell that the UAV can move on from GS due to battery-capacity constriction.

• D is the limited communication range that a UAV is allowed to move away from either GS or any other
UAV.

The game modeling our problem can be summarized as: the agents/UAVs, N , simultaneously take off
from the GS. Each agent moves from the current cell s to the next cell s′ , (s, s′ ∈ S ) with an action a , (a ∈ A)

that provides maximum reward, based on R(s′) . However, the agent must obey the restriction rules, i.e. the
number of cells Ki to move on and the maximum distance D to move away.

4.3. Single agent Q-learning algorithm
Our game modeling the problem includes multiple agents and requires a multiagent Q-learning algorithm to
successfully win the game. However, to better explain how the proposed multiagent Q-learning algorithm works,
we commence with a single agent based Q-learning algorithm.

In the single agent-based Q-learning algorithm, since the agent does not contain information about
the environment (grid-based priority map), first it explores the environment with random steps. Q-learning
algorithms save the environment information in a Q-table updating the Q-values each time after the agent
fulfils an action a in a state s . The Q-value is updated based on the Q-function Qt+1(s

′, a) (Eq. (5)). The
reward function r(s, a) (Eq. (3)) provides the immediate reward for the Q-function based on the priority score
of the grid-based map. By learning the grid environment, Q-learning algorithm builds a policy that pushes the
agent in a given state s to perform an action a with the purpose of maximizing the total reward. For obtaining
an optimal policy, the algorithm requires a great number of repetition of the game, namely episodes. Obtaining
an optimal policy is possible with the convergence of the total reward value. To attain the convergence at
a lower complexity, Q-learning algorithm needs to follow a strategy that is composed of a certain amount of
random steps and policy based steps. These strategy are called as the epsilon greedy strategy, whose value
shows the likelihood of a random step throughout the game episodes.

4.4. The proposed multiagent Q-learning algorithm, MQUTP
The proposed MQUTP algorithm is a centralized approach, where the computation of the trajectories for all
UAVs are maintained by a back-end computer. Since the population density map is already known and there is
nothing to change a UAV’s decision while performing its task during the flight, the centralized approach could
help to make more reliable decisions.
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In the real scenario, all UAVs take off from the GS, simultaneously. However, in the training process of
the algorithm, in each episode, each UAV traces its trajectory in turn, namely after Ni arrived its terminal cell,
Ni+1 can start to trace its trajectory towards its terminal cell. In each episode, a grid cell become a terminal
cell for a UAV when it violates either communication range D or battery-capacity Ki constraints. The terminal
cell is unknown at the beginning of each episode. The flow chart of path computation process for each UAV is
depicted in Figure 3.

Figure 3. Flow chart of the trajectory design for UAVs.

In the proposed multiagent Q-learning algorithm, all agents use and update a single Q-table versus
multiple Q-tables in order to accelerate the convergence of the UAVs. However, using single Q-table could
cause all N UAVs taking off from the same point to follow the same path on the grid. Therefore, the proposed
algorithm also updates the reward table based on the activities of the UAVs. For example, when UAV Ni

observes a cell/state s (regardless of its action a), the algorithm decrease the priority score of that state/cell in
the reward table. By doing so, the algorithm struggles to send all N UAVs to distinct areas to discover more
cells/states. However, in each new episode, whereas the reward table is reset, Q-table is saved. As a result of
this, the proposed algorithm carries out a trade-off between rapid convergence and diversity of the trajectories,
which is, to the best of our knowledge, the first attempt in Q-learning algorithms.

When UAV Ni (agent) aims to visit a s′ , the reward function R(s) of the proposed Q-learning algorithm
considers two main parameters in the calculation of the reward. These parameters are the priority score of the
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state pj and the number of visits in the state/cell s′ . The reward function is then formulated as follows:

R(s′) =

{
Pj(s

′)− V · θ, if Pj(s
′)− V · θ < Φ.

Φ, otherwise,
(3)

where s′ shows the next state, and Pj(s
′) indicates the priority score pj of that grid, while V denotes the

number of the visits at the grid of the other UAVs and θ is a constant factor to adjust the influence of the other
UAVs’ visits at a cell. Moreover, we fix the minimum reward to a constant value, Φ , (if Φ < 0 , than it is a
punishment).

In the proposed multiagent Q-learning algorithm, we do not train each UAV individually, but rather in
a collaborative manner. Subsequently, the algorithm finds the best trajectories for all UAVs, which provides
the maximum total reward over the observed critical areas. To this end, for the training purpose, we develop
a total reward formula R∗ , as in Eq. (4), which calculates the total reward of all UAVs N in a single episode,
where each UAV can move on maximum K cells and sij denotes j th step of a given UAV Ni .

R∗ =

|N |∑
i=0

K∑
j=0

R(sij) (4)

In the training process, each UAV decides its action based on the Q-value of the Q-table or randomly,
which is called as the epsilon-greedy approach. In our experiment, we observe that when the epsilon value
(randomness rate) starts with a high value, e.g., 1 and is gradually reduced down to 0.0001, the algorithm
produces much better trajectories (total reward).

Each agent updates Q-values of the same Q-table using the following equation that calculates the expected
future reward when the agent aims at moving onto a state s′ with an action a .

Qt+1(s
′, a) = Qt(s, a)(1− α) + α(R(s) + γmaxaQt+1(s

′, a)) (5)

Algorithm 1 demonstrates how the proposed multiagent Q-learning algorithm works. At the beginning,
the algorithm initializes a Q-table ( |S| x |A|) with zero values and the reward table R is constructed based on
the priority scores of the map. The proposed multiagent Q-learning algorithm trains the agents collaboratively
by enabling the agents to perform their tasks in turn in each episode. To trace their trajectories in each episode,
based on the current epsilon value, agents take their actions either randomly or based on the Q-table in their
turn. When an agent visits a state, the corresponding reward table value and Q-table value are updated using
Eqs. (3) and (5), respectively. In each episode, each agent would have a trajectory from starting location (GS)
to its own termination state. If an agent takes more steps than Ki or goes further than D from the closest
UAV (which is obtained by getCommDist() modular), the last state becomes the agent’s termination state.
Therefore, agents obtain a trajectory for each episode. At the end of the simulation, each agent is able to trace
a trajectory which provides the maximum total reward for the total observation. Agents calculate and record
total reward with respect to Eq. (4).

5. Performance evaluation
In this section, we first describe our simulation settings and then compare the proposed MQUTP algorithm
against extended versions of three existing algorithms, followed by result discussions.
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Algorithm 1: The proposed multiagent Q-learning based UAV trajectory planning algorithm (MQUTP).
Initialization: Qt[s, a] = 0 , Reward table R is built based on the priority map, D , Ki , ϵ and EpiNum
(episode number).

foreach EpiNum do
Reset the reward table R
Reset Environment
foreach |N | do

actionNumber = 0
while True do

actionNumber++
if random < ϵ then

select action randomly
else

Choose an action a = argmaxa(Q(s′, a))
if actionNumber > K then

break
end
if getCommDist() > D then

break
end
Update Q-table using Eq. (5)
Update reward table R based on Eq. (3)

end
end

end
end

5.1. Simulation settings
In our simulation, we set the area affected by the earthquake event as a square with a size of 10x10 units of
square each of which has separated by distinct colors, as illustrated in Figure 2. Four different colors represent
the density level of the population in respective grid cells as follows:

• Dark red cell is a high-risk area and its priority value is p1 .

• Red cell is a medium-risk area and its priority value is p2 .

• Yellow is a low-risk area and its priority value is p3 .

• Blue is empty area and its priority value is p4 .

We initialize our reward table (R(s)) based on the priority score (level of risk). Since observing risky
areas is vitally important, we assign the rewards (priority score) from highest to the lowest for the corresponding
risk areas, i.e. high, medium, low and empty. In this experiment, we assign 150, 125, 25, 0 for p1, p2, p3 and
p4 , respectively. During the training process, the proposed Q-learning algorithm employs Eq. (3), where s ∈ S

depicts all possible states on the map. In addition, we define a constant factor (θ ) of 150 and minimum reward
(punishment) value (Φ) of −150 .

We train the proposed multiagent Q-learning based UAV trajectory planning algorithm (MQUTP) in 5000
episodes (E ). For each episode, each UAV Ni operates until it faces termination conditions, i.e. D = 5 square
units and Ki = Tmax / 6 (N +1 - i) square units, where i is index of a respective UAV. The hyperparameters
used in simulation are summarized in Table . We base our work on an off-the-shelf UAV specification to solidify
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our realistic application scenario. With this in mind, we consider Bayraktar Mini UAV3 whose endurance time
is around 1 h and maximum flight speed is around 60 km/h. If the time unit t is 3 min, than the velocity of
UAVs is set to 3 km per grid cell. In the (10 × 10) grid used in our experiments, we consider one edge of a grid
cell to be 3 km. We developed our simulations with Python 3.7.1 version using Numpy and pandas libraries. We
used Tkinter Canvas Widget for graphical presentations, such as map, UAV movement and terminal positions4.

Table . Main hyperparameters for MQUTP.

Parameter Value
Episodes E 5000

Discount rate γ 0.9

Number of UAVs Ni 1, 2, 3, 4, 5

Learning rate α 0.5, 0.10, 0.15

Epsilon e 1 : 0.0005 : 0.0001

Ki value Tmax/6(N+1-i)
Priority values p1, p2, p3, p4 150, 125, 25, 0

Punishment Φ −150
Limited communication range D 5 cells

Having provided the simulation details, now we evaluate the performance of the proposed MQUTP
algorithm against the extended existing algorithms, which we named extended-greedy (eGreedy), extended-
random (eRandom), and extended-Monte Carlo (eMonteCarlo) algorithms:

• eGreedy: This is an extended version of the greedy algorithm, where each drone maximizes its own
instantaneous reward by selecting the high-risk areas in each step. In each step, it also records the
observed units in order to prevent selecting the same unit again. Therefore, it always aims at selecting
actions with the highest rewards to maximize reward. eGreedy is trained in 5000 episodes.

• eRandom: This is an extended version of the random algorithm. In each step, it selects an action randomly
and records the observed areas with the purpose of the avoidance of repeatedly selection of the observed
ones similar to eGreedy. eRandom does not include a training process with episodes, as it represents the
random movement of the UAVs.

• eMonteCarlo: This is an extended version of the Monte Carlo method. As a further extension to Monte
Carlo’s randomness approach, in each step of an episode, previously observed areas are avoided. At the
end of each episode, eMonteCarlo algorithm picks the trajectory that maximizes the cumulative reward.
eMonteCarlo is trained in 5000 episodes.

5.2. Performance evaluation
For a fair performance evaluation, we use the following metrics to compare the algorithms:

• Ratio of observed area to the entire grid (ROA) (%): This is the ratio of the number of observed area to
the entire grid. Since our grid has 100 units, it is basically the total number of observed units.

3BAYKAR (2021). IHA-16 [online]. Website https://www.baykarsavunma.com/iha-16.html [accessed 26 February 2021].
4Github, Inc. (2021). QL-MUTO simulation codes [online]. Website https://github.com/erdalakin-cs/QL-MUTO [accessed 26

Februray 2021].
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• Ratio of observed risky areas (RORA) (%): This is the ratio of the obtained score for the observed risky
areas to the maximum available score. The maximum available score and the obtained score are calculated
based on priority values of observed units.

• Cumulative total score (CTS): This is the total score of the designed trajectories at the end of each episode,
where the scores are calculated based on the priority values of the covered units of the grid. We use this
metric in our algorithms to demonstrate their convergence performance.

• Cumulative reward (CR): This is the total reward of the UAVs provided by Q-learning algorithm at the
end of each episode. We present convergence performance of the algorithm based on the obtained rewards
in each episode.

5.2.1. Impact of learning rate parameter (α)

The learning rate (α) is a hyperparameter that aids in identifying to what extent the amount of information
obtained in the current state overrides old information obtained the previous state. Hence, it is important to
tune the α parameter in order to optimize algorithm performance. To this end, we commence with the analyses
for the effect of the learning rate (α) on our proposed algorithm MQUTP, as portrayed in Figure 4, where we
demonstrate the performance of the proposed Q-learning algorithm w.r.t ROA and RORA metrics for different
set of UAVs, i.e. N = {1, 2, 3, 4, 5} by means of adopting the learning rates of α = {0.05, 0.10, 0.15, 0.20} .
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Figure 4. The performance of MQUTP algorithm w.r.t: (a) ROA and (b) RORA metrics vs. the learning rate parameter
(α).

Figure 4a shows that the learning rate does not influence the results, when the number of UAV is rather
small. However, when the number of UAV increases, MQUTP provides a better performance, particularly for
α = 0.15 . Our well-grounded reason behind this is because if the number of UAV increases, the acquired
knowledge begins to change the Q-table values, and thus provoking the selection of an appropriate action for
each UAV. Owing to the importance of the trade-off between prior and current knowledge, learning rate α

should be carefully tuned, where in our case, α = 0.15 provides a superior performance compared to that of
α = {0.05, 0.10, 0.20} in terms of ROA, as illustrated in Figure 4a.
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Figure 4b exhibits the effect of α over RORA. Similar to Figure 4a, the proposed algorithm provides
better results when α is set to 0.15 . Therefore, we opt for this exact value for the following performance
evaluations.

5.2.2. Training efficiency of the proposed algorithm
In this section, we carry out the convergence analysis of the proposed algorithm using cumulative total score
(CTS), and cumulative reward (CR) metrics in the case of N = 3 and N = 5 .

Figure 5a reveals that CTS increases while episode number is rising. The convergence starts at around
2000th episode. Thereafter, CTS does not change any further for both N = 3 and N = 5 scenarios, which
confirms the convergence of the algorithm. On the contrary, the episode reward is fluctuating considerably until
the 2000th episode. The main reason behind this could be that using an evolving reward table and a shared
Q-table complicates the convergence.

The results for the CR metric are similar to the CTS, as illustrated in Figure 5b. However, as we can
see in Figure 5b, CR values rapidly falls below zero near convergence. The reason behind this is that since the
first agents (UAVs) start to learn optimal actions selecting the units providing maximum rewards in a greedy
manner, the following agents (UAVs) gain the negative rewards, according to Eq. (3), when they choose an
action through the already computed trajectories.
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Figure 5. Convergence of MQUTP algorithm vs. the number of UAVs considering metrics: (a) cumulative total score
(CTS), (b) cumulative reward (CR).

5.2.3. Performance comparison with the extended algorithms
We now compare the abovementioned extended version of the existing algorithms with the proposed MQUTP
algorithm considering N = {1, 2, 3, 4, 5} with respect to ROA and RORA metrics.

In Figure 6a, MQUTP yields a better ROA for the set of N = {1, 2, 4, 5} UAVs apart from the set
N = {3} . For N = 3 , eGreedy provides a slightly better performance (ROA) than MQUTP, albeit in terms
of RORA, which is in this particular scenario vitally important to observe, MQUTP outperforms eGreedy with
about 36% improvement, as portrayed in Figure 6b. Furthermore, as illustrated in Figure 6b, MQUTP algorithm
consistently outperforms other algorithms for all N with at least 1%, 16%, 22%, 33% and 43% performance
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improvements against their nearest baseline performances, respectively, which are obtained by the eGreedy
algorithm.
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Figure 6. Evaluation of all algorithms in terms of: (a) ROA and (b) RORA performances vs. the number of UAVs.

To gain further evaluation insights, in Figure 7, we also compare the algorithms with respect to their
observation performances for the different risky areas by fixing the number of UAVs to 5 . In Figure 7, we
observe that proposed algorithm MQUTP outperforms the remaining algorithms in terms of their coverage
performances of high- and medium-risky areas. eGreedy, eMonteCarlo and eRandom cover around 77% , 55% ,
and 39% of the high-risky (dark red) areas, respectively, while MQUTP covers around 94% of the high-risky
areas. That corresponds to 22% , 70% and 140% of coverage improvements against eGreedy, eMonteCarlo
and eRandom algorithms, respectively. Since high-risky areas are of more significance, the algorithm is less
concerned for the coverage of the medium-risky (red) areas. However, comparing the others, the results are
even better for the proposed MQUTP algorithm, which beats the others with at least 93.5% improvement versus
eMonteCarlo algorithm. For empty area, both MQUTP and eGreedy yield a better performance compared to
other two algorithms.

5.2.4. Visual comparison with the other approaches

In this section, we compare the algorithms visually over the risk (priority) map. Accordingly, initial map is
given in Figure 2, where all UAVs are situated at the ground station (GS), which is depicted by white color
in the middle of the grid. When the simulation is terminated for N = 5 UAVs, the snapshot of the obtained
trajectories and terminal positions of the UAVs are illustrated in Figure 8. Grey colors represent the trajectories
of the UAVs and black colors refer to the terminal positions of the UAVs.

As seen in Figure 8, the proposed MQUTP outperforms all the compared algorithms under each perfor-
mance evaluation scenarios. It can be also readily seen that the worst observation performance is attained by
the eRandom algorithm, since it arbitrarily flies over the areas which are mostly empty. eMonteCarlo provides
better performance than eRandom. The reason for this is that while eMonteCarlo selects the trajectories with
maximum rewards after training in many episodes, eRandom generates the trajectories without training in many
episodes.
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Figure 7. RORA performance comparison of all algorithms for priority areas using N = 5 UAVs.

Initial Map eRandom eGreedy eMonteCarlo MQUTP

Figure 8. Portraying the final state of five UAVs (dark) for all considered algorithms, which are ordered (from left to
the right) based on the coverage performances, where observed areas are delineated in gray color.

5.2.5. Synopsis
In this paper, we aim to maximize the number of observed risk-areas having the largest population with the aid
of a set of UAVs. The UAVs have to create a multihop relay to stay connected to the GS in order to dispatch
critical information to GS for a quick assessment of the disaster. Accordingly, we proposed a multiagent Q-
learning based UAV trajectory planning algorithm (MQUTP). We performed a comprehensive experiment using
the prioritized map (Figure 2) to show the performance of MQUTP compared to other extended versions of
the existing algorithms, i.e. Monte Carlo, random, and greedy, namely eMonteCarlo, eRandom and eGreedy,
respectively.

First of all, we evaluate the proposed MQUTP algorithm for a diverse learning rates α = 0.05, 0.10, 0.15

and 0.20 in order to gain insights on which learning parameter value provides a better performance in terms
of the coverage performance for the risk-areas. As readily seen in Figures 4a and 4b, α = 0.15 is an optimal
learning rate for MQUTP, particularly when the number of UAVs is larger.

Moreover, Figures 5a and 5b denote the convergence of the proposed MQUTP algorithm, where the
UAVs fulfil their tasks in each episode and learn from their mistakes and rewards while moving towards the
convergence point. The findings reveal that the convergence point is accomplished around 2000 episodes with
a near-optimal solution.

Finally, we compare MQUTP algorithm with eMonteCarlo, eRandom and eGreedy for different set of
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N = {1, 2, 3, 4, 5} UAVs with respect to ROA and RORA. Figures 6a and 6b demonstrate that the proposed
MQUTP algorithm consistently outperforms the other algorithms in terms of ROA and RORA metrics while
the number of UAVs is increased from N = 1 to N = 5 . Moreover, in Figure 7, we clearly see that MQUTP
algorithm covers more high- and medium-risk areas than that of the other algorithms.

Since our trajectory design is based on a centralized Q-learning algorithm, the trajectories of each drone
are calculated at the GS. As the drones fly at the same velocity and altitude, they can exactly follow the tra-
jectories assigned for them. However, during their simultaneous flying, negligible instantaneous communication
failures may occur due to the instant violation of communication range. The main reason for this issue is due to
the training of the UAVs in a sequential way. However, the UAVs autonomously fly to their destination without
requiring telemetry connection. They require the communication to instantly deliver the monitoring data to
the ground station. Therefore, the monitoring data that is missed during the instantaneous communication
failures can be delivered from the records stored on UAVs once connection is recovered. Furthermore, after
UAVs returning back to the GS (when Tmax is reached), their batteries are replenished for the second flight.

In a nutshell, the results demonstrate that the proposed MQUTP algorithm is an efficient RL-based
trajectory design algorithm considering multiple UAVs, since it is capable of covering more risk-areas than
the extended versions of the existing algorithms. Additionally, its convergence is proven with a near-optimal
solution after conducting a certain number of episodes.

6. Conclusion
In the event of a disaster, such as earthquakes, the first 72 h is of a great importance to save the life of victims.
A rapid and easy way to provide situational awareness can be maintained by the aid of UAVs. However, it may
be infeasible for every municipality to obtain sophisticated UAVs, but relatively cheap UAVs with the restricted
battery-capacity and communication range. For such a scenario, in this study, we focus our attention on the
observation of as much further areas as possible prioritizing the critical areas in the map. To address this issue,
we propose a multiagent Q-learning based trajectory planning algorithm, which considers devising the best paths
for each UAVs by considering two restrictions; i) each UAV can fly a certain amount of distance considering its
limited battery capacity, and ii) each UAV has to maintain its connectivity with either GS or any other UAV.
By doing so, a relatively large territory in the early stage of a disaster can be monitored using UAVs with the
least possible interruptions. To evaluate the performance of the proposed algorithm, we perform comprehensive
experiments while comparing to three other existing algorithms, i.e. Monte Carlo, greedy and random. The
results demonstrate the effectiveness of the proposed multiagent Q-learning algorithm over the aforementioned
algorithms in terms of the ratio of observation of the risk-areas. However, from the demonstrated results, we
also infer that training multi-UAVs for trajectory planning may provide suboptimal results especially due to the
connectivity constraint. Therefore, for our future work, we plan to extend this work to simultaneous training
using more advanced multiagent RL algorithms, such as Deep Q-Learning (DQN).
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