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Abstract: Edge computing is a new paradigm that provides data processing capabilities at the network edge. In view
of the uneven data distribution and the constrained onboard resource, an edge device often needs to call for a number
of neighboring devices as followers to cooperate on data analysis tasks. However, these followers may be rational and
selfish, having their private optimization objectives such as energy efficiency. Therefore, the leader device needs to
incentivize the followers to achieve a certain global objective, e.g., maximizing task accomplishment, rather than their
own objectives. In this paper, we model the aforementioned challenges in edge computing as a Stackelberg game, and
integrate this Stackelberg game with alternating direction method of multipliers (ADMM) to solve the conflict between
the global and individual objectives. Through rigorous analysis and extensive experiments, we verify that the proposed
approach can quickly converge to the optimum regardless of the number of followers and is very robust to parameter
variations.
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1. Introduction
Cloud computing has dramatically changed how people process data and obtain information. However, this
computing paradigm usually suffers unpredictably long latency and incurs high bandwidth occupation [1, 2].
Meanwhile, it also raises privacy and security issues. As data is increasingly generated at the network edge,
it would be more efficient to move computation and analysis to a close proximity of data sources, using edge
devices such as smart phones, laptops, and edge servers [1]. It has been envisioned that such an edge computing
paradigm will become a promising supplement to cloud computing and have as significant impacts on our society
as the latter [3].

Unlike cloud servers, edge devices are usually constrained by computation and storage resources due to
deployment limitation or power provision. Thus, a single edge device may have only a small fraction of the
data and cannot perform edge analytics all on its own [4]. To overcome these problems, the cooperative edge
computing was recently introduced as a promising solution, in which a leader device can call for a number of
qualified neighboring devices to work together on computation and analysis tasks [5]. For example, Gong et al.
[4] proposed a privacy-preserving solution for the logistic regression model training based on distributed sensing
data from edge devices. Xiao et al. [6] designed an alternating direction method of multipliers (ADMM)-based
cooperation strategy that enables an edge device to forward its workload to neighboring devices to maximize
∗Correspondence: wwfang@bjtu.edu.cn
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users’ quality of experience. Sahni et al. [7] developed the Edge Mesh computing paradigm to distribute
computation tasks among multiple devices within the edge system. Some studies [4–7] assume that all involved
edge devices are willing to cooperate with each other to achieve a common goal. However, in reality, different
devices usually have their own individual optimization objectives, while these objectives may conflict with each
other. Thus, the follower devices have to be incentivized by the leader device for compensating their loss in
cooperation. Liu et al. [8] proposed a Stackelberg game-based strategy for the cloud to stimulate edge servers to
participate in computation offloading. However, it costs too much time for payment negotiations between edge
devices, which is unacceptable in large-scale systems [9]. Chen et al. [11] designed a distributed algorithm based
on merge-and-split rules to incentivize edge devices to form coalitions and cooperate with others to maximize
system utility. It was revealed in [9, 10] that scalability is hard to guarantee in this game theoretic approach.

In this paper, we study the issue of designing a fast convergent and scalable incentive approach for
cooperative data analysis in edge computing. Specifically, an edge computing system with one leader device
and multiple follower devices are considered. It is very idealistic to assume that the followers are always willing
to cooperate with the leader on computation freely. Actually, the followers often have their own optimization
objectives, which may contradict with that of the leader. Thus, the follower has to incentivize these followers
for compensating their loss in cooperation on data analysis tasks. Naturally, we model such a problem as a
Stackelberg game [12], where the leader device determines the payments to compensate the followers for their
energy consumption on data processing. Then, this problem is solved in a distributed manner by exploiting the
advantages of both game theory and ADMM [9]. Note that ADMM is a simple yet very effective algorithm that
can decompose a large-scale optimization problem into a series of small-scale subproblems which can be solved
quickly and efficiently [13]. Through rigorous analysis and extensive simulations, we verify the performance of
the proposed work in terms of convergence, scalability, and stability.

The rest of this paper is organized as follows. We introduce the system model and formulate the problem
in Section 2. Then, the Stackelberg-based ADMM algorithm is discussed in detail in Section 3. Numerical
results are presented in Section 4. Finally, we conclude this paper in Section 5.

2. Problem formulation
In this paper, we consider a system consisting of one leader device (LD) and N follower devices (FDs). The
system operates in slotted time with fixed slot length T (in seconds). The LD can request for cooperation
from these FDs on data analysis, such as model training [4] or model inference [1]. When an FD i ∈ {1, ..., N}
receives such a request, it will execute the analytical task based on its own local data at an average processing
rate of xi (in bits/s), and then feed back the results to the LD. The LD’s objective is to maximize its revenue
on cooperative data analysis, so the utility function of LD is defined as

ULD(x) =

N∑
i=1

log(1 + xiT ), (1)

where the log function is used to model the diminishing returns on FD i ’s data [14]. To obtain the resulting
data with enough diversity [4], the following constraint should be satisfied

N∑
i=1

µixiT ≥ C, (2)
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where µi ∈ (0, 1] is the empirical parameter that statistically measures the data quality and the contribution
of FD i [9, 14], and C is the threshold given by the LD for measuring the participant’s contribution.

The FDs are assumed to be rational and selfish, and each of them tries to maximize its own utility. To
define the utility function for an FD i , we first characterize the FD’s energy consumption on computation.
Following [15], we use processing density γp (in cycles/bit) to model the amount of CPU processing resources
required per bit for computation workload. Let fi (in cycles/s) denote the CPU-cycle frequency of FD i , and
the CPU could adaptively adjust fi in the range of fmin

i to fmax
i by using dynamic voltage scaling (DVS)

technology. Then, we know that

xi =
fi
γp

∈ [
fmin
i

γp
,
fmax
i

γp
]. (3)

The CPU power consumption of FD i is modeled as Pi = qf3
i , where q is a parameter determined by

chip architecture [15]. Finally, we define the utility function of FD i as

ui(xi) = αixiT − βiEi, (4)

where Ei = PiT denotes the energy consumption of i in the slot, and αi, βi ∈ [0, 1] denote a collection of
normalizing weights. This objective is a weighted linear combination of the LD’s contribution and expenditure
in the cooperation. By choosing appropriate values for αi and βi , we can assign different priorities between
throughput and energy.

It is obvious that ULD and all ui have different optimal results since the LD and FDs have their respective
optimization objectives. The LD has to offer incentives to the FDs to induce them to change their actions to
help maximize the global objective instead of their own objectives. Our work is to propose such an incentive
mechanism to achieve the optimal result for the LD’s objective in (1) under the constrains in (2) and (3). This
is done by designing a set of incentive functions as optimization objectives for LDs. Specifically, FD i optimizes
a new incentive function Ψi(ui(xi), θi) rather than ui(xi) , where θi is the incentive parameter controlled by
the LD to influence ui(xi) . Based on what is discussed above, we can formulate the problem as a Stackelberg
game as

Leader’s game: {θ∗i } = min
θi

N∑
i=1

− log(1 + xiT ),

Followers’ game: x∗
i = min

xi

Ψi((−αixiT + βiEi), θ
∗
i ), ∀i ∈ {1, . . . , N},

Constraints:
N∑
i=1

µixiT ≥ C,

xi ∈ [
fmin
i

γp
,
fmax
i

γp
], ∀i ∈ {1, . . . , N},

(5)

where the LD and FDs are taken as the leader and the followers in the game, respectively, and Z∗ denotes the
optimal value of Z when the Stackelberg equilibrium is achieved. Our work is to design the incentive function
Ψi(ui(xi), θi) and the parameter θi for each i ∈ {1, ..., N} so that the leader and the followers finally have the
same optimal point in the game. However, it is often very difficult to achieve a global optimum because the
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update of variables can only be accomplished in a distributed manner. That is, the LD can only make decisions
on the incentive parameter {θi} , as the leader’s strategy to incentivize each FD i to make decisions on its own
computation resource fi and xi , as the follower’s strategy. To achieve a consensus between the LD and the
FDs, it is natural to solve the problem in (5) by an iterative algorithm with reasonable complexity.

3. Algorithm design

In this section, we first introduce the design of incentive function and describe the iteration process of our
algorithm based on the basic framework proposed in [9]. Then, we prove that the basic conditions in our design
are able to guarantee the convergence of the proposed algorithm.

3.1. Stackelberg game-based ADMM

At each iteration k , the LD offers its incentive θi to FD i , and the incentive function for FD i is constructed
as

Ψi((−αixiT + βiEi), θ
k
i ) = Li(xi, λ) + Ψk

i (xi), (6)

where Li(xi, λ) is a Lagrangian function of xi , and Ψt
i(xi) is the independent part of the FD i after being

stimulated. Specifically, these two parameters are respectively given as

Li (xi, λ) = − log (1 + xiT )− λµixiT, (7)

Ψk
i (xi) = −αixiT + βiEi − θki xi, (8)

where λ is the Lagrange multiplier. We can interpret the incentive function in (6) as follows. The LD uses
θki xi as a payment to FD i for optimizing Li(xi, λ) , where θki is the price for the contribution of FD i . Under
this incentive, FD i not only considers its independent part Ψk

i (xi) but also helps the LD to achieve the global
objective by minimizing Li(xi, λ) .

The operation of our proposed Stackelberg-based ADMM is an iterative process as depicted in Figure
1. At each step k , given incentive factors {θki } from the LD, each FD i updates its own processing rate xk

i

to minimize the incentive function in (6). Based on the results from all FDs, the LD adjusts the incentive
factors by {θk+1

i } so that the FDs are willing to cooperate with the LD on data analysis. This iterative process
continues until the convergence is achieved. However, it is difficult for the FDs to achieve the current optimal
processing state xk in one step due to the constraints (2) from the LD and (3) from the FDs. Thus, the FDs
have to interact with the LD iteratively to ensure that these two constraints can be satisfied. As a result, we
design a two-tier iteration process to solve the problem.

In the inner loop, the LD and FDs attempt to reach an optimal point (xk
i , λ

k) for solving the followers’
game in (5) by using the ADMM algorithm. The ADMM algorithm takes advantage of the decomposability of
dual ascent and the fast convergence properties of the method of multipliers to solve the large-scale problems
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Figure 1. An overview of the Stackelberg-based ADMM scheme.

efficiently. Specifically, we first update xk
i (t+ 1) sequentially by solving the following problems:

min
xi

Li(xi, λ
k(t)) + Ψk

i (xi) +
ρ

2

∥∥∥∥∥∥
i−1∑
j=1

µjx
k
j (t+ 1)T + µixiT +

N∑
j=i+1

µjx
k
j (t)T − C

∥∥∥∥∥∥
2

2

,

s.t. xi ∈ [
fmin
i

γp
,
fmax
i

γp
],

(9)

where t is the iteration step index in the inner loop, ρ > 0 is a damping factor in ADMM.
Then, the LD updates its dual variable as

λk(t+ 1) = λk(t)− ρ

(
N∑
i=1

µix
k
i (t+ 1)T − C

)
. (10)

The above steps for the inner loop are repeated until each xk
i and λk do not change significantly, i.e.

converge to the current optimal point at iteration k . After that, in the outer loop, each FD feeds back its own
marginal cost to the LD for price update as

θk+1
i = ∇k

xi
(−αixiT + βiEi) . (11)

It is rational for the LD to set the price equal to or lager than θk+1
i , when the LD wants FDs to cooperate

on data analysis. The outer loop terminates when the stopping criterion is satisfied as

∥∥L ({xk+1
i

}
, λk+1

)
− L

({
xk
i

}
, λk
)∥∥ ≤ ε0, (12)
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Algorithm 1 Stackelberg game-based ADMM for the LD and FDs
Input:

k = 0 , t = 0 , {θi = 0|i = 1, . . . , N} , {xi = 0|i = 1, . . . , N} , λ = 0
Output:

θ∗i , x∗
i , i = 1, . . . , N

1: Procedure
2: while

∥∥L ({xk+1
i

}
, λk+1

)
− L

({
xk
i

}
, λk
)∥∥ > ε0 do

3: (a) ADMM-based Optimization in the Inner Loop:
4: Update xk

i (t) and λk(t) according to (9) and (10), respectively, until convergence is achieved
5: (b) Leader’s Price Design based on the Followers’ Feedback:
6: The LD adjust the price for FD i according to (11)
7: k = k + 1
8: end while
9: Result:

10: Optimal Variable: x∗
i = xk

i , 1 ≤ i ≤ N ;
11: Optimal Price: θ∗i = θki , 1 ≤ i ≤ N .

where ε0 is a predefined threshold. The augmented Lagrangian function L ({xi} , λ) can be given as

L ({xi} , λ) =
N∑
i=1

Li (xi, λ) + λC +
ρ

2

∥∥∥∥∥
N∑
i=1

µixiT − C

∥∥∥∥∥
2

2

. (13)

The algorithm for the above two-layer iteration process is summarized in Algorithm 1.

3.2. Convergence guarantee

According to [9, 10], the following proposition should be proved to guarantee the convergence of Algorithm 1.

Proposition 1 To guarantee the convergence of our Stackelberg game-based ADMM algorithm, the following
conditions should be satisfied:
(1) Each part of the LD’s objective function, i.e. − log(1 + xiT ) , is a strongly convex function;
(2) The objective function of each FD, i.e. −αixiT + βiEi , is a strongly convex function.
(3) The objective function of each FD, i.e. −αixiT + βiEi , satisfies a uniform Lipschitz gradient condition
[16].

Proof (1) The first-order and second-order derivative for − log(1 + xiT ) can be calculated as

∇xi
(− log (1 + xiT )) = − 1

ln 10
· T

1 + xiT
.

∇2
xi
(− log (1 + xiT )) =

1

ln 10
· T 2

(1 + xiT )
2 ≥ 1

ln 10
·

T 2γ2
p

(γp + fmx
i T )

2 > 0.

According to convex optimization theory [17], − log(1 + xiT ) is a strongly convex function.
(2) The first-order and second-order derivative for −αixiT + βiEi can be calculated as

∇xi
(−αixiT + βiEi) = −αiT + 3βiTq (xiγp)

2
.
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∇2
xi
(−αixiT + βiEi) = 6βiTkγ

2
pxi ≥ 6βiTqγpf

min
i > 0.

According to convex optimization theory [17], −αixiT + βiEi is a strongly convex function.
(3) The Lipschitz gradient condition generally requires the first-order gradient of the target function

changes with a speed below a positive real value [9, 17], which can be proved as follows:

|∇xi
(−αix

′
iT + βiEi)−∇xi

(−αixiT + βiEi) |
|x′

i − xi|
= 3βiTqγ

2
p(x

′
i + xi) ≤ 6βiTqγpf

max
i .

2

Based on the above conditions, our algorithm can converge linearly with an average number of iterations
bounded by O(1/ε0) [9]. The proof is similar to that of [10] and omitted here for brevity.

4. Numerical results
4.1. Experimental settings

In this section, we evaluate the performance of our Stackelberg game-based ADMM through simulation experi-
ments, with parameter values suggested by [10, 15]. Table lists the default values for simulation parameters in
our experiments, if not otherwise specified. All the experiments are conducted on the Matlab platform [17].

Table . Simulation parameters.

Notation Definition Default value
N Total number of FDs 10
αi Weight for throughput 0.5
βi Weight for energy 0.016
ε0 Threshold for ADMM convergence 1e− 4

T Time slot in seconds 1
µi Data quality indicator µ ∼ N(0, 1]

C Threshold for measuring FD’s contribution 0.5
q Parameter for CPU power consumption 1e− 26

fmax
i Maximal CPU frequency 2 GHz
γp CPU processing density 1000 cycles/bit
ρ Damping factor in ADMM 1.0
λ Lagrange multiplier 1.0

4.2. Comparisons on incentive approaches

Figure 2 compares the LD’s objective function of the proposed algorithm with that of the optimal objective
value and that without any incentive mechanism. It can be found that the proposed algorithm can quickly
approach to the optimal value within 40 iterations and finally converges to the minimal point of the LD’s
objective after 80 iterations. Notice that the initial value of the LD’s objective is equal to the value with no
incentive mechanism. The results clearly verify the fast convergence of our incentive approach.
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Figure 3 compares the convergence speed of the proposed algorithm with the naive approach in game
theory [12]. Similar to that in [10], the naive approach here adopts a simple incentive function θk+1

i = θki +∆ ,
where ∆ = 0.01 when ∇k

xi
(−αixiT + βiEi) > 0 , and ∆ = −0.01 otherwise. As shown in the figure, this naive

approach has a relatively slower speed to approach the optimal value and at least cannot achieve convergence
within 100 iterations. That is because the constraints in (5) are not always satisfied in the naive approach,
while our algorithm can always guarantee the satisfaction of constraints in (5) by carefully selecting the incentive
factors in (11).

0 20 40 60 80 100
-1.5

-1

-0.5

0
Stackelberg_ADMM

Optimal Objective

Without Incentive Mechanism

Figure 2. The convergence of LD’s objective function.

0 20 40 60 80 100
-1.5

-1

-0.5

0
Stackelberg_ADMM

Naive

Figure 3. Impact of different incentive approaches.

4.3. Impacts of system parameters

In Figures 4 and 5, we show the impacts of varying the stopping threshold ε0 on system performance. From
Figure 4, the proposed algorithm can always converge toward the optimal value of the LD’s objective. However,
the performance gap would be more noticeable when we choose a relatively larger ε0 , e.g., ε0 = 10−1 . Besides,
the proposed algorithm can converge to the actual optimal value of LD’s objective only when ε0 is small
enough, i.e. ε0 ≤ 10−3 . Correspondingly, it will inevitably take more number of iterations for our algorithm to
achieve the final convergence. From Figure 5, we can observe that the relation between the number of iterations
and log10(1/ε0) is linear, which confirms our analysis on linear convergence in Section 3.2. Thus, we should
carefully choose a proper value for this stopping threshold to balance the trade-off between performance and
cost in algorithm execution.

In Figures 6 and 7, we show the impacts of varying the number of FDs, N , on system performance. From
Figure 6, as N increases from 10 to 50, the proposed algorithm can always converge to a corresponding optimal
objective value in dozens of iterations. The results are consistent with the definition of LD’s objective in (5).
Meanwhile, we can see from Figure 7 that the required number of iterations has not increased significantly or
prohibitively but is well controlled within the order of tens to hundreds of iterations (about 60 to 110 iterations).
All in all, the optimum can be guaranteed, and the convergence rate is linear with or independent of the system
size. These results clearly indicate the capability of our algorithm for large-scale systems, which is superior to
the traditional game theoretic approaches [11].

In Figures 8 and 9, we show the impacts of varying the key parameters, i.e. fmax
i or γp , on system
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Figure 4. LD’s objective under different ε0 .
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Figure 5. Total number of iterations under different ε0 .
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Figure 6. LD’s objective under different N .
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Figure 7. Total number of iterations under different N .

performance. As shown in Figure 8, as fmax
i increases from 1 to 3 GHz, the FDs will share more computing

resources to cooperate with the LD, resulting in lower objective values. However, the result gap becomes much
smaller when fmax

i is relatively higher, i.e. fmax
i = 3 . According to the CPU power consumption model, the

energy consumption on computation has currently become the dominant factor in the FD’s objective function,
which prevents the task cooperation between LD and FDs to some extent. Interestingly, this is consistent with
the real fact that people are not willing to cooperate with others when the task would most probably influence
the normal usage of their devices.

As shown in Figure 9, when the target task becomes more complex and requires more computation, the
FDs are constrained by their processing capability (i.e. fmax

i ) and may not be able to provide enough support
to help the LD. As a result, we can notice that the objective value tends to converge to be closer to 0.

5. Conclusion
In this paper, we study the problem of designing an effective and efficient incentive approach for an edge
computing system with one leader and multiple followers. The leader device provides incentives to the rational
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Figure 8. LD’s objective under different fmax
i .
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Figure 9. LD’s objective under different γp .

and selfish following devices so that they are willing to provide cooperation on data analysis tasks. The problem
is formulated as a Stackelberg game, which is decomposed into two subproblems and solved in a distributed
manner by ADMM. Thorough analysis and extensive experiments demonstrate its rapid convergence, good
scalability, and high robustness to parameter variations. In the future, we plan to extend the proposed approach
for more general objective functions as well as other game theoretic models [12].
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