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Abstract: Deep learning models are widely being used to provide relevant recommendations in hybrid recommender
systems. These hybrid systems combine the advantages of both content based and collaborative filtering approaches.
However, these learning systems hamper the user privacy and disclose sensitive information. This paper proposes
a privacy preserving deep learning based hybrid recommender system. In hybrid deep neural network, user’s side
information such as age, location, occupation, zip code along with user rating is embedded and provided as input. These
embedding’s pose a severe threat to individual privacy. In order to eliminate this breach of privacy, we have proposed a
private embedding scheme that protects user privacy while ensuring that the nonlinear latent factors are also learnt. In
this paper, we address the privacy in hybrid system using differential privacy, a rigorous mathematical privacy mechanism
in statistical and machine learning systems. In the reduced feature set, the proposed adaptive perturbation mechanism
is used to achieve higher accuracy. The performance is evaluated using three datasets with root mean square error
(RMSE), mean absolute error (MAE), mean squared error (MSE), R squared, precision and recall. These evaluation
metrics are compared with varying values of privacy parameter ϵ . The experimental results show that the proposed
solution provides high user privacy with reasonable accuracy than the existing system. As the engine is generic, it can
be used on any recommendation framework.

Key words: Differential privacy, adaptive perturbation, private hybrid recommender, embedding perturbation, deep
neural network, laplace noise, randomized response

1. Introduction
Recommendation systems facilitate users to choose from a wide range of items by providing suggestions on
relevant items based on the user’s interests. Furthermore, recommendations are useful to people as it helps
them to choose from a variety of items available with the service provider. As they provide relevant suggestions
to customers, these systems are crucial in ecommerce based industries. Hence, state of art research focuses on
designing and implementing optimized algorithms to provide personalized user recommendations. Adding more
information about the user, results in good recommendations. But the results are generated at the cost of user’s
privacy. Hence, the objective of the research is to propose an optimal recommendation algorithm that protects
the privacy of individual and to provide relevant recommendations.

Recommender systems are broadly classified into three categories: content based, collaborative and
hybrid method. Content based mechanism uses both the user profile and the product information to offer
recommendations. The term ’content’ signifies the attribute of the product that is liked by the user, which can
be obtained from the tags, keywords, or side information associated with a product. Collaborative mechanism
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uses information from user profiles to calculate similarities between users or similarity between items and provide
recommendations based on it. Matrix factorization, which is a type of collaborative filtering, constructs latent
features for users and items. These features are learnt from the past ratings provided by the user. Based on
the learned features, predictions for unrated products can be made and the product with topmost prediction
rate is recommended to the user. Hybrid method is a combination of content based and collaborative filtering
techniques. To improve efficiency without losing the advantage of the above two mechanisms, a hybrid approach
offers greater synergy, as compared to the individual recommender system.

These traditional linear models can effectively memorize sparse feature interactions using cross product
feature transformation, whereas deep neural networks can generalize interactions through low dimensional
embedding to previously unseen features. These networks, therefore, have a clear understanding of the user
and item, so it delivers exceptional results. Adoption of deep learning techniques in tabular or structured data
resulted in a huge improvement in performance. But this adoption also created few shortcomings. For example,
deep neural networks make use of a huge amount of user data to make decisions, that apparently pose a threat
to an individual’s privacy.

From a privacy perspective, recommendation systems are broadly classified into trusted recommender
system and untrusted recommender system [1]. In the trusted recommender, the system is trusted by the user,
and they send original raw data. In addition to this, a private recommendation algorithm is run by the trusted
recommender to produce the results. Whereas, in an untrusted recommender system, users are confined from
sending the original raw data and adds noise in the user rating. Further recommendations are made with usual
nonprivate algorithms. Such trusted and untrusted recommender systems are called global differential privacy
(GDP) and local differential privacy (LDP) respectively. In this paper the development of a privacy-preserving
algorithm for trusted recommender system is discussed.
Major contributions of the paper are as follows:

1. Analyze and experimentally evaluate the differentially private hybrid deep neural network.
2. Improve the performance using adaptive perturbation, which provides varying perturbation for outlier

features and common features.
3. Avoid huge noise addition by employing dimensionality reduction techniques.
4. Combine randomized response with Laplace noise addition for improved accuracy.
5. Experimentally compare the recommendation results generated by the differentially private hybrid system

with other non-private baseline algorithms.
The rest of this research paper is organized as follows:- Section 2 includes a literature review of the

existing privacy mechanisms. Section 3 outlines the background of differential privacy and the nonprivate deep
neural network architecture used in the paper. Section 4 details the proposed private deep learning algorithm
along with the theoretical proof for utility and privacy. Section 5 summarizes the experimental results with
three datasets namely Movielens100K, Book-Crossing, FilmTrust and result comparison with other baseline
nonprivate algorithms. Section 6 deals with the conclusion.

2. Related work
A brief survey of the privacy preserving mechanisms such as anonymity, perturbation, and suppression based
methods was reviewed by Sangeetha and Sudha Sadasivam [2]. A study by Zhang et al. [3] broadly classifies
privacy preservation in collaborative filtering into secure multiparty communication, homomorphic encryption,
and differential privacy in recommender system. Several researchers [4–6] use differential privacy in distributed
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multiparty computation.
This paper focuses on introducing differential privacy in the DL model-based hybrid recommendation

system. Hence, the literature survey includes sections on privacy in recommenders, and privacy in DL systems.

2.1. Privacy in model and content based recommender system

Narayanan and Shmatikov [7] performed a statistical de-anonymization of large sparse datasets. The authors
launched a deanonymization attack on the anonymized Netflix dataset. They proved that an adversary with little
information about the subscriber can easily provide the identity of a particular person in the database including
the person’s entire movie watching history. The attack was demonstrated using the Internet Movie Database
(IMDb) as the source of background knowledge. Even though the researchers used the movie dataset, the attack
is generic and applicable to any recommendation system like healthcare, e-commerce, etc. Later researchers
provided solutions for deanonymization attacks in the recommender system and our literature review presents
an overview of solutions to the attack.

A novel application of differential privacy in recommendation was introduced by McSherry and Mironov
[8]. The authors perturbed the rating matrix with differentially private noise addition and proved that it
is feasible to design a private recommendation system without losing accuracy. The authors also concluded
that loss in accuracy decreases as more data becomes available. Hence, differential privacy based solutions
are more suitable for problems involving big data. In this scenario, recommendation system is a practical big
data framework that is popular and used by industries like Amazon, Netflix, MovieLens, etc. Thus, a privacy
preserving algorithm designed using differential privacy based approach offers realistic solution to the issue of
big data privacy.

Friedman et al. [9] proposed a generic framework to apply differential privacy to matrix factorization.
The privacy framework proposed by Friedman et al. categorizes privacy-preserving algorithms into input
perturbation, gradient perturbation, and output perturbation. In input perturbation, the rating matrix is
perturbed with Laplace noise. While in the gradient perturbation two private algorithms based on alternating
least square (ALS) and stochastic gradient descent (SGD) are proposed, in the output perturbation the
nonprivate Matrix factorization algorithms are executed and the resulting latent factors are perturbed. The
authors also compared the results and concluded that input perturbation produced better results.

It can be observed from the literature that the existing techniques cannot prevent the inference of users
from the output of neural network model and are orthogonal to the techniques discussed in this paper.

2.2. Privacy in deep learning

Shokri et al. [10] demonstrated that machine learning models leak the information about the individual data
on which the model is trained. Such attacks are called inference attacks. Shokri et al. trained the model with
commercial machine learning as a service and proved that the model is vulnerable to membership inference
attacks. Fredrikson et al. [11] perform a model inversion attack that recovers images from the facial recognition
system. Fredrikson et al. demonstrated that the inversion attack only requires black-box access to the trained
model. Abadi et al. [12] proposed a deep learning-based privacy-preserving algorithm with differential privacy.
The primary focus of the work is to design a private algorithm for the classification task. The differentially
private noise is added to the nonconvex optimization technique called stochastic gradient descent to protect
the user from model inversion attack and inference attack. Though model inversion attack is demonstrated on
image classification, the same attack is possible in any trained model. These attacks indicate the need for robust
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model training. Hence our work protects users from such attacks on trained model through perturbation of the
user embedding’s. The differential privacy used in proposed private algorithm design provides a mathematical
guarantee against the attacks. Another benefit of our approach is that it takes advantage of offline perturbation
and can converge faster than gradient perturbation.

Other than differential privacy, few cryptography based solutions are available to protect model inversion
attack. Hence, crytography based solutions are surveyed further. CryptoNet [13] is a combination of homomor-
phic encryption and neural network. The data are shared by secret encryption and predictions are obtained
from the pretrained neural network model. The core part of CryptoNet is that it is able to make such predictions
using the encrypted data and returns the predictions in encrypted form. The encrypted classification results
obtained, thus, can be decrypted only by the corresponding sender device and the predictions are used by the
sender. Ma et al. [14] created a privacy-preserving ensemble-based classification algorithm for face recognition
based on secret sharing and edge computing. The features are collaboratively learned from encrypted face im-
ages using two edge servers. Ma et al. [15] proposed privacy-preserving long short term memory (LSTM) based
neural network for smart Internet of Things (IoT) devices. Secret sharing is used for secure communication of
voice information from IoT devices. The features are extracted from encrypted audio information using edge
devices. These cryptography based mechanisms demand higher computational costs. Our proposed solution
avoids this overhead by using differentially private perturbations. Also, homomorphic encryption with machine
learning assumes that a pretrained model is available [13]. Hence, secret sharing is primarily used in the in-
ference stage and it cannot be used for secured model training. Our work focuses on creating a private model
through private training. Differential privacy is more suitable for our problem approach. Usage of differential
privacy during model training controls the amount of information leaked from an individual record in a dataset.

It should be highlighted that differential privacy is a powerful mechanism that protects the privacy of
users in a dataset with a strong privacy guarantee. As inferred from the literature there are several works
using differential privacy in recommendation systems using matrix factorization and classification tasks in deep
learning. Most of the privacy works in deep learning [12, 16, 18, 19] address the classification task. But
the privacy model in classification setting cannot be directly used for recommender systems where each and
every user rating and presence or absence of rating is a threat to user privacy. Recently, deep learning-based
mechanisms are gaining popularity and are extensively used for improved accuracy in recommender system.
As observed in most of the deep learning-based recommender systems [20–23], accuracy can be improved by
leveraging user-item rating matrix and side information. Thus, this improved accuracy comes at the cost of
user’s privacy, and our goal is to develop a novel deep learning-based privacy-preserving hybrid recommendation
system. The proposed work is first of its kind with a private hybrid algorithm. Section 3 elaborates on the
background of the work with the definition of differential privacy and explains the proposed nonprivate hybrid
recommender.

3. Preliminaries
3.1. Differential privacy

Differential privacy was originally proposed for privacy preserving statistical data release by DWork [24, 25]. It
provides a mathematical guarantee for private data release. However, the original differential privacy was later
used in numerous other applications in industries [26–28] and academic research [8, 9, 29].
Definition1: A randomized algorithm M satisfies ϵ - differential privacy if for any two neighboring databases
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D and D
′ any measurable subset [25],

Pr[M(x) ∈ S] ≤ exp(ϵ)× Pr[M(y) ∈ S] + δ (1)

Where the probability is over randomness of ϵ . If δ = 0 we say that M is ϵ – differentially private. The
privacy parameter ϵ controls privacy and accuracy tradeoff. The neighboring databases D and D

′ differ in one
record in the rating matrix.
Definition2: The Laplace distribution (centered at 0) with scale b is the distribution with probability density
function [25]:

Lap(x) =
1

2b
exp

(
−|x|

b

)
(2)

Definition3:(Sequential Composition[1])suppose a set of privacy mechanisms M = M1, .....Mm are se-
quentially performed on a dataset, and each Mi provides, ϵi privacy guarantee, M will provide (

∑m
i=1 ϵi) -

differential privacy. The set of randomized mechanisms are performed sequentially on a dataset, and the final
privacy guarantee is determined by the summation of total privacy budgets. In our work, Algorithm 1 uses
Laplace noise addition (Definition 2) along with sequential composition (Definition 3).

3.2. Deep learning-based hybrid recommender system
Hybrid recommendation algorithms are more significant and produces outstanding results when compared to
non hybrid solutions. Such improvement is achieved with the combination of rating and side information used
in the algorithm. Two key issues in recommendation system are cold start problem and accuracy improvement.
A cold start problem occurs when sufficient information about a user or item is not available. Recent hybrid
recommendation algorithms based on deep learning addresses these issues and produces outstanding results.
But these results comes at the cost of user privacy. The existing works does not address privacy in hybrid
algorithms. Hence, we extend the recommender proposed by Kiran et al.[20]. Kiran et al. devised a novel
hybrid deep learning-based recommender that uses side information and their primary focus was to improve the
accuracy. Further, we investigate and propose a privacy-preserving hybrid algorithm.

The deep neural network consists of multiple layers between the input and output layer [30]. Each layer
consists of multiple simple processing units called neurons. Neurons in each layer are connected with every other
neuron in the previous layer. Every connection is associated with a weight that is randomly initialized and it is
improved through multiple epochs. These weights are modified based on the optimization function. The input
user id and item id are embedded and concatenated along with the side information (Table 1). Each hidden layer
computes a linear function which is input to LeakyReLU (rectified linear unit) function, followed by DropOut.
LeakyReLU is a popular activation function used in the deep neural network that overcomes the ”dying ReLU”
issue. The ReLU returns the value provided as input directly for positive input and returns a 0.0 for negative
inputs. The major drawback of ReLU is ”dying ReLU” which occurs when a set of nodes output an activation
value of 0.0 forever in the training process. ”dying ReLU” is solved by LeakyReLU by permitting small negative
values. Dropout is a regularization mechanism used in the neural network. During the neural network training,
randomly chosen neurons are dropped out by this mechanism to avoid overfitting. The number of neurons in
each hidden layer and the activation function used in each layer are all hyperparameters that can be tuned. Each
hidden layer employs batch normalization. Batch normalization is used to normalize the values in the hidden
layer which in turn ensures a faster convergence. The output from the previous activation layer is normalized
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by subtracting batch mean and dividing by batch standard deviation. The final layer is a fully-connected layer
with 1 node, which is input to the sigmoid activation function that predicts the ratings in the range 0–5.

In a deep hybrid algorithm, the traditional representation of user id and item id is replaced by embedding.
Embedding identifies correlation among data and enables the deep learning model to extract more features from
user and item id when compared to one-hot encoding. An embedding is a representation of categorical value
as a vector in N-dimensional space. Embeddings are lookup matrices of size K , where K is the number of
embeddings. For each user, an array of size Ku is returned, and the user embedding matrix collected from all
the users is denoted by Euser . For each item, an array of size KI is returned, and the item embedding matrix
collected from all the users is denoted by Eitem . Ku and KI are the hyperparameters and it is tuned by
the analyst. These hyperparameters used in embedding are more suitable for a scalable big data environment;
whereas, one hot encoded matrices requires a column updation for every change in the item addition or removal.
These user Euser and item Eitem features are similar to latent factors in collaborative filtering based matrix
factorization algorithms. But the latent factors in collaborative filtering only capture linear features; whereas,
embeddings are capable of capturing both linear and nonlinear user and item factors.

As stated earlier, a hybrid recommender is a combination of content-based and collaborative filtering
approaches. In our hybrid algorithm, the embedded user Euser and item Eitem features are similar to the
collaborative filtering approach. Further content-based features are added to make the deep learning model a
hybrid model. Table 1 indicates the side information of various datasets used in the hybrid model training.

Table 1. Side information about users and items in different datasets.

Dataset User or item Side information

MovieLens 100K Item Tag, title, genre of movies
User Not Available

Film trust Item Not available
User Trust ratings on the user on other users and vice versa

Book-crossing Item Year of publication. publisher, book title
User Age, location, author name

In Section 4, the proposed differentially private algorithm is described. The section also elaborates the
usage of differentially privacy on the deep learning architecture.

4. System overview
This section presents the system overview and the proposed Global differentially private trusted recommender
algorithm.

The global differential private algorithm performs Laplace noise addition along with sequential composi-
tion. In this setting, the recommender system is trusted, and the user sends original rating information to the
server. However, privacy has to be ensured during model training to prevent model inversion attack [11] and
inference attack [10]. An algorithm designed using differential privacy is resistant against these attacks. The
proposed algorithm is ϵ differentially private and the privacy analysis is proved in Section 4.2.

Differential privacy is already used [12] as resistance against these attacks. Hence our algorithm uses Dif-
ferentially Private perturbation to preserve user privacy and to protect from these attacks. Existing algorithms
add noise to the optimization functions like stochastic gradient descent and alternating least square [9, 12].

2390



SELVARAJ and GANGADHARAN/Turk J Elec Eng & Comp Sci

But our new approach perturbs the input user embedding and bias used by the deep learning algorithm. In a
hybrid recommendation system, user embedding and bias added to the weights in the neural network convey
user-specific information, and perturbing these values preserves user privacy.

For training any deep neural network, the categorical features in the dataset cannot be used directly and
it requires some preprocessing. As a preprocessing step, the categorical features present in the dataset have to
be converted to numerical form and given as input to the neural network. A naive approach is to convert the
categorical text information to numerical form using one hot encoding. For example, if there are 10000 unique
words present in the dataset, then one-hot encoding constructs matrix with a slot for each word. Further, as
the name one-hot encoding suggests if a word is used by an item, the value for the corresponding index in the
matrix is made ’1’, and the remaining indices values are made ’0’. But one hot encoding produces a highly
sparse input features with very few non zero values. Such sparse input features need more weights in a neural
network with a large amount of data and higher computation. Another major issue with one-hot encoding is
that it is not capable of capturing the semantic relationship between the features.

As a solution to the issues in one-hot encoding, embeddings are used. It transforms the large sparse
features into lower-dimensional space. The obtained lower-dimensional features are capable of identifying and
preserving the semantic relationship between the categorical items. The embedding to our neural network
is a combination of user rating and side information like genre, tag, etc. These semantic relationships help
in improved model accuracy, using personal information about user behavior. Such personal information is
sensitive, and its usage in the model thwarts user privacy. So the embedding is perturbed to ensure privacy.
For training a network model, it is not mandatory to use bias information. If a model is trained without bias,
it provides only a generic recommendation. It is used in the model to comprehend the user and the item better.
Thus the bias added for a user is also sensitive and hence it is also perturbed to enhance privacy.

Initially, the collaborative filtering based model is used to train the original input, from which the
embeddings are obtained. These embeddings, thus obtained contain user and item embeddings, along with
user and item biases. From these values our approach perturbs only the user embedding and bias values, using
Algorithm 1. However, the user embedding obtained has a higher dimension, and this increased dimensionality
results in more noise addition, which degrades the model accuracy. Hence, the dimensionality of obtained user
embeddings are reduced using principal component analysis (PCA), and user features are obtained. In the
reduced feature set users with similar tastes are close to each other and the users whose characteristics are not
similar to others are far away.

The features that are close to each other are similar to the K anonymization mechanism and user privacy
is retained for the points that are next to each other. K anonymization is a privacy preservation mechanism
proposed by Latanya Sweeney [31]. Sweeny defines K-anonymity as the privacy requirement for publishing
microdata that requires each equivalent class to contain atleast K records.

But, for the outlier features the privacy is easily violated. So, the outlier user information that is at a
considerable distance from other features is more prone to attacks, and these features are identified initially.
Further, more noise is added to the outliers, and less random noise is added to other features. The noise is
obtained from the differentially private Laplace mechanism. The user bias information is also perturbed using
Laplace mechanism. The principal user features are converted back to dense embeddings before deep neural
network training. The overall flow of our proposed methodology is depicted in Figure 1.
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Figure 1. Overview flow diagram.

4.1. Proposed private recommender

In the proposed system, the user’s privacy is protected by adding a differentially private noise to the embedding
and bias values. The user, item embedding are generated from user id, user side information, movie id, and
movie side information respectively. Such embedding is not suitable for private model training; hence, perturbed
embedding is obtained using Algorithm 1. The deep learning model depicted in Figure 2 is trained with the
perturbed embeddings and biases using transfer learning mechanism. Transfer learning is a key advancement
in deep learning that supports model training with pretrained weights. The perturbed pretrained embeddings
bring in randomness and prevents the model from memorizing user-specific information. The fc in the figure
indicates fully connected layer. Totally three fully connected deep neural networks are used for transfer learning.

Perturbed User

Embedding

Perturbed Item

Embedding

Concat

fc1 (Leaky ReLU+ 

Dropout)

fc2 (Leaky ReLU+ 

Dropout)

fc3 (Leaky ReLU+ 

Dropout)
outSigmoid

Predicted

rating

Figure 2. Proposed private hybrid recommendation system.

Most of the existing works [9, 12, 29] perform noise addition during model training stage, which is split
among multiple epochs and noise addition increases with epochs. Offline noise addition in our work ensures a
reduction in noise compared to the existing algorithms. Algorithm1 is executed offline and the steps are briefed
in the following paragraphs.

Before the execution of the proposed algorithm, the embeddings with ’d’ dimensions are obtained from
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Algorithm 1 Global differentially private algorithm
Input: ϵ1 and ϵ2 - Privacy parameter

∆S1,∆S2 - Sensitivity
E(n×d) - Embedding for ’n’ users with dimension ’d’
bi, i ∈ 1, 2, ....n - User bias parameter of the model for ’n’ users

Output:
E

′(n×d) , b
′i, i ∈ 1, 2, ....n - Perturbed user Embedding and bias

1. Apply PCA on E(n×d) and obtain the reduced feature set f (n×g)

2. Identify the outlier in f (n×g) by applying z score normalization
3. Store the outlier user id and feature id in O
4. for i = 1, 2, ...n do
5. for j = 1, 2, ...g do
6. if i,j in O

7. f
′

ij = fij + Lap
(

g∗∆S1

ϵ1

)
8. Clamp f

′

ij to [fijmin, fijmax]
9. else

10. v = randomized response()
11. if v = = True
12. Retain the True Value f

′

ij = fij
13. else
14. f

′

ij = fij + Lap
(

g∗∆S2

ϵ1

)
15. Clamp f

′

ij to
[
fijmin, fijmax

]
16. end for
17. b

′
i = bi + Lap

(
∆S3

ϵ2

)
18. end for
19. Convert f

′(n×g) into dense embeddings W
′(n×d)

function randomized response()
1. Initialize v1 = 1

2. v
′
1 =


1 with probability 1

2p

0 with probability 1
2p

v1 with probability 1− p

3. ifv
′
1 == 1

4. Return True
5. else
6. Return False

collaborative filtering based matrix factorization. A naïve approach is to add ‘d’ dimensional noise to the
embeddings. However, adding ‘d’ dimensional noise E

′
userij = Euserij+Lap

(
d∗∆S

ϵ

)
introduces a huge amount

of noise and completely degrades the utility of data. Hence, the proposed solution uses principal component
analysis (PCA), and a reduced dimension ‘g’ is obtained. The PCA algorithm produces a reduced feature
set f (n×g) in step2. Further, a Laplace noise addition is performed on the reduced dimension ‘g’, which
eventually increases recommendation accuracy. The algorithm uses adaptive noise addition that adds larger
noise to outlier and minimal random noise to remaining features. The outliers in the embedding signify the
users who have unique features and these users completely deviate from other users and they are more prone
to attacks. Therefore, our algorithm initially identifies the outliers present in the feature set in step 3 using z
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score normalization using Equation 3.

z =

(
x− µ

σ

)
(3)

Where, µ signifies mean and σ denotes standard deviation. After outlier identification more noise is
added to outliers with sensitivity ∆s1 = fjmax

− fjmin
and ϵ1 in step 7. To avoid excess noise addition, the

feature is clamped (Step 15) as follows:

f
′

ij =


fij

min
if f

′

ij < fijmin

fij
max

if f
′

ij > fijmax

fij otherwise

(4)

Hence, steps 3 to 8 identify the outliers and adds more noise to the outlier features. The remaining features
are perturbed with minimal noise by a randomized response mechanism. In step 10, randomized response is
called, which is a traditional coin flip used in differential privacy. The coin flip is made with probability 0.75
returning the true answer and 0.25 returning the perturbed answer. The minimal perturbation is made in step
14 with ∆s2 = 1 and ϵ1 . The coin flip and less sensitivity are chosen to minimize the randomness introduced
in the model and to improve the utility. Hence, our perturbation mechanism is an adaptive mechanism.

In step 17 user bias is perturbed with sensitivity ∆s3 = bimax− bimin and epsilon of ϵ2 . Throughout the
algorithm, the perturbation is applied in two steps. Therefore, based on the composability property (Definition3)
of differential privacy the epsilon is divided into 0.75 for ϵ1 and 0.25 for ϵ2 . This division is user-defined and
it is made in-line with the existing algorithms [8], where the composability partition is made based on the
importance of the feature.

Since the proposed global differentially private algorithm (Algorithm 1) is generic it can be extended and
applied to any deep learning network. Such network can perform classification or regression, but the private
algorithm requires perturbed embedding as input.

4.2. Privacy and utility analysis
In this section, we present a theoretical analysis for privacy and utility of the proposed global differentially
private algorithm.

4.2.1. Privacy analysis
The proposed algorithm contains one private operation that is embedding perturbation. In this section, we
analyze the privacy guarantee of the embedding perturbation. Along with embedding the bias values are
also perturbed whose privacy is guaranteed by the composition of differential privacy [17]. The composition
undertakes the privacy guarantee for a sequence of differentially private computation.

Theorem 1 Algorithm 1 satisfies ϵ - differential privacy.

Proof Suppose two Datasets D and D’ differ in the ratings of one user. Let ’f’ be the reduced feature set.

Pr(R(D))

Pr (R (D′))
=

∏g
j=1(Pr(fj(D) + Lap(∆S

ϵ ) = R)∏g
j=1(Pr(fj(D

′) + Lap(∆S
ϵ ) = R)

≤ eϵ
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=

∏g
j=1 exp

(
−∥R−fj(D)∥1ϵ

∆S

)
∏g

j=1 exp
(

−∥R−fj(D′)∥1ϵ

∆S

)
=

g∏
j=1

exp
( ϵ

∆S
(∥R− fj(D)∥1 − ∥R− fj(D

′)∥1)
)

=

g∏
j=1

exp
( ϵ

∆S
(∥fj(D)− fj(D

′))∥1)
)
≤ eϵ

2

Lemma 1 Composition [17], M = m1,m2, .....mn if each mi provides ϵ′ privacy guarantee, the sequence of
M will provide n ∗ ϵ′ differential privacy.

Proof In the reduced feature set we add independent Laplace noise to the features.

f
′

ij = fij +
g ∗∆S1

ϵ1

further noise is added to bias

b
′

ij = bij +
∆S3

ϵ2

when combining both operations the proposed method preserves ϵ -differential privacy by applying the compo-
sition lemma. 2

4.2.2. Utility analysis

In order to protect data, privacy noise is added to the low dimensional embeddings. A naive solution adds
noise to all the embeddings, which degrades the performance of the algorithm. This is due to the fact that the
magnitude of noise added is directly proportional to the performance of the algorithm.

Theorem 2 For a given privacy parameter ϵ , Algorithm1 adds less noise compared to the naive solution.

Proof In algorithm1 the reduced feature set has n ∗ g elements. To each element noise drawn from Lap
(
∆S
ϵ

)
is added. The magnitude of noise M1 = O(n∗g∗∆S2

ϵ2 ) .
In naive solution noise is added to n ∗m elements. To each element noise drawn from Lap

(
∆S
ϵ

)
is added. The

magnitude of noise M2 = O(n∗m∗∆S2

ϵ2 ) .

M1 = O(
n ∗ g ∗∆S2

ϵ2
) < O(

n ∗m ∗∆S2

ϵ2
) = M2

where g<<m. Hence, we observe that M1 < M2. That is the Algorithm.1 adds less noise than naive approach.
2
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5. Experimental evaluation
5.1. Dataset
The experiments are conducted using three datasets MovieLens(100k), Book-Crossing, and FilmTrust. The
properties of the dataset are briefed in Table 2.

Table 2. Datasets.

Dataset Users Items Ratings Sparsity Scale
Book-Crossing 278,858 271,379 1,149,780 99.99% [0-10]
ML100K 610 9,742 100,836 93.7% [1-5]
FilmTrust 1,508 2,071 35,497 98.86% [1-5]

5.2. Computing environment
The experiments are implemented in python 3.7.3 by leveraging the libraries like scikit-learn 0.20.3, pandas
0.24.2, and numpy 1.16.2. The computing environment with Nvidia GPU and Linux operating system with
12GB RAM are used. PyTorch 1.1.0 library was used for training the deep learning models.

5.3. Evaluation criteria
The algorithm is evaluated with varying privacy parameter ϵ and six evaluation metrics root mean squared
error (RMSE), mean squared error (MSE), mean absolute error (MAE), R-squared, Precision@N, and Recall@N
values are used. The accuracy metrics are calculated with eight runs. The mathematical definitions of the
evaluation metrics namely MSE, RMSE, and MAE are in the Equations 5,6 and 7. For these equations, pij is
a matrix with a cell value pij = 1 only if the user i rated item j and 0 otherwise. In Equations 5,6 and 7 ractualij

denotes the rating provided by user i to item j and rpredictedij is the rating predicted by the model. For a user u,

Precision@N, and Recall@N are computed by |Relu ∩Recu|
|Recu| and |Relu ∩Recu|

|Relu| , respectively. Where Recu denote

a set of N items recommended to u, and Relu denote a set of items considered relevant.

RMSE =

√√√√m,n∑
i,j

pij

(
ractualij − rpredictedij

)2

(5)

MSE =

m,n∑
i,j

pij

(
ractualij − rpredictedij

)2

(6)

MAE =

m,n∑
i,j

pij

∣∣∣ractualij − rpredictedij

∣∣∣ (7)

5.4. Results
The nonprivate deep neural network (DNNRec) recommendation algorithm results are chosen as the baseline
and the private recommendation results are computed for varying values of epsilon ϵ . In Table 3,4, and 5 the
boldfaced results signify that the accuracy is close to the nonprivate results.
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Choosing a value for ϵ is an open question and the works done so far [9, 12, 24, 28] record the results with
various epsilon values of ϵ ranging from 0.1 (very low) to 40 (very high). As per the literature our experimental
results tabulate the ϵ value of 0.1 to 40. Where 0.1 denotes high privacy and 40 denotes low privacy.

Table 3. Performance of global differentially private algorithm on Movielens 100K dataset.

Measure MSE
(lower is better)

RMSE
(lower is better)

MAE
(lower is better)

R-Squared
(higher is better)

Precision @10
(higher is better)

Recall @10
(higher is better)

non private 0.747 0.864 0.666 0.338 0.907 0.783
ϵ =0.1 0.883 0.939 0.739 0.199 0.903 0.780
ϵ =0.5 0.874 0.935 0.734 0.207 0.904 0.782
ϵ =1 0.898 0.947 0.741 0.186 0.901 0.782
ϵ =5 0.878 0.937 0.734 0.203 0.903 0.780
ϵ =10 0.854 0.924 0.723 0.225 0.901 0.778
ϵ =15 0.826 0.909 0.711 0.250 0.906 0.780
ϵ =20 0.813 0.901 0.701 0.262 0.904 0.778
ϵ =25 0.805 0.897 0.699 0.270 0.905 0.779
ϵ =30 0.789 0.888 0.696 0.284 0.906 0.781
ϵ =35 0.780 0.883 0.685 0.292 0.905 0.780
ϵ =40 0.787 0.887 0.689 0.286 0.905 0.782

Table 4. Performance of global differentially private algorithm on film trust dataset.

Measure MSE
(lower is better)

RMSE
(lower is better)

MAE
(lower is better)

R-Squared
(higher is better)

Precision @10
(higher is better)

Recall @10
(higher is better)

non private 0.649 0.805 0.626 0.225 0.843 0.922
ϵ =0.1 0.798 0.893 0.705 0.075 0.812 0.988
ϵ =0.5 0.800 0.894 0.709 0.073 0.811 0.982
ϵ =1 0.792 0.890 0.708 0.082 0.810 0.980
ϵ =5 0.802 0.895 0.707 0.071 0.811 0.984
ϵ =10 0.769 0.877 0.696 0.109 0.814 0.978
ϵ =15 0.759 0.871 0.689 0.120 0.823 0.948
ϵ =20 0.745 0.863 0.681 0.137 0.829 0.951
ϵ =25 0.725 0.851 0.676 0.159 0.825 0.956
ϵ =30 0.720 0.848 0.666 0.166 0.835 0.932
ϵ =35 0.711 0.843 0.663 0.176 0.833 0.942
ϵ =40 0.711 0.843 0.665 0.176 0.833 0.949

As observed in Table 3,4 MovieLens 100K, and Film Trust performance match the nonprivate algorithm
with ϵ = 25 to 40. On the other hand the Book-Crossing dataset Table 4 match the nonprivate results for all
the values of ϵ . As expected the performance improves with lower privacy and vice versa. The findings clearly
indicate that the private algorithm is practical and it provides higher accuracy even for highly sparse datasets.
As observed from Table 2, Book-crossing have the highest sparsity of 99% and it produces outstanding results.
Also, it can be observed from Table 2 that Book-crossing has more users with a count of 278,858 and it is inferred
from the results that the differentially private algorithm is more suitable for datasets with a large number of
users. Hence, we conclude that our algorithm is more suitable for the realistic recommendation, which is highly
sparse and consists of a large number of users. The experimental results confirm that the proposed algorithm
is on par with the baseline concerning less error, good recommendation quality, and high coverage rate. The
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Table 5. Performance of global differentially private algorithm on Book-Crossing dataset.

Measure MSE
(lower is better)

RMSE
(lower is better)

MAE
(lower is better)

R-Squared
(higher is better)

Precision @10
(higher is better)

Recall @10
(higher is better)

non private 2.758 1.661 1.280 0.169 0.988 0.988
ϵ =0.1 2.710 1.646 1.256 0.180 0.988 0.988
ϵ =0.5 2.957 1.719 1.295 0.106 0.988 0.988
ϵ =1 2.779 1.667 1.267 0.159 0.988 0.987
ϵ =5 2.803 1.674 1.278 0.152 0.988 0.988
ϵ =10 2.849 1.688 1.294 0.138 0.988 0.987
ϵ =15 2.760 1.661 1.262 0.165 0.988 0.988
ϵ =20 2.748 1.657 1.270 0.169 0.989 0.986
ϵ =25 2.755 1.659 1.267 0.167 0.989 0.986
ϵ =30 2.839 1.684 1.310 0.141 0.988 0.987
ϵ =35 2.864 1.692 1.288 0.134 0.988 0.988
ϵ =40 2.803 1.674 1.298 0.152 0.988 0.987

error rate is measured with MSE, RMSE, MAE, and R-Squared. Recommendation quality and coverage rate
are evaluated with Precision @ 10 and Recall @ 10, respectively.

5.5. Accuracy comparison to other nonprivate collaborative filtering approaches

In this section, we have compared the RMSE, MAE of our private algorithm with other nonprivate algorithms.
The proposed deep learning-based private approach produces outstanding results. Table 6 highlights the
baseline, nonprivate algorithms used for comparison.

The accuracy measures are compared with the baseline algorithms and graphs are plotted accordingly in
this section. The results that are better than the baseline indicate high utility. We also plot the non-private
matrix factorization, non-deep neural network, and deep neural network algorithms which produce outstanding
results. For private algorithms, such exceptional results are difficult to achieve. Therefore we chose all these
three algorithms as the upper bound and plot them along with our results for brevity.

Table 6. Summary of nonprivate baseline RMSE and MAE.

ML 100K Film Trust Book Crossing
Baseline RMSE MAE RMSE MAE RMSE MAE
Global average 1.062 0.842 0.915 0.716 1.859 1.509
Item average 1.005 0.782 0.915 0.723 1.952 1.537
User KNN Pearson 0.902 0.693 0.839 0.655 1.851 1.429
SVD 0.937 0.718 0.814 0.629 1.932 1.537

The experimental results indicate that the baseline global and item average is achieved by all the datasets.
However, attaining the performance of the remaining algorithms varies from one dataset to the other and
is explained separately for every dataset. Figure 3a RMSE comparison indicates that beyond ϵ = 5 the
performance of the private algorithm is better than SVD and it is better than user KNN Pearson beyond
ϵ = 20. Hence the baseline RMSE accuracy is achieved for Movielens 100 K dataset, but the upper bound
is not achieved. Figure 3b MAE comparison indicates that beyond ϵ = 11 the performance of the private
algorithm is better than SVD and it is better than user KNN Pearson. The upper bound non-deep neural
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network performance is achieved beyond ϵ = 30. So, the baseline MAE accuracy is achieved for Movielens 100
K dataset, and one upper bound algorithm result is achieved.

Figure 4a RMSE comparison indicates that beyond ϵ = 30, the performance of the private algorithm is
better than SVD, and it is not able to achieve the user KNN Pearson results. Thus, the Film Trust private
algorithm is better than three baseline RMSE results, but the upper bound results are not attained. In Figure 4b
two baseline, MAE accuracy results are achieved and upper bound algorithm results are not achieved by the
Film Trust dataset.
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Figure 3. Accuracy of Movielens100K.

0.80

0.82

0.84

0.86

0.88

0.90

0.92
Global Average

Item Average

User Knn Pearson

SVD

Biased MF

non Deep NN

DNNRec

Private DNNRec

0.1   0.5     1      5      10    15    20    25    30     35    40

Epsilon

R
M

SE

(a) RMSE

0.64

0.66

0.68

0.70

0.72 Global Average

Item Average

User Knn Pearson

SVD

Biased MF

non Deep NN

DNNRec

Private DNNRecM
A

E

0.1    0.5    1      5     10     15    20    25    30     35    40

Epsilon

(b) MAE

Figure 4. Accuracy of Film Trust.

Figure 5a and Figure 5b indicate that our algorithm produces extraordinary performance for the Book-
Crossing dataset and satisfies all the baseline accuracy. In upper bound, it shows good performance for all
algorithms except deep neural network.

To the best of our knowledge, none of the existing private algorithms attain the performance of state-
of-the-art collaborative filtering algorithms like SVD and KNN. Our exhaustive experimental results confirm
that our private algorithm outperforms SVD and KNN for a few values of epsilon. We further observe that it
is possible to attain most of the upper bound accuracies.
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5.6. Accuracy comparison to other private differential privacy based approaches

In Fig. 6, other differentially privacy based algorithm [32] is compared with proposed algorithm. [32] proposed
Personalized Differential Privacy (PDP-PMF) based probabilistic matrix factorization and compares the results
with Differential Privacy (DP-PMF). Figure 6 clearly indicates that the proposed algorithms outperforms the
existing private algorithms. Section 6 concludes our work.
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Figure 6. Comparison to other differential privacy based algorithm.

6. Conclusion
In this paper, a privacy-preserving hybrid deep learning algorithm based on differential privacy is proposed.
The accuracy is enhanced using adaptive perturbation where large noise is added to outliers in the data and a
minimal random noise addition is performed on all other features.

The contributions of this paper are fivefold. First, the experimental results of the proposed private deep
learning algorithm prove that it is feasible to achieve the benefits of deep learning with reasonable privacy.
Second, the proposed solution is based on differential privacy which provides a mathematical guarantee for
protecting individual privacy. The implementation is compared with varying values of epsilon with very high
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privacy of ϵ = 0.1 to low privacy of ϵ = 40. The accuracy comparison with other algorithms indicates that
the proposed noisy private algorithm outperforms the nonnoisy baseline approaches in terms of accuracy. Our
findings also indicate that attaining upper bound is feasible for few datasets with deep learning approach.
Third, since our noise addition is not performed during model training it does not require additional model
convergence time like the existing algorithms. Fourth, the noise addition is performed on the embeddings in a
compressed form obtained from PCA. This mechanism avoids excess noise addition and also ensures accuracy.
Fifth, multiple epochs can be performed without incremental noise as the proposed algorithm uses perturbed
pretrained weights with transfer learning. Transfer learning is a key advancement in deep learning that runs
the model with pretrained weights. The private deep learning approach is generic, so it can be applied to any
big data recommendation engine.
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