Turkish Journal of Electrical Engineering & Computer Sciences Turk J Elec Eng & Comp Sci
(2021) 29: 3150 — 3164

© TUBITAK

T U B | TAK Research Article doi:10.3906/elk-2101-56

http://journals.tubitak.gov.tr/elektrik/

HC-FFT: highly configurable and efficient FFT implementation on FPGA

Pakize ERGUL"?*®, H. Fatih UGURDAG'®, Dogancan DAVUTOGLU?
'Department of Electrical and Electronics Engineering, Faculty of Engineering, Ozyegin University, Istanbul, Turkey
2TUBITAK BILGEM, Kocaeli, Turkey

Received: 13.01.2021 . Accepted/Published Online: 12.06.2021 . Final Version: 30.11.2021

Abstract: FFT is one of the basic building blocks in many applications such as sensors, radars, communications. For
some applications, e.g., real-time spectral monitoring and analysis, FFT needs to be "run-time configurable” so that the
system is real-time. When examining the previous work on configurable real-time (FPGA-based) FFT implementations,
we see that the degree of configurability is less than what is desired. In this paper, a new FFT architecture is proposed,
which has a high degree of run-time configurability and yet does not compromise area or throughput. The configurable
parameters of this design are the number of FFT points (up to 64K), forward versus inverse mode, output order (natural
or bit-reversed), and the number of streams (up to 4). The proposed FFT architecture (HC-FFT) is designed using a
parallel and pipelined radix-2 multipath delay commutator (MDC) FFT structure. HC-FFT was implemented on a Xilinx
Kintex Ultrascale FPGA and was verified against the Xilinx FFT IP. Besides its high degree of run-time configurability,
HC-FFT is quite efficient and offers a very high throughput of 87 Gbps with a quite reasonable area.

Key words: Fast Fourier transform, run-time configurable FF'T, multipath delay commutator

1. Introduction

Fast Fourier transform (FFT) is an algorithm known to everybody and is used in a myriad of signal processing
applications. There are many software libraries for a variety of languages/tools that implement FFT. It is a
complicated function and has many parameters. The software implementations usually support many options
for many parameters.

This paper is on the hardware (FPGA) realization of FFT. Hardware design is not only about satisfying
functionality but also about meeting area, timing, and power consumption requirements. Hardware design of
functions such as FFT is much more difficult than software design due to hardware requirements. Therefore,
not only hardware library components (a.k.a., intellectually property or IP) are hard to find for FFT but also
they support few options for few parameters. Even this by itself is a good enough reason for hardware engineers
to design their own FFT. If we cannot foresee the exact parameter values ahead of time, it is best to design an
FFT IP Generator rather than a fixed design instance with fixed parameter choices. An FFT IP Generator is
a program written in a regular programming language and takes in the selected parameter values and produces
a fixed design in a hardware description language.

The above scenario proposes a compile-time configurable FFT. However, sometimes we need run-time
configurability. That is when we need to compute FFT with different parameter options during a single run of
the device that needs to compute FFT. On FPGAs, this can be achieved by feeding a different bitstream on

*Correspondence: pakize.ergul@tubitak.gov.tr

3150

@28, This work is licensed under a Creative Commons Attribution 4.0 International License.

https://orcid.org/0000-0002-8084-9279
https://orcid.org/0000-0002-6256-0850
https://orcid.org/0000-0002-8036-5231

ERGUL et al./Turk J Elec Eng & Comp Sci

to the FPGA as need arises. That is acceptable if all possible designs for all possible parameter combinations
are precompiled, and if we are allowed switch times in the order of milliseconds. (Also, we need either a host
computer or a large enough Flash memory.) If there are too many parameter combinations or the switch time
has to be in the order of micro or nanoseconds, then it means that we are in need of true run-time configurability.
That is, we need a single design (i.e. single FPGA bitstream) that supports all those parameter combinations
we may use. An FPGA-based run-time configurable FFT IP that supports many parameters has not been
sufficiently addressed in the literature or the commercial world. That is what this work targets. As in any
hardware design work, our goal was to also come up with an efficient hardware architecture, i.e. efficient in
terms of area, throughput, and latency.

The most pressing configuration parameters in an FFT design are: (i) size, (ii) mode, (iii) output order,
and (iv) number of streams.

FFT size needs to be configurable in, for instance, flexible communication devices that support multiple
protocols or multiple data rates. Each of these may require a different FFT size. Flexibility may be in the form
of adaptability to different channel characteristics in a portable device. Spectral analysis devices, for example,
have to flexible and need to support various FFT sizes [22].

FFT mode, whether we need regular FFT or inverse FFT (IFFT) depends on the signal processing
problem at hand. A communications transceiver needs both, hence no need for configurable mode. On the other
hand, a receiver usually needs regular FFT, while a transmitter usually needs IFFT. Therefore, if our device
is required to be configured as a receiver-only or transmitter-only, it needs its FFT mode to be configurable.
Obviously, such examples can be given for other usecases such as filtering [24].

Output order is a challenging issue in FFT. According to Cooley—Tukey FFT algorithm [6], reordering
is required to arrange the input or output order depending on the chosen decimation type. For decimation
in frequency (DIF) FFT architectures, the input can be applied directly in a natural order. Despite this, the
output is obtained in bit-reversed order. On the other hand, decimation in time (DIT) FFT architectures
require bit-reversed order for input data, while the output data is in a natural order.

Supporting multiple data streams (i.e. concurrent input signals) from multiple sources is a desired feature
for FFT blocks as is the case in multiple-input multiple-output (MIMO) systems [3, 5]. We can always support
multiple streams by using as many FFT blocks as the number of streams. However, that is too costly in terms
of area and power.

The rest of the paper is organized as follows. Section 2 discusses the literature. Section 3 introduces the
basics of FFT. Section 4 explains our proposed design architecture, HC-FFT. While in Section 5, implementation

results are provided, Section 6 concludes the paper.

2. Previous work
There is a plethora of work in the literature on FFT hardware. Since our contribution to the literature is in
run-time configurable FFT hardware, we will limit ourselves to such work in this section. We start by listing
and comparing them in Table 1 with our work, HC-FFT.

In Table 1, size is the supported FFT size in tun-time configuration. Max size shows supported maximum
FFT size for related designs. Mode shows the supported FFT calculation mode as inverse (I) and forward (F).
In this column, I/F is used for a design that supports inverse and forward modes together. On the other hand,

I or F is used the design for support only one of these modes. This kind of designs is only configurable at

3151

ERGUL et al./Turk J Elec Eng & Comp Sci

design time for this mode. Therefore, it can be said that I/F is a much better design than I or F in terms
of configurability. Out. order is the FFT output order and is divided into natural order (N) and bit-reversed
order (B). In this column, N/B represents design feature that supports natural and bit-reversed output order

together. #Stream is the number of streams, which are handled in parallel in FFT structure.

Table 1. Configurable parameters and the works in the literature.

Design Size | Max size | Mode | Out. order | #Streams
HC-FFT | 13 64K I/F N/B 1,2, 4
Xilinx 14 64K TorF | N 4

[13] 14 128K I/F B 1

[27] 4 1K F N 1

[28] 5 2K F N 1

[29] 8 2K F N 1

[30] 4 4K F - 1

[31] 1 2K F N 2

[32] 4 4K F N 1

[33] 7 32K F B 1

[20] 4 1K I/F N 1

[15] 5 2K F N 4

[12] 12 32K F N 1

[17] 512 F N 1

[19] 4 1K F N 1

[16] 10 | 1024k | F - 1

[14] 8 8K F - 1

[18] 2K F N 1

While HC-FFT has configurability in all of the 4 dimensions in Table 1, the competition has configurability
in at most 2 dimensions. The works in [13, 20] have configurable size and mode. Although all other works
have only configurable size, [15] draws attention as it is a multistream solution. [13] stands out compared to
HC-FFT by supporting 14 different sizes. Now, we will go over the works in Table 1 one by one. In [27],
radix-4 MDC decimation in frequency (DIF) parallel pipeline FFT processor is presented for a very high-speed
orthogonal frequency-division multiplexing (OFDM) communication systems. Such FFT processor supports
the computation of one stream of variable-length FFT with 16, 64, 256, and 1024 pts. The design produces
outputs in the natural order. In addition to that, a new reordering block design is presented, which allows
easy generalization for different parallelization degree and radix. In [28], a new class of FFT architecture is
proposed that combines the flexibility and programmability of memory-based designs with the high throughputs
available from array-based hardware. In the paper, according to different systems requirements, 7 different FFT
architectures are presented. Variable-length FFT processor is given in the third architecture, which supports
128, 256, 512, 1024, and 2048-point FFT calculation with one stream and natural output order for 802.11ax
and LTE protocols. In [29], a scalable and run-time configurable FFT processor is proposed which allow 8
different size from 16 pt to 2048 pts. The main target of the design is OFDM based communication systems.

The design in [29] can handle one stream FFT calculation and produce natural ordered outputs. In [30], a

3152

ERGUL et al./Turk J Elec Eng & Comp Sci

reconfigurable multi-precision FFT block is proposed for coherent optical OFDM (CO-OFDM) systems. This
FFT architecture can be reconfigured dynamically and supports 64, 256, 1024, and 4096-point FFT. In [31],
a novel FFT processor that processes two independent data streams simultaneously is proposed for various
high-speed real-time applications. This processor generates outputs in natural order. [31] shows that the
architecture can be extended for different FFT sizes, although the size cannot be configured at run-time.
A high-performance and resource-efficient FPGA implementation is proposed in [32]. This design has been
developed for applications with high performance needs such as OFDM systems. The proposed FFT processor
can handle one stream data and generate output in natural order. In [32], the architecture is extented for
512/1024/2048 and 4096-point FFT. In [33], a reconfigurable and variable-size FFT architecture is proposed.
In this work, the multimode synthetic-aperture radar (SAR) imaging professing applications is targeted. The
proposed FFT processor supports 7 different FFT sizes from 512-point to 32768-point. It handles one stream

natural order (N) inputs and produces the outputs in bit-reversed order (B).

In [13], a large FFT processor supports 14 different sizes, namely, from 16 to 128K (K = 1024) points
(pts), all powers of 2 (also applies to the rest of the previous works). The main target of this work is synthetic
aperture radar (SAR) and sensor signal processing systems. The design in [13] supports IFFT as well. It
produces the outputs in bit-reversed order (B) and can handle only 1 stream. In [20], a configurable size and
precision FFT processor is proposed. The architecture is based on single path delay feedback (SDF) pipeline
architecture. It mainly targets WiFi, Wimax, and MIMO-OFDM applications. It supports 4 different sizes up
to 1K, IFFT, natural order output (N), and 1 stream. In [15], a design with configurable size and 4 streams is
proposed. The design mainly targets LTE, Wimax, and MIMO-OFDM domains. Special attention is given to
area minimization. It supports 5 different sizes up to 2K, and natural order output (N). The designs below all
support natural order output (N) and 1 stream except [14, 16]. Those two do not report the output order. In
[12], a configurable size design is presented. The design mainly targets SAR and OFDM domains. It supports 12
different sizes up to 32K. Also, they claim to support an efficient data scaling technique. This work gives special
attention to area minimization. The design in [17] supports 7 different sizes up to 512 and mainly targets OFDM
based applications. It uses radix-4 common factor algorithm and SDF architecture to reduce the number of
twiddle factors and (see Section 3 for definition) complexity. The work in [19] supports 4 different sizes up to 8K
and targets OFDM based standards such as DVB, DAB, and ADSL. It uses SDF architecture and a mixed-radix
approach. A dynamic scaling approach is adopted in the design and internal data is formatted as self-defined
floating point to improve processor performance. In [16], an ultralong variable-size (up to 1M pts with 10
different sizes) pipelined FFT processor is presented for applications such as communications, imaging, radar
processing, and spectrum analysis. This paper focuses on reducing the required memory size. The proposed
solution in this paper is based on decomposing a one-dimensional FFT into multidimensional FFT calculations
repeatedly and applying an efficient twiddle factor memory compression method. The work in [14] supports 8
different sizes up to 8K and targets flexible communication systems, where a single device integrates various
wired and wireless communication standards. Resource usage optimization and efficient implementation are the
two main concerns in this paper. Therefore, a dynamic address generator scheme and the CORDIC (coordinate
rotational digital computer) technique are performed for twiddle factor multiplication to provide a conflict free
in-place memory replacement scheme for intermediate data storage. [18] supports 5 different sizes up to 2K. It
targets WiFi and WiMax. The architecture is designed based on radix-2 SDF. In this paper, we compare our
work to also Xilinx FFT IP Generator v9.1 [26], which we also use in verification. The IP has 14 different sizes

3153

ERGUL et al./Turk J Elec Eng & Comp Sci

up to 64K. Xilinx is listed on the third row in Table 1. The Xilinx IP has extra configurable parameters at

compile-time.

3. FFT Basics

The N -point discrete Fourier transform (DFT) input sequence x[n] defined as follows, where WiF = ¢~J (F)a

and a = nk:

N-1
XK = > anWik k=0,1,...N -1 1)
n=0

N represents the size of DFT, z[n] are the samples in time domain, and X[k] represent output values
of DFT in the frequency domain. WZ* is called as twiddle factor, and they are complex numbers that define
rotations in a complex plane. The rotation operation is represented by the ® in Figure 1 and throughout
the article. When the size of DFT is the power of two, Cooley-Tukey FFT [6] algorithm is the most widely
used method. N -point Cooley—Tukey requires O(NlogN) arithmetic operations instead of the straight-forward
implementation with O(N?) operations. Radix-2 DIF and DIT are the simplest algorithms for reducing the
complexity of the design.

X[0
AN X
N/ EANV/A 0= i
/RN AN
NN/ o b
A TNl 8

%Y X
(VARG CTINZAN: X [14]

X[

1 TN A AN X

x[10 I"\ AT S X [5]
x[11 e ®— e 00 % R X [13]
c112] —ol W g X0 o o X[
x[13] — ® R— X[11]
x[14] — ® 2 X [7]
x[15] — . R R X[15]

Figure 1. Flow-graph of 16-point radix-2 DIF FFT.

Figure 1 shows the flow-graph of 16-point radix-2 DIF FFT. The numbers at the input represent input
sample index n for every x[n] in time domain, and the numbers at the output represent the result of FFT
X|[k] in frequency domain. Radix-2 based N-point FFT calculation is executed in loga N stages. In the radix-2

algorithm, a butterfly is the basic operation, and butterflies calculate 2-point FFTs in each stage.

4. HC-FFT: proposed architecture

In this section, the proposed FFT architecture is explained in 6 subsections. The first subsection explains the
4-parallel architecture that takes in and also outputs 4 pts in a single cycle. Variable-size and multistream

operation, IFFT, input rearrangement and output reordering are covered in the subsequent subsections.

3154

ERGUL et al./Turk J Elec Eng & Comp Sci

4.1. 4-parallel radix-2 DIF FFT architecture
Figure 2 shows a 16-point FFT architecture, and it consists of R2, ®, and S blocks. Radix-2 butterfly can be

shown in Figure 3a. R2 blocks perform addition and subtraction operations in a radix-2 butterfly. ® symbols,
which are located in the output branch of the R2 blocks, denote rotation operations as mentioned before in
Section 3. Rotation operation is performed by multiplying the R2 block outputs with related twiddle multiplier

values. Values above the ® symbols represent o for W .

| Stage 1 | Stage 2 — Stage 3———}-Stage 4-|

in_1 | - s

R2| [[2] o] |R2[[efs]2]e] [S||R2|[+]e]s]o]|S]| [R2

[\

R2|[7LelsTe] |R2|[slel2To] |S||R2|[“]e]4]e] |S]||R2

t+3 t+2 t+1

t
in1(3]2]1/0 3f2]1]o 9fsf1]o 1208410
in2 11|10 9|8 716|514 1mftof 3]2 131951
in3 76|54 1|10 9|8 13125 |4 14(10f6 |2
in4 |15[14|13[12 15[14| 13|12 1514 7 | 6 1s1| 7|3

Figure 2. 4-parallel radix-2 16-point DIF FFT structure.

The input data index orders for different FFT stages are given in the tables, which are under the R2
blocks in Figure 2. While sample indexes in vertical arrive in the butterfly processor at the same time, in the
horizontal, indexed data samples enter sequentially at different times, from right to left. As can be seen in
Figue 2, the order of data index differs at each stage. Therefore, shuffling blocks are used to reorder the outputs
of the current stage to feed the next stage. This block has already been used in various FFT architectures in the

literature such as [1, 11]. A detailed block diagram of the shuffle block is given for L-length buffers in Figure 3b.

(a) R2 Block (b) Shuffle Block

Figure 3. Basic blocks.

Shuffle block consists of two L-length buffers and two multiplexers. The purpose of this circuit is to swap
the B part of the upper input with the C part of the lower input. Therefore, select bit is set to 0 during first L
cycles, thus A part of the data is stored in output buffer and C part of the data is stored in input buffer. For
the second L cycles, the select bit is set to 1. Thereby, D part is stored in input buffer and C part passed to
the output buffer while A part and B parts of the data provided to the output. When select bit changes again
to 0, C and D part of data is provided to output. This way, the interchange of data is complete.

3155

ERGUL et al./Turk J Elec Eng & Comp Sci

In Figure 2, the number given inside the S block is the buffer length. For P-parallel N-point FFT, length
of the buffers in shuffling blocks can be obtained by calculating L = N/25%! at any stage s € [p,n — 1] where
n =1logaN and p =logaP.

4.2. Wide-range variable-size FFT

The proposed FFT processor has been designed to support FFT sizes of 2", where n is between 4 and 16. The
number of stages required to calculate 64K-point FFT is 16 = log:64K .

Variable-size FFT structure will be explained over two consequent FFT sizes. 16-point and 32-point
FFT configurations shown in Figures 2 and 4. Figure 2 includes 4 stages for N = 16 and Figure 4 includes 5
stages for N = 32. For these two figures given, the buffer width of the shuffle block in the stage after first stage
increases as the FFT length increases. From this point of view, to calculate 16-point FFT using 32-point FFT
architecture, multiplexer can be added between stages to select to drive the first stage outputs or previous stage

outputs to next stage according to selected FF'T size. The new architecture can be shown as in Figure 5.

|——stage }———>stage 2 — | Stage 3 — |} Stage 4 —} Stage 5
R2 R2 S| |R2 S| |R2 S| |R2
4] 2] RN
R2 R2 S| |R2 S| |R2 S| |R2
L & || 2 4] & 21| 2 NN

Figure 4. 4-parallel radix-2 32-point DIF FFT structure.

%
<2

| Stage 1 } Stage 2 ——| | Stage 3———1 Stage 4———}-Stage 5

stl_outl prev_outl

R2 R2 S

stl_out2 prev_out2

R2 S| |R2 S| |R2

m
u
|
t
I
t1 3 prev_out3 ’|) | | |
R2 R2 S ' i R2 S| |R2 S| [R2
stl_outd _@ prev_out || (:) || (:) ||
(:) 4 € 2 1
L L L r L L1 L N | E—
stl_outl b
stl_out2 |
stl_out3 o
stl_out4 | C
k

Figure 5. Variable-size FFT structure for 16/32-point FFT.

Proposed architecture includes 16 stages to support 64K-point FFT. According to configured FFT size,
some of the stages will be inactivated. Regardless of the selected FF'T size, the first stage and last three stages
are always used. Because, the supported smallest FFT size is 16 points in the proposed architecture. Therefore,
outputs of the FFT are always taken from last stage. Depending on the configured FFT size, the selection bits

control the stages which come after the first stage.

3156

ERGUL et al./Turk J Elec Eng & Comp Sci

Twiddle values, which are used for the rotation in the stages, are precomputed and stored in separate
ROMs for each stage. Instead of storing all possible twiddle values for each stage, only the required twiddle
values are stored in ROMs, thereby memory usage is optimized. Stored twiddle values for the respective stages
are given in Figure 6.

Stage 1 Stage 2 Stage3 Stage 12 Stage 13 Stage 14 Stage 15
we We, W We, W, We; We, We: [Z We, Wi We. Wi [z
16 64 65536 65536 32768 65536 | - 64 - 65536 32 64 - 65536 16 - 65536 16 - 65536
1 1 1 2 2 4 2 2048 2 4 4096 2 8192 4 16384
Wie Weas Wess3e Wessse Wiz76s Wessas Wes Wess3e W3, We Wess36 Wi Wessse Wis Wessze
2 2 2 4 4 8 4 4096 4 8 8192 4 16384
Wis Wes Wess3e Wessse Wiz76s Wessse Wea Wessss Wiz Wea Wess3e Wie ... Wgssze
3 3 3 6 6 12 6 6144 6 12 12288 6 24576
W146 Wezt W645536 W685536 W382768 W6155536 Waﬂ4 W%S%st Wssz Wes ... Wsssszss Wi Wessse
1 16 16384
Wis Wea Wessze Wessse Waz76s Wessae Wea Wess3e Wi, We Wess36
5 5 5 10 10 20 10 10240 10 20 20480
Wis W564 Wess3e Wsszsss W322768 W625536 Wea Wess3e Wiy W Wess36
6 6 1 1. 4 12 12288 12 24 24576
Wi .. Wey .. Wessse Wessse Wssres Wessze || Wei -~ Wessse Wz Wea Wess3e
7 7 14 14 28 14 14336 14 28 28672
Wis W%A; Wssssss W6156536 W31267ss W6352536 W646 W51565338(3t Wiy Wey ... Wessse
1
Weas Wessse Wessse Wizzes Wessae Wes Wessze
9 9 18 18 36 18 18432
Wea - Wesse Wesse Wizzes Wesse | Wea o Wessze
10 10 20 20 40 20 20480
Wes Wess3e Wess3e Wiz76s Wessae Wes Wss36
11 11 22 44 22 22528
W6142 Weiszsss W6254536 W3224758 Wisasss W5244 Wsssszs
24576
Wes Wes33e Wes33e Wiz7es Wessze || Wei .. Wissse
13 13 26 26 52 26 26624
Wes Wessae Wess3e Wessss Wessse Wes Wess36
14 14 28 28 56 28 28672
Wes Wess3e Wessse Wiz76s Wessse Wes Wessse
15 15 30 30 60 30 30720
Wes Wess3e Wessse Wizzes Wessze || Wea - Wessse
W30 W32765 32764 16378 32760
64 65536 65536 32768 65536
31 32767 32766 16380 32764
Wes Wessse Wessse Wizies Wessse

Figure 6. Twiddle multipliers used for each FFT stage.

As can be seen in Figure 6, stage 1 is the common stage for the FFT size which is supported by HC-FFT.
Hereby, it should be said that used twiddle values for 64k-point FFT in stage 1 include other small FFT sizes
twiddle values. Therefore, it will be sufficient to store the twiddle values which is used for the largest FFT
size running in stage 1 in ROM. In other stages, it is seen that the same values are used regardless of the FFT
length. For example, stage 13 is used for both 32-point FFT and 64-point FFT calculation. The equality of
twiddle values given for stage 13 is can be formulated in Eq. 2.

W322 = Wg4 = Wégg??fs (2)
It is shown in Eq. 3 that these values are equal to each other. If twiddle value formulates as follows:

W§ = e IR e,

2w X2 TX2X2 2w x4

W322:e*j(32):e*j(zazxz):efj(64)’ W§2:Wé4 (3)

When we examine Figure 6, the twiddle values used throughout the consecutive stages starting from
stage 1 are decreasing. The area used in twiddle ROMs for any stage s € [1,n — 1] can be formulated as 2"~5.

Based on this, the total area used for twiddle values can be calculated as in Eq. 4.

n—1 n—1 n—1
doarmr =) 2N 9t = N TN X2 & N (4)
s=1 s=1 s=1

4.3. Multistreaming

To illustrate combining the variable-size and multistreaming features, examination of 16-point 2-stream and 16-

point 1-stream structures can be a good starting point. This example was chosen because it can be generalized

3157

ERGUL et al./Turk J Elec Eng & Comp Sci

and makes it easier to examine the proposed structures. The sample data is first driven to the input of the
reorder block, which will be explained in detail under the reorder circuit design section. The output of this
circuit is driven to the first stage of FFT structure. For 1-stream 16-point FFT, reordered samples for the first
stage are given in Figure 2 under first FFT stage. For 2-stream 16-point FFT, input reorder circuit reorders the
FFT inputs with respect to the order index given in Figure 7 under first stage. 16-point FFT is calculated in
four stages and the used twiddle values in each stage are the same for 1-stream, 2-stream, or 4-stream options.
However, during the FFT calculation, the number of processed data in FFT stages varies depending on the
number of streams. Therefore, the length of the shuffle blocks change according to the number of streams. As
seen in Figure 2, shuffle-2 and shuffle-1 blocks are used in the FFT circuit for 1-stream 16-point FFT. When
we examine the 2-stream 16-point FFT circuit given in Figure 7, the length of the shuffle-2 block increases to

two, while the length of the last shuffle block remains constant.

— Stage 1 — Stage 2 —|— Stage 3 —} Stage 4

R2| BI3I2l211]0]0] R2| [6le]al4I2]2]0]0] S| |R2| [elalofola]aTo]o] s|[R2
| 2| H

R2| [ZI71elels]5]4]4] R2| [eJel4l4l2]2[o]0] S| |R2| [elelofofa]alo]o] s||Rr2
—® —® 1 Rl

3| 3, 2,| 2, 1,1 1,[0,]| 0, 3, 3, 2,| 2, 1,1 1,[0,| 0, % |9, 8 8, 1,0 1,] 0, 0 12,|12,| 8| 8, | 4, | 4 0, | O,
1 (11, [10, 10,] 9 | 9, 8 | 8, 7,1 7, 62| 6 | 52| 51| 4 |4 1|15 [10, [10| 32| 31| 25| 2, 13, (13, 9% | 9, | 52| 54| 12| 14
7,17, | 62| 6 | 5|54 |4 M [11 [10, [10| 9 | 9,| 8 | 8, 13, 13, 12,12, 52| 54| 4, | 4 14,[14, 10, | 10, 62 | 6 | 2] 2,
155 (15, | 14,| 14| 13, 13, 12, 124 15| 15, | 14,| 14| 13, 13, [12, 124 152115, | 14, 14,| %2 [7, | 62| 6, 52|15, [10, |10, | 75 | 74 32| 34

Figure 7. 2-Stream 16-point DIF FFT structure.

In Figure 7, first stream inputs are indexed as 01, 11, 21, .., 157, and second stream inputs are indexed
as 02, 1o, 29, .., 155. In l-stream 16-point FFT circuit, 4 calculations are performed in each stage, while 8
calculations are performed in each stage for 2-stream. Therefore, twiddle values used in stages are repeated
twice. Also, in 4-stream FFT circuits, twiddle values will repeat themselves 4 times. For 4-stream 16-point
FFT, shuffle-8 replaces shuffle-2, while shuffle-4 replaces shuffle-1. For 4-stream FFT circuits, it can be said that
the length of the shuffle blocks in a 1-stream circuit is quadrupled. To combine variable-size and multistreaming
structures based on the described configurations, the only thing that will change is shuffle blocks on the used
stages since stages and twiddle values remain constant. This can be accomplished by selecting the relevant

shuffle block using the multiplexer.

4.4. Input rearrangement circuit

In previous titles such as designing 4-parallel radix-2 DIF FFT architecture and multistreaming, input index
order for the first stage of HC-FFT is given in the related architecture figures. As seen in Figures 2 and 7,
the data that are entering at the same time into the first stage of HC-FFT, are not received by the system
simultaneously or consecutively in time. Therefore, the input sequence order should be rearranged for the first
stage of FFT. For this purpose, previously described shuffle blocks were used to rearrange the input order.
Explanation of the input rearrangement circuit will be made for 16-point and 32-point FFT sizes, because
of their simplicity and generalizable structure. FFT samples for 16-point provided to the architecture as shown

in left side of the Table 2. The rearrangement circuit consists of shuffle blocks that are also used in the FFT

3158

ERGUL et al./Turk J Elec Eng & Comp Sci

— —> — —>
S S S S S

— — — —»
1 2 1 2 4

— ' — — — — —>
S S S S S

— — — >
1 2 1 2 4

(a) (b)

Figure 8. Input rearrangement circuit for (a) 16-point and (b) 32-point FFT.

stages. It is used to adapt sample order to the processing sequence in the FFT. The purpose of the circuit is
to rearrange the sample data order which is given in left side of the Table 2 as the order in given right side
of the Table 2. For 16-point and 32-point FFT, used input rearrangement circuits are given in Figure 8. For
16-point FFT, samples arriving at the terminals of the rearrangement circuit first enter the shuffle-1 block.
Then, the output of shuffle-1 blocks enter shuffle-2 blocks by replacing of the lower output of the shuffle-1 block
and the upper output of the shuffle-1. For 16-point FFT, the outputs of the shuffle-2 block are driven to the first
FFT stage. The 32-point input rearrangement circuit includes an additional shuffle block, unlike the 16-point
rearrangement circuit. For 16-point, the first stage inputs of FFT are taken from the output of the shuffle-2
block, while for 32-point the outputs of the shuffle-2 block are connected to the shuffle-4 block. The inputs of
the first FFT stage are taken from output of shuffle-4 block for 32-point FFT.

Table 2. Input and output of input rearrangement circuit for 16-point FFT.

t+3 | t4+2 | t+1 | ¢ t4+3 | t+2 | t+1 | ¢

T2 | T8 Ty Zo r3 z2 (a1 Zo
T13 | T9 Ts Ty | = | Tn Tio | T9 g
T14 Z10 Ze T2 x7 Z6 Zs T4
T15 T11 Z7 zs3 T15 T14 Z13 T12

As can be seen from the 16-point and 32-point input rearrangement circuits in Figure 8, as the FFT
increases in size, a shuffle block is added to the end of the rearrangement circuit. The input rearrangement circuit
is designed for large FFT sizes but the circuit can also be used either smaller FFT sizes. Input rearrangement
circuit which is designed for 65536-point consists of 28 shuffle blocks and this circuit can be used for 65536-point
and smaller FFT sizes. For 65536-point FFT, inputs of the first FFT stage are taken from shuffle-8192 blocks,
and for 32768-point FFT from shuffle-4096 blocks.

Until here, how the input rearrangement circuit works for 1-stream FFTs has been explained. The same
input rearrangement circuit is also used for 2-steam and 4-stream FFTs with a few differences. The first stage
inputs for 1-stream 16-point FFT are taken from the output of the shuffle-2 block, while the first stage inputs
of the 2-stream 16-point FFT are taken from shuffle-4 and for 4-stream from the output of the shuffle-8 block.
According to configured FFT size and stream number, related shuffle blocks outputs are driven to first stage of
FFT.

3159

ERGUL et al./Turk J Elec Eng & Comp Sci

4.5. Reorder circuit

In the proposed design, DIF FFT structure is used. Therefore, while the input data order should be natural
order, FF'T output is in bit-reversed order. The bit reversal circuit is one of the challenging block in the FFT
design. [1, 2] and [3] are some of works which are mentioned about this issue. [2] is the one of the work in
literature which specially discuss this problem and proposed a solution to reorder the FFT output. Although
[1] is focused on parallel radix-2¥ MDC FFT, it briefly mentioned about possible total memory usage of reorder

block. In [3], bit reversal is calculated and proposed bit-reversal circuit for eight-parallel FFT structure.

Table 3. Last stage output order for 16-point FFT.

tH3 | t4+2 | t41 | ¢t t+3 t+2 t+1 t

Tig | X3 | T4 | To X[3] | X[1] | X[2] | X[0]
Tz | o | x5 | x| = | X[11] | X[9] | X[10] | X[8]
Ty | T1o | Xe | T2 X[7 | X[5] | X[6] | X[4]
Ti5 | T | X7 | T3 X[15] | X[13] | X[14] | X[12]

Our proposed output reorder block consists of 8-RAM blocks and this 8 RAM blocks behave such as
single RAM block with RAM addressing unit. The main reason for using 8 RAM blocks in this way is that the
proposed architecture is designed for a 4-parallel sample structure. Eight RAM blocks were required since 4
samples of FFT data had to be written to the RAM each cycle considering the order to adapt the FFT output
data order. Output reorder block will be explained over the same FFT sizes, just as the 16-point and 32-point
FFT sizes were used when explaining previous design parts before. For 16-point FFT, output data order is
given in Table 3.

For 16-point and 32-point FFTs, the addressing rules differ from each other for writing the output data
to RAMs and reading the data from RAMs. First of all, if we examine the addressing of 16-point FFT results
during writing and reading, it is sufficient to use a 4-bit address for 16 data. 16-point FFT outputs, X[0], X[8§],
X1[4], X[12], X[2], X[10], X[6], X[14], X[1], x[9], X[5], X[13], X[3], X[11], X[7], X[15] are written to addresses
0,1,2,3,4,5 6,7, 8,9, 10, 11, 12, 13, 14 and 15 respectively. Write addressing rule can be explained for
16-point. {waddr(3),waddr(2)} select the main RAM block group, waddr(0) addresses the RAM block which is
located in the main group and finally, waddr(1) selects the data located in selected RAM block. For 32-point
FFT outputs, 5 bit address is used for 32 data samples. Main RAM groups are represented by {waddr(4),
waddr(3)} and selected RAM in main group is pointed by waddr(0) bit. Output data address in RAM is shown
by {waddr(1),waddr(2)}.

Output data of X[25] are written to waddr ”710011” in case of 32-point FFT size. Address waddr is
decoded as {waddr(4), waddr(3)} = 7107, {waddr(1), waddr(2)} = 710", waddr(0) = ”1” and points address
”10” of RAM-1 in the main RAM group ”10”. After the write operation for 16-point and 32-point FFTs, RAM
group structure and data locations are given in Figure 9 for output reorder block. Also, the depth of each RAM
block in the reorder block is selected 8192 to provide the memory area required for the 65536-point FFT. The
data in the circle in the RAM blocks show the 16-point FFT outputs, while the data given in the rectangle
show the 32-point FFT outputs.

During the reading process, the read address is decoded as follows. For 16-point FFT and 4 bit address,
{raddr(0),raddr(1)} shows the main RAM group, raddr(3) select the RAM in main RAM group and raddr(2)
is the data address in selected RAM block. For 32-point and 5-bit address, while {raddr(0),raddr(1)} again

3160

ERGUL et al./Turk J Elec Eng & Comp Sci

RAM Group “00” RAM Group “01”

RAM O RAM 0
0 1 2 3 8191 0 1 2 3 8191

EEE® D)o@

RAM 1 RAM 1
0 1 2 3 8191 0 1 2 3 8191

x120] | | xr241| | [xr281 X[30]

RAM Group “10” RAM Group “11”

RAM 0 RAM 0
8191 0 1 2 3 8191

0

@

~
w

X
%
)
ES
x
>
S
E]
E
a

RAM 1 RAM 1
2 3 8191

2 3 8191

@5

=)o
E
N

Figure 9. Output reorder RAM block.

shows the main RAM group, selected RAM is pointed by raddr(4) and data address in RAM is represented by
{raddr(3),raddr(2)}. For 2-stream and 4-stream FFT circuits, the same output circuit is used with no change.
For 2-stream 16-point FF'T, there are 32 data samples to reorder. Therefore, 5 bits are required for addressing,
so we can say that 2-stream 16-point output reorder circuit is the same with 1-stream 32-point output reorder
circuit. Also, 4-stream 16-point FFT output circuit is the same with 1-stream 64-point FFT’s output reorder

circuit.

5. Implementation results

The proposed FFT architecture, HC-FFT, was implemented (i.e. integrated, simulated, synthesized, placed,
routed) using Xilinx Vivado tool. The top-level and several layers below the top-level have been created using
Vivado’s ”"schematic block design” capabilities. Lower layers were created through RTL design in VHDL, which
was about 3000 lines. The design was verified through simulation in Vivado and then later validated on a Xilinx
Kintex UltraScale (US) FPGA. We dropped the design in our testbench, which was about 2000 lines of VHDL.
We also wrote around 800 lines of MATLAB code to produce test vectors for verification and look-up tables
(i.e. ROMs) for the design part of the project. The design was verified and validated against the Xilinx FFT
IP Generator v9.1. HC-FFT and Xilinx IP were fed the same inputs (both 32-bit fixed-point) and their outputs
were compared. The average relative error (i.e. the deviation divided by the Xilinx IP’s output) was less than
0.00001 in all configurations.

Table 4 compares the synthesis results of HC-FFT with results of [13, 27, 32] as well as the Xilinx IP.
The implementation results in the Table 4 are given for Virtex-7 FPGA. In Table 1, we had a wider list of
previous works. Some of those works are not in Table 4 because their implementation results are not available

for Virtex-7. In Table 4, size is the maximum number of FFT pts supported. MS/s is the throughput or million

3161

ERGUL et al./Turk J Elec Eng & Comp Sci

Table 4. Comparison of synthesis results of HC-FFT with the previous work for Virtex-7 FPGA.

Design Size MS/s | MHz | LUT6 | FF DSP | BRAM | Latency
HC-FFT | 64K | 1350 | 339 20k 36k 240 | 396 49k
Xilinx 64K | 372 372 6k 8k 24 550 196k
HC-FFT* | 128K | 1355 | 339 21k 38k 255 | 792 97k

[13] 128K | 352* | 352 14k 12k 88 428 -
HC-FFT* | 1K 1261 | 339 12.5k | 22.5k | 150 | 6 858

[27] 1K 8889 | 555 13k 34k 192 | 148 110
HC-FFT* | 4K 1327 | 339 15k 27k 180 | 24 3k

[32] 4K 400* | 200 20k - - - 2k

points per second. MHz column lists the maximum clock frequencies. Lat. is the latency in clock cycles. Note
that the cycle-time can be smaller than the latency. On the other hand, LUT6, FF (flip-flop), DSP Slices, and
Block RAM constitute the area of an implementation. We already showed that HC-FFT stands out in terms of
its run-time configurability. Table 4 shows that it also stands out in terms of throughput. Note that the cells
in Table 4 with a ”-” show results that are not reported in the respective references and ”*” is used to indicate

possible maximum values.

HC-FFT processes 4-parallel samples in each cycle, however, Xilinx FFT IP processes 1 sample per cycle.
The throughput of HC-FFT, in the case of 1-stream 64K-point FFT, can be calculated as 16K /(16K + 64) x
4 x 339 = 1350 MS/s, where 16K comes from the 16K cycles with valid data, 64 cycles is the gap between
subsequent FFTs, 4 is the number of parallel data ports, and 339 MHz is the clock frequency. Similarly, the
throughput of the Xilinx FFT IP, in the case of 64K-point FFT, can be calculated as 64K /64K x 1 x 372 = 372
MS/s, where 64K /64K indicates no gap needed between subsequent FFTs, 1 indicates that Xilinx IP supports
only 1 data port, and 372 MHz is the clock frequency. The latency of Xilinx FFT IP is 196k cycle for a 64K-point
FFT, whereas our FFT core has a latency 49k cycles. As shown in Table 4, the Xilinx IP has competitive area
but its throughput is not competitive.

Normalized values are given for 1K-point HC-FFT in 3rd line of the Table 4. Throughput of [13] is not
reported but the possible maximum throughput can be 352MS/s according to given clock frequency and single
data path architecture. According to Table 4, [13] is area-efficient but throughput remains very low compared to
HC-FFT. [27] is has a pretty high throughput rate. However, considering the used resources, it can be said that
HC-FFT is more area-efficient design. [27] uses 148 BRAM, 192 DSP, 34k FF and 13k LUT6 while HC-FFT
uses only 6 BRAM, 150 DSP, 22.5k FF and 12.5k LUT6. Additionally, this design has only one configuration
option, which is FFT size. It supports only 4 different sizes i.e. 16, 64, 256 and 1024 points. In terms of
configurability, there are lack of options in [27] compared to our proposed design. Some parts of the utilization
components are not reported in [32]. Therefore, area comparison cannot be made. Comparison can only be
made in terms of used LUT6 and it can be said that HC-FFT use less LUT6 than [32]. Also, the maximum
throughput of the design is calculated as 400MS/s for 2-parallel sample architecture. It can be said that our

design outperforms [32] by terms of throughput and maximum clock frequency.

3162

ERGUL et al./Turk J Elec Eng & Comp Sci

6. Conclusion

This paper has proposed a highly run-time configurable FFT design. HC-FFT can be configured in run-time
for mode (F/I), size (12 different size from 16 to 64K), output order (N/B) and number of stream (1/2/4).
Considering these features, HC-FFT allows 144 (Mode x Stream x Size x OutputOrder) different configuration

combination. Considering its configurable architecture, it is seen that there is no work that matches HC-FFT’s

configurability degree. HC-FFT achieves this with reasonable area. Our design also excels with its throughput

of 87 Gbps, a rate that exceeds the peak data transfer rate of most interfaces. This high throughput is mainly

because there is a negligible amount of stall (a gap of only 64 cycles) between consecutive FFTs; hence a very

high pipeline efficiency. That is, a new FFT can start before the current finishes. The design has been verified

against the Xilinx FFT IP. All of these features make the proposed design a good choice especially for real-time

spectrum analysis systems.

[1]

2]

3]

(4]

[5]

References

Garrido M, Grajal J, Sanchez MA, Gustafsson O. Pipelined radix-2* feedforward FFT architectures. IEEE Trans-
actions on Very Large Scale Integration Systems 2013; 21 (1): 23-32. doi: 10.1109/TVLSI.2011.2178275

Chen S, Huang S, Garrido M, Jou S. Continuous-flow parallel bit-reversal circuit for MDF and MDC FFT
architectures. IEEE Transactions on Circuits and Systems I: Regular Papers 2014; 61 (10): 2869-2877. doi:
10.1109/TCSI.2014.2327271

Yoshizawa S, Orikasa A, Miyanaga Y. An area and power efficient pipeline FFT processor for 8x8 MIMO-OFDM
systems. In: IEEE International Symposium of Circuits and Systems; Rio de Janeiro, Brazil; 2011. pp. 2705-2708.
Boopal PP, Garrido M, Gustafsson O. A reconfigurable FFT architecture for variable-length and multi-streaming
OFDM standards. In: IEEE International Symposium on Circuits and Systems; Beijing, China; 2013. pp. 2066-2070.

Li S, Xu H, Fan W, Chen Y, Zeng X. A 128/256-point pipeline FFT/IFFT processor for MIMO OFDM system
IEEE 802.16e. In: IEEE International Symposium on Circuits and Systems; Paris, France; 2010. pp. 1488-1491.

Cooley JW, Tukey J. An Algorithm for the machine calculation of complex Fourier series. Mathematics of Compu-
tation 1965; 19 (90): 297-301. doi: 10.2307,/2003354

Kumar GP, Krishna BT, Pushpa K. Optimized pipelined fast Fourier transform using split and merge parallel
processing units for OFDM. Wireless Personal Communications 2020; 117 (4). doi: 10.1007/s11277-020-07471-3
O’Brien J, Mather J, Holland B. A 200 MIPS single-chip 1 k FFT processor. In: IEEE International Solid-State
Circuits Conference; New York, NY, USA; 1989. pp. 166-167.

Sunada G, Jin J, Berzins M, Chen T. COBRA: an 1.2 million transistor expandable column FFT chip. In: IEEE
International Conference on Computer Design: VLSI in Computers and Processors; Cambridge, MA, USA; 1994.
pp. 546-550.

Baas BM. A low-power, high-performance, 1024-point FFT processor. IEEE Journal of Solid-State Circuits 1999;
34 (3): 380-387. doi: 10.1109/4.748190

He S, Torkelson M. Design and implementation of a 1024-point pipeline FFT processor. In: IEEE Custom Integrated
Circuits Conference; Santa Clara, CA, USA; 1998. pp. 131-134.

Langemeyer S, Pirsch P, Blume H. A FPGA architecture for real-time processing of variable-length FFTS. In: IEEE
International Conference on Acoustics, Speech and Signal Processing; Prague, Czechia; 2011. pp. 1705-1708.

Xie Y, Feng Y, Yang C, Xie Y, Chen H. Design of a large point FFT processor with configurable transform length.
In: TET International Radar Conference; Hangzhou, China; 2015. pp. 1-5.

Gautam V, Ray KC, Haddow P. Hardware efficient design of Variable Length FFT Processor. In: IEEE International
Symposium on Design and Diagnostics of Electronic Circuits and Systems; Cottbus, Germany; 2011. pp. 309-312.

3163

ERGUL et al./Turk J Elec Eng & Comp Sci

[15] Karachalios A, Nakos K, Reisis D, Alnuweiri H. A new FFT architecture for 4 x 4 MIMO-OFDMA systems with
variable symbol lengths. In: International Conference on Innovations in Information Technology; Al Ain, United
Arab Emirates; 2009. pp. 80-84.

[16] He C, Qiang W, Zhenbin G, Hongxing W. A pipelined memory-efficient architecture for ultra-long variable-size
FFT processors. In: International Conference on Computer Science and Information Technology; Singapore; 2008.
pp. 357-361.

[17] Manish B, Sangeeta N. Fast performance pipeline re-configurable FFT processor based on radix- 22 for variable
length N. International Journal of Electrical and Electronic Engineering and Telecommunications 2019; 8 (3): 163-

170. doi: 10.18178/ijeetc.8.3.163-170

[18] Netto R, Giintzel JL. A high throughput configurable FFT processor for WLAN and WiMax protocols. In: VIII
Southern Conference on Programmable Logic; Bento Goncalves, Brazil; 2012. pp. 1-5.

[19] He J, Ma L, Xu X. A configurable FFT processor. In: IET International Conference on Wireless, Mobile and
Multimedia Networks; Beijing, China; 2010. pp. 246-249.

[20] Yang C, Xie Y, Chen L, Chen H, Deng Y. Design of a configurable fixed-point FFT processor. In: IET International
Radar Conference; Hangzhou, China; 2015. pp. 1-4.

[21] Cho I, Shen C, Tachwali Y, Hsu C, Bhattacharyya SS. Configurable, resource-optimized FFT architecture for
OFDM communication. In: IEEE International Conference on Acoustics, Speech and Signal Processing; Vancouver,
Canada; 2013. pp. 2746-2750.

[22] Eddington C, Ray B. Using the parallel FFT for multigigahertz FPGA signal processing. Xcell Journal 2013; 82:
51-55.

[23] Iglesias V, Grajal J, Sanchez MA, Lépez-Vallejo M. Implementation of a real-time spectrum analyzer on
FPGA platforms. IEEE Transactions on Instrumentation and Measurement 2015; 64 (2): 338-355. doi:
10.1109/TIM.2014.2344411

[24] Verma R. FPGA implementation of fast Fourier transform (FFT) based finite impulse response (FIR) filter using
VHDL. International Journal of Engineering and Computer Science 2014; 3 (3).

[25] Wang S, Inkol R, Rajan S, Patenaude F. FFT filter-bank-based wideband detection: coherent vs. non-coherent
integration. In: IEEE Instrumentation and Measurement Technology Conference; Singapore; 2009. pp. 1327-1331.

[26] Xilinx Corp. Fast Fourier Transform v9.1 LogiCORE IP Product Guide PG109. San Jose, CA, USA: Xilinx Inc.,
2020.

[27] Bruno JS, Almenar V, Valls J. FPGA Implementation of a 10 GS/s variable-length FFT for OFDM-based optical
communication systems. Microprocessors and Microsystems 2019; 64: 195-204. doi: 10.3390/electronics7070116

[28] Nash JG. Distributed-memory-based FFT architecture and FPGA implementations. Electronics 2018; 7: 116. doi:
10.1016/j.micpro.2018.12.002

[29] Revanna D, Anjum O, Cucchi M, Airoldi R, Nurmi J. A scalable FFT processor architecture for OFDM based
communication systems. In: International Conference on Embedded Computer Systems: Architectures, Modeling
and Simulation; Agios Konstantinos, Greece; 2013. pp. 19-27.

[30] Abdoli H, Nikmehr H. A flexible CO-OFDM using reconfigurable multi-precision FFT. IEEE Communications
Letters 2017; 21: 1997-2000. doi: 10.1109/LCOMM.2017.2706675

[31] Glittas AX, Sellathurai M, Lakshminarayanan G. A normal I/O order radix-2 FFT architecture to process twin
data streams for MIMO. IEEE Transactions on Very Large Scale Integration Systems 2016; 24 (6): 2402-2406. doi:
10.1109/TVLSI.2015.2504391

[32] Changela A, Zaveri M, Verma D. FPGA implementation of high-performance, resource-efficient radix-16 CORDIC
rotator based FFT algorithm. Integration 2020; 73: 89-100. doi: 10.1016/j.v1si.2020.03.008

[33] Wang J, Xie Y, Li B, Yang C, Hu S. The reconfigurable pipelined variable-point FFT processor design. In: IEEE
International Conference on Signal, Information and Data Processing; Chongqing, China; 2019. pp. 1-4.

3164

	Introduction
	Previous work
	FFT Basics
	HC-FFT: proposed architecture
	4-parallel radix-2 DIF FFT architecture
	Wide-range variable-size FFT
	Multistreaming
	Input rearrangement circuit
	Reorder circuit

	Implementation results
	Conclusion

