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Abstract: In this study, hybrid methods are proposed for feature selection and classification of gene expression
datasets. In the proposed genetic algorithm/support vector machine (GA-SVM) and genetic algorithm/k nearest neighbor
(GA-KNN) hybrid methods, genetic algorithm is improved using Pearson’s correlation coefficient, Relief-F, or mutual
information. Crossover and selection operations of the genetic algorithm are specialized. Eight different gene expression
datasets are used for classification process. The classification performances of the proposed methods are compared
with the traditional GA-KNN and GA-SVM wrapper methods and other studies in the literature. Classification results
demonstrate that higher accuracy rates are obtained with the proposed methods compared to the other methods for all
datasets.
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1. Introduction
Microarray and RNA sequencing are the technologies that allow analysis and quantification of gene expression
levels. With these technologies, studies are carried out on the identification of cancer-related genes and gene
profiling of diseases. Cancer-healthy tissue or cancer subtypes can be differentiated by evaluation of the gene
expressions. Thousands of gene expressions need to be evaluated together for cancer diagnosis and classification.
Due to a large amount of interrelated data in this process, computer algorithms and artificial intelligence methods
are needed to make the process more efficient and the results more accurate.

Gene expression datasets include 2000–60000 genes and their feature sizes are greater than the number of
samples. Therefore, dimensionality reduction methods have a significant role in classification of these datasets.
These methods are divided into feature selection and feature extraction methods. Feature extraction methods
reduce dimension by transforming the available data into new features. Feature selection methods determine
group of features that best reflect data. The features in the ideal subset to be selected should have a high
relevance to the class but a low relevance to each other. These methods help to improve performance metrics
and decrease computation time. Filter, wrapper, embedded, and hybrid methods are subcategories of feature
selection methods.

Filter methods are generally statistical-based methods that do not involve learning. Subset selection is
usually performed by measuring the relationship of features to the classes. As a result, the redundant features
may not be eliminated. On the other hand, these methods are practical to implement and the results can be
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achieved quickly. They are usually preferred as the preprocess methods in the analysis and classification of gene
expressions in the literature. Thus, the number of genes is reduced to 500–1000 level. Pearson’s correlation
coefficient, mutual information, and Relief-F [1] are some of the most preferred examples of filter methods.

Wrapper methods consist of a classifier and the search algorithm. The most successful subset is selected
with evaluation of the classification accuracy. The goal is optimizing classification accuracy or an equation
related to accuracy for selected subset. For a high-dimensional dataset with N number of features, the evaluation
of (2N − 1) subsets will result in considerable computational load. Thus, heuristic or evolutionary algorithms
are preferred for subset selection. Wrapper methods consider the dependencies and relationship between genes.
Although their computational complexity is higher than filter methods, the accuracy of wrapper methods is
much better.

The most commonly used algorithms for subset selection are ant colony optimization (ACO), genetic
algorithm, and particle swarm optimization (PSO) algorithms. In much of the current research, SVM and KNN
methods are used as a classifier in combination with these algorithms to form GA-SVM [2, 3], GA-KNN [4],
PSO-SVM [3, 5], PSO-KNN [5], ACO-SVM [6] methods. For instance, Alba et al. [3] compared the classification
accuracy of GA-SVM and PSO-SVM and developed a geometric particle swarm optimization–support vector
machine (GPSO-SVM) method. Kar et al. [5] proposed the PSO-AKNN method by combining particle swarm
optimization with adaptive k nearest neighbor (AKNN). Adaptive genetic algorithm (AGA) is used for subset
selection in the AGA-KNN [7] wrapper method. Arunkumar et al. [8] proposed the GA-ELM method by using
an extreme learning machine (ELM) as the classifier.

Embedded methods use the classifier to establish a criterion for ranking the features. The results depend
on the classifier as the feature selection is performed in the classifier training. Since the selected features are
dependent on the classifier, their performance may not be the same in different classifiers [9]. One of the most
well-known embedded methods is SVM-RFE [10] that includes recursive feature elimination (RFE). In [10],
SVM classifier weight of feature is used to rank genes. Mundra and Rajapakse [11] introduced a method that
combines minimum redundancy maximum relevancy (MRMR) [12] and SVM-RFE to improve its performance.
Turgut et al. [13] used RFE and randomized logistic regression for feature elimination and compared the
classification performances of different classifiers. Luo et al. [14] proposed a method to consider correlation
between features and intrinsic properties by improving SVM-RFE method with F-statistic, distance correlation
coefficient, and Pearson’s correlation coefficient-based correlation metric.

Hybrid methods consist of wrapper and filter methods. The purpose is to optimize the performance by
taking advantage of each method. In hybrid methods, generally, the number of genes is reduced to around
500–1000 using filter methods, and then gene subsets are selected with the wrapper method. In the literature,
there are various hybrid method studies such as those combining Relief-F, MRMR, and GA-wrapper methods
[15], using multiple filter and multiple wrapper methods [16], combining dynamic parameter genetic algorithm
(GADP) and chi-square test [17], using information gain in combination with micro-GA-SVM [18] or with
binary krill herd algorithm [19], and performing feature selection with chaotic harmony search (CHS) after
MRMR filter method [20]. In addition, there are also hybrid methods that use various optimization algorithms
and evolutionary operators without including filter methods. For example, Othman et al. [21] proposed a
hybrid method by combining multiobjective cuckoo search with mutation and crossover evolutionary operators
(MOCS-EO) to improve the exploration ability of the algorithm. Meenachi et al. [22] hybridized GA and ACO
with tabu search. Qaraad et al. [23] used different optimization algorithms to determine elastic net (EN) with
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SVM.
In this study, GA-KNN and GA-SVM hybrid methods are proposed in which the genetic algorithm is

improved with the Pearson correlation coefficient, Relief-F, or mutual information. In the proposed methods, the
crossover and selection operations of the genetic algorithm are specialized. The goal of the proposed approach
is to determine best group of genes for maximizing the accuracy rate of the classification and minimizing the
number of selected genes. In Section 2, filter methods that are used to improve genetic algorithm are described
briefly and proposed methods are accounted. In Section 3, datasets and performance metrics are shown and
the classification results of proposed methods are compared with the wrapper methods and other studies in the
literature by using eight different gene expression datasets. Experimental results demonstrate that accuracy
rates of the proposed methods are higher than the wrapper methods and other studies in the literature for all
datasets. Section 4 contains the summary of this study and future research directions.

2. Methods
2.1. The Pearson correlation coefficient
The Pearson correlation rates the linear dependence between the feature and the class. It is defined as in
Equation 1, where N is the sample size, Xi is the ith feature, and Y is the target value.

r =
cov(Xi, Y )

αXαY
=

∑
(x− x̄)(y − ȳ)√∑
(x− x̄)2(y − ȳ)2

=

∑N
j=1(xj − x̄)(yj − ȳ)√∑N
j=1(xj − x̄)2(yj − ȳ)2

(1)

This method allows ranking the relationship between the genes and the class. Thus, the number of genes
can be reduced by eliminating the low-ranked genes. Moreover, similar genes can be determined by calculating
the degree of relationship between genes.

2.2. Relief-F
Relief-F [1] is a multivariate method that aims to determine features which best distinguish each class. It is
a version of the Relief algorithm and developed for multiclass datasets. It gives better results in the noisy
and missing data [24]. The main objective of this method is to rate each feature according to its ability to
distinguish nearest samples. The algorithm selects an arbitrary x instance, determines the nearest k instances
from same (a) and different (b) classes. The distances between random x and nearest k samples from same
class and different classes are calculated. Accordingly, the degree of the feature decreases as the distance of the
x instance to the instances of the same class increases. It increases as the distance between x and instances of
different classes increases.

The degree of f feature R(f) can be expressed as in Equation 2, where R(f)a represents the distance
between random x and its nearest neighbors with same class, n is the number of random selection.

R(f) = R(f)a −R(f)b (2)

R(f)a =
1

n · k

k∑
i=1

diff(f, x, ai) (3)

R(f)a =
∑
s ̸=sx

P (s)

[1− P (sx)]n · k

k∑
i=1

diff(f, x, bi(s)) (4)
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R(f)b represents the distance between x and its nearest neighbors with different classes and calculated
together for all other classes (s) except the class of x . P (sx) indicates the probability of the class of x , P (s)

indicates the probability of the class of s .

2.3. Mutual information
Mutual information (MI) indicates the measure of the dependence between two random variables. It is calculated
as in Equation 5.

I(X,Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)

p(x)p(y)
(5)

In Equation 5, X and Y are random variables, p(x) indicate the probability distribution of X , p(y) indicate
the probability distribution of Y , and p(x, y) represents the joint probability distribution.

2.4. Proposed methods

In the proposed methods, the genetic algorithm in GA-KNN and GA-SVM methods is improved by the filter
feature selection method. The Pearson correlation, Relief-F, or mutual information methods are used as filter
methods. The flowchart that shows the main structure of the proposed approach is shown in Figure 1.

In the genetic algorithm, chromosomes are encoded by using binary coding. The size of each chromosome
is the same with feature size of the dataset and individuals are randomly generated. In parent selection, 20%
of the current population with the best fitness scores is determined as the elite parent population. They are
guaranteed to survive and to be selected as parents. Other parents are selected by stochastic universal selection
(SUS) from the remaining population based on scaled fitness scores. The scaling is performed to convert
the range of the fitness scores into more appropriate range for SUS method. The calculated scaled value is
proportional to 1/

√
n where n is the rank of the individual that corresponds to its position after sorting fitness

scores in descending order.
Crossover is performed in two different ways by using logical AND and logical OR operations. AND

operation is intended to transfer the genes in both parents to the next generation. The OR operation is used
to provide diversity. Before crossover by OR, a certain percentage of the genes with the lowest score obtained
from the filter method is converted to zero in both parents. Thus, the diversity can be maintained at a certain
level and the results can be achieved faster. Two offsprings are generated from each pair of parents in crossover
operation, one from logical AND and the other from logical OR operation. After crossover of the parents, the
child chromosomes and the elite parents are transferred to the next generation. The parents other than elite
parents are deleted from the population to maintain the population size.

The AccDimensionScore function shown in Equation 6 is determined as a function of the classification
accuracy obtained from the classifier and the number of genes on the chromosomes. It is aimed to maximize the
accuracy of classification and minimize the number of selected genes. KNN and SVM are used as a classifier in
the proposed methods.

AccDimensionScore(x) = α
(
1−Acc(x)

)
+ (1− α)

s(x)

t
(6)

In Equation 6, Acc(x) represents the accuracy of individual x , s(x) represents the number of genes that
are 1 in x , t corresponds to the total number of genes, and α indicates the coefficient whose value varies in the
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Figure 1. The flowchart of the proposed method.

range [0,1].

In the proposed methods, average score of each chromosome where each gene is associated with the class
is calculated by using the Pearson correlation, Relief-F, or mutual information scores. Thus, the filter method
score of chromosomes is used together with the AccDimensionScore function values in the selection process.
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Average score of each individual is calculated as:

AvgScore(x) =

∑t
i=1 g(i)Score(i)

s(x)
(7)

In Equation 7, g(i) corresponds to 0 or 1 that represents if the ith gene of individual x is selected or
not, and Score(i) is the filter method score of ith gene in individual x .

The fitness function that corresponds to the total score of each chromosome can be expressed as:

Fitness(x) = β(AccDimensionScore(x)) + (1− β)(1−AvgScore(x)) (8)

where AvgScore(x) represents the average score value of the genes that are 1 in individual x , β represents the
coefficient that takes value in the range [0,1].

As seen in Figure 1, there is no mutation process in the proposed methods owing to the diversity provided
by the OR operation.

3. Experimental analyses

In this section, performances of the proposed methods are evaluated with a 10-fold cross-validation (CV) protocol
by 8 datasets containing gene expressions. Moreover, the details of datasets and performance metrics are
presented.

In Table 1, genetic algorithm parameters are shown. The parameters of genetic algorithm are determined
according to the optimization problem to avoid convergence to the local optimum. The population size should
be chosen by considering the balance of genetic diversity and computational load. If the population size is too
small, it may cause premature convergence due to insufficient genetic diversity. If it is too large, it leads to
high computational load. Similarly, the percentage of elitism should be at a level that allows to transfer the
individuals with the best scores of the population to the next generation and at the same time does not reduce
the diversity. The maximum number of generations should be large enough to achieve the optimal solution.
By considering these trade-offs, the parameters are determined by evaluating various test results for different
datasets and methods to achieve the best results in terms of fitness score and accuracy. The best results are
obtained with the values shown in Table 1. Accordingly, the α and β coefficients of fitness function are set to
0.9 and 0.8, respectively.

Table 1. Parameters of genetic algorithm in the proposed methods.

Parameters Value
Population size 100
Crossover AND(50%), OR (50%)
Elite rate 20%
Selection method Stochastic universal selection
Maximum number of generations 200

GA is a stochastic evolutionary algorithm. Therefore, the experimental results are calculated as the mean
values of the results obtained from 10 runs of each method for each dataset. The number of selected gene results
are average results of 10 runs rounded to the nearest integer.
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3.1. Datasets
Datasets that are used in the comparison of the methods are shown in Table 2. These datasets are among the
main datasets frequently used in computer-assisted cancer diagnosis and classification studies in the literature.
BRCA and COAD datasets include gene expression levels determined by the RNA sequencing method and
others include gene expression levels obtained by the microarray method.

The datasets shown in Table 2 consist of two classes and are mostly composed of the samples from healthy
and cancer patients. Most of these datasets are used for cancer-healthy tissue or cancer subtype classification.
Moreover, some of them are used for the estimation of survival and determining whether the cancer recurred.

Table 2. Datasets and their properties.

Datasets Classification task Number
of genes

Number
of samples

Number
of classes

Class
distribution

Colon cancer [25] Normal samples 2000 62 2 Normal: 22
Cancer samples Cancer: 40

Prostate cancer [26] Normal samples 12,600 136 2 Normal: 59
Cancer samples Cancer: 77

DLBCL [27] Diffuse large B-cell
lymphoma (DLBCL)

7129 77 2 DLBCL: 58

Follicular lymphoma (FL) FL: 19
Breast cancer [28] Luminal type (L) 47,293 128 2 L: 84

Nonluminal type (NL) NL: 44
Breast cancer 2 [29] Relapse (distance

metastases within 5 years)
24,481 97 2 Relapse: 46

Nonrelapse (NR) NR: 51
CNS [30] Survivor (Class 1) 7129 60 2 Class 0: 39

Failure (Class 0) Class 1: 21
BRCA1 Normal samples 60,483 1211 2 Normal: 113

Cancer samples Cancer: 1098
COAD1 Normal samples 60,483 430 2 Normal: 40

Cancer samples Cancer: 390

3.2. Performance metrics
The number of selected genes, accuracy (Acc.), precision (Pre.), negative predictive ratio (NPR), specificity
(Spec.), F1 score and sensitivity (Sens.) are used as performance metrics. These performance metrics can be
calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

NPR =
TN

TN + FN
(11)

1NCI (2021). Genomic Data Commons Data Portal [online]. Website https://portal.gdc.cancer.gov [accessed: 2 February 2020]
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Specificity =
TN

TN + FP
(12)

Sensitivity =
TP

TP + FN
(13)

F1score =
2× (Precision× Sensitivity)

Precision+ Sensitivity
(14)

True positive (TP) indicates positive samples that are assigned to positive. False positive (FP) represents
negative samples that are assigned to positive. Similarly, true negative (TN) and false negative (FN) correspond
to positive and negative samples, respectively, for samples assigned to negative.

3.3. Experimental results

The classification accuracy rates of the proposed and wrapper methods and the number of genes selected with
these methods are shown in Table 3. According to these results, it is observed that the highest accuracy rates
and the minimum number of selected gene combinations for all datasets are obtained by the proposed methods.

Table 3. Accuracy of classification (%) and the number of selected genes for all datasets.

Methods Colon
cancer

Prostate
cancer

DLBCL Breast
cancer

Breast
cancer (2)

CNS BRCA COAD

GA-KNN 83.87(171) 80.00(4064) 86.25(1853) 70.00(1977) 81.54(21338) 65.00(1945) 90.91(1892) 96.51(28,901)
GA(Pearson)-KNN 88.33 (3) 94.00(8) 96.25(2) 77.00(22) 90.00(304) 76.67(3) 97.44(8) 98.37(19)
GA(Relief-F)-KNN 86.67(1) 86.00(1) 100.00(82) 77.00(20) 85.38(24) 81.67(196) 98.18(30) 97.91(2)
GA(MI)-KNN 86.67(1) 85.00(1) 97.50(2) 80.00(9) 83.85(274) 73.33(1) 98.68(433) 98.14(1)
GA-SVM 91.67(208) 89.00(3931) 98.75(1814) 58.00(9080) 83.08(21103) 73.33(1807) 99.09(28,773) 99.07(28,877)
GA(Pearson)-SVM 95.00(20) 97.00(275) 100.00(101) 71.00(21) 89.23(216) 93.33(28) 99.01(529) 99.30(219)
GA(Relief-F)-SVM 98.33(33) 99.00(210) 100.00(214) 67.00(376) 90.77(227) 95.00(100) 99.34(625) 99.07(124)
GA(MI)-SVM 98.33(49) 97.00(437) 100.00(38) 82.00(352) 90.00(396) 90.00(119) 99.01(629) 97.91(1)

The best results are obtained with the GA(Relief-F)-SVM method for five datasets except DLBCL, breast
cancer and COAD datasets. The traditional GA-KNN wrapper method outperforms GA-SVM for breast cancer
dataset. In contrast, the best accuracy rate for breast cancer dataset is obtained by the proposed GA(MI)-SVM
method. This indicates that the proposed methods are more stable and robust against changes in data. For
COAD dataset, GA(Pearson)-SVM method achieves the best accuracy rate. Relief-F method outperforms the
other filter methods for five datasets.

The proposed methods that include KNN outperform the traditional GA-KNN wrapper method for all
datasets and GA-SVM method for five datasets. They also significantly reduce the number of selected genes
compared to the traditional wrapper methods.

In Table 4, the performances of the proposed methods and other studies in the literature are compared.
The classification accuracy rates of the proposed methods are higher than those of the other methods. For
colon cancer, breast cancer, CNS, and prostate cancer datasets, the GA(Relief-F)-SVM method achieves the
best accuracy rates. For breast cancer dataset, this method achieves 90.77% accuracy rate with 227 genes.
For prostate cancer dataset, its accuracy rate is 99% with 210 genes. For colon cancer and CNS datasets, its
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accuracy rates are 98.33% and 95%, respectively. For DLBCL dataset, 100% accuracy rate is obtained by most
of the methods, including the proposed methods. However, the GA (MI)-SVM method achieves 100% with only
38 genes, the number of selected genes was not specified in the other studies.

Table 4. Comparison of methods (accuracy % and the number of selected genes).

Methods Colon cancer Prostate cancer DLBCL Breast cancer (2) CNS
Bootstrapped margin [2] 92.40 - - - -
3-fold CV
GA-ELM [8] - - - 84.00 (9) -
10-fold CV
ACO-S-SVM [6] 81.42 (69) - - - -
10-fold CV
Max-Min ACO-SVM [31] 95.00 (10.8) - 100 - -
Leave one out CV
PSO-SVM [32] 94.0 - - - -
Leave half out CV
F-test + GA-SVM [4] 85 92.68 84 - 81.25
5-fold CV
SNR + GA-SVM [4] 95 65.85 100 - 81.25
5-fold CV
MIM + AGA-ELM [33] 89.09 96.54 - - -
IG + BBO-RF [34] 92.34 (11) - - - -
10-fold CV
IG-SVM [35] 90.32 96.08 100 - -
10-fold CV
[36] 87 (4) - - - 88.66 (6)
Leave one out CV 91.95 (5)
FLD-NRS [37] 88.0 (6) 80 (4) - - -
MOCEPO [38] 96.74 - - - -
10-fold CV
IG+micro GA -SVM [18] - - - - 92.86 (29)
IG-MBKH [19] 96.47 - - - 90.34
10-fold CV
MRMR+CHS+KNN[20] 80.64 (72) - 96.10 (61) - -
10-fold CV
MOCS-EO [21] - - - - 76.30 (952)
10-fold CV
GA(Pearson)-SVM 95.00 (20) 97.00 (275) 100.00 (101) 89.23 (216) 93.33 (28)
GA(Relief-F)-SVM 98.33(33) 99.00(210) 100.00 (214) 90.77(227) 95.00(100)
GA(MI)-SVM 98.33 (49) 97.00 (437) 100.00(38) 90.00 (396) 90.00 (119)
GA(Pearson)-KNN 88.33 (3) 94.00 (8) 96.25 (2) 90.00 (304) 76.67 (3)
GA(Relief-F)-KNN 86.67 (1) 86.00 (1) 100.00 (82) 85.38 (24) 81.67 (196)
GA(MI)-KNN 86.67 (1) 85.00 (1) 97.50 (2) 83.85 (274) 73.33 (1)

The classification results obtained with the 10-fold cross-validation protocol for all performance metrics
are presented in Tables 5–7. According to these results, the proposed methods improve all performance metrics
for all datasets. They particularly increase accuracy, F1 score and decrease the number of selected genes.
For example, for CNS dataset, highest F1 score obtained with traditional wrapper methods is 0.57, while the
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proposed methods increase F1 score to 0.92. Similarly, in the breast cancer dataset results in Table 6, it is
observed that F1 score is increased from 0.69 to 0.80. In addition, the proposed methods decrease the number
of selected genes by an average of 95% compared to the traditional methods.

Table 5. Classification results of CNS, colon cancer, and DLBCL datasets.

Datasets Methods Acc.% Pre.% Sens.% Spec.% F1 NPR% Number of genes

CNS

GA-KNN 65.00 50.00 33.33 82.05 0.40 69.57 1945
GA(Pearson)-KNN 76.67 70.59 57.14 87.18 0.63 79.07 3
GA(Relief-F)-KNN 81.67 77.78 66.67 89.74 0.71 83.33 196
GA(MI)-KNN 73.33 66.67 47.62 87.18 0.55 75.56 1
GA-SVM 73.33 64.71 52.38 84.62 0.57 76.74 1807
GA(Pearson)-SVM 93.33 94.74 85.71 97.44 0.90 92.68 28
GA(Relief-F)-SVM 95.00 100.00 85.71 100.00 0.92 92.86 100
GA(MI)-SVM 90.00 89.47 80.95 94.87 0.85 90.24 119

Colon
cancer

GA-KNN 83.87 80.00 72.73 90.00 0.76 85.71 171
GA(Pearson)-KNN 88.33 85.71 81.82 92.11 0.84 89.74 3
GA(Relief-F)-KNN 86.67 88.89 72.73 94.74 0.80 85.71 1
GA(MI)-KNN 86.67 88.89 72.73 94.74 0.80 85.71 1
GA-SVM 91.67 90.48 86.36 94.74 0.88 92.31 208
GA(Pearson)-SVM 95.00 91.30 95.45 94.74 0.93 97.30 20
GA(Relief-F)-SVM 98.33 100.00 95.45 100.00 0.97 97.44 33
GA(MI)-SVM 98.33 100.00 95.45 100.00 0.97 97.44 49

DLBCL

GA-KNN 86.25 100.00 81.67 100.00 0.89 64.52 1853
GA(Pearson)-KNN 96.25 98.31 96.67 95.00 0.97 90.48 2
GA(Relief-F)-KNN 100.00 100.00 100.00 100.00 1.00 100.00 82
GA(MI)-KNN 97.50 98.33 98.33 95.00 0.98 95.00 2
GA-SVM 98.75 100.00 98.33 100.00 0.99 95.24 1814
GA(Pearson)-SVM 100.00 100.00 100.00 100.00 1.00 100.00 101
GA(Relief-F)-SVM 100.00 100.00 100.00 100.00 1.00 100.00 214
GA(MI)-SVM 100.00 100.00 100.00 100.00 1.00 100.00 38

The convergence graphs of GA(Relief-F)-SVM method over different datasets are shown in Figures 2
and 3. The graphs are obtained by sample runs of the method for corresponding dataset. It is seen that the
accuracy increases as the number of generations increases, and the number of selected genes is generally in a
downward trend. The fluctuations in the number of selected genes indicate that there is genetic diversity in the
population, and the algorithm is in the global and local search process. Despite the fluctuations, the number of
selected genes decreases and converges to a certain value for all datasets within 40–60 number of generations.

The convergence graphs also show that the accuracy tends to increase as the number of selected genes
decreases. The fluctuations in the number of selected genes do not disrupt the increasing trend of accuracy.
Moreover, different gene configurations with the same number of genes can result in different accuracy rates as
the algorithm continues to search for the optimal solution. Therefore, accuracy continues to increase after the
number of selected genes converges to a value as seen in Figures 2a, 2b, and 3b.

3174



SÖNMEZ et al./Turk J Elec Eng & Comp Sci

Table 6. Classification results of breast cancer, breast cancer (2), and prostate cancer datasets.

Datasets Methods Acc.% Pre.% Sens.% Spec.% F1 NPR% Number of genes

Breast
cancer

GA-KNN 70.00 69.77 63.83 75.47 0.66 70.18 8977
GA(Pearson)-KNN 77.00 77.27 72.34 81.13 0.74 76.79 22
GA(Relief-F)-KNN 77.00 87.50 59.57 92.45 0.70 72.06 20
GA(MI)-KNN 80.00 80.00 76.60 83.02 0.78 80.00 9
GA-SVM 58.00 60.87 29.79 83.02 0.40 57.14 9080
GA(Pearson)-SVM 71.00 68.75 70.21 71.70 0.69 73.08 21
GA(Relief-F)-SVM 67.00 75.00 44.68 86.79 0.56 63.89 376
GA(MI)-SVM 82.00 80.85 80.85 83.02 0.80 83.02 352

Prostate
cancer

GA-KNN 80.00 84.44 74.51 85.71 0.79 76.36 4064
GA(Pearson)-KNN 94.00 94.12 94.12 93.88 0.94 93.88 8
GA(Relief-F)-KNN 86.00 84.91 88.24 83.67 0.86 87.23 1
GA(MI)-KNN 85.00 84.62 86.27 83.67 0.85 85.42 1
GA-SVM 89.00 90.00 88.24 89.80 0.89 88.00 3931
GA(Pearson)-SVM 97.00 98.00 96.08 97.96 0.97 96.00 275
GA(Relief-F)-SVM 99.00 100.00 98.04 100.00 0.99 98.00 210
GA(MI)-SVM 97.00 98.00 96.08 97.96 0.97 96.00 437

Breast
cancer
(2)

GA-KNN 81.54 79.25 97.67 50.00 0.87 91.67 21,338
GA(Pearson)-KNN 90.00 91.01 94.19 81.82 0.92 87.80 304
GA(Relief-F)-KNN 85.38 86.02 93.02 70.45 0.89 83.78 24
GA(MI)-KNN 83.85 84.95 91.86 68.18 0.88 81.08 274
GA-SVM 83.08 85.56 89.53 70.45 0.87 77.50 21,103
GA(Pearson)-SVM 89.23 90.00 94.19 79.55 0.92 87.50 216
GA(Relief-F)-SVM 90.77 91.11 95.35 81.82 0.93 90.00 227
GA(MI)-SVM 90.00 90.11 95.35 79.55 0.92 89.74 396

Table 7. Classification results of COAD and BRCA datasets.

Datasets Methods Acc.% Pre.% Sens.% Spec.% F1 NPR% Number of genes

COAD

GA-KNN 96.51 97.47 98.72 75.00 0.98 85.71 28,901
GA(Pearson)-KNN 98.37 98.98 99.23 90.00 0.99 92.31 19
GA(Relief-F)-KNN 97.91 98.47 99.23 85.00 0.98 91.89 2
GA(MI)-KNN 98.14 98.97 98.97 90.00 0.98 90.00 1
GA-SVM 99.07 99.74 99.23 97.50 0.99 92.86 28,877
GA(Pearson)-SVM 99.30 99.49 99.74 95.00 0.99 97.44 219
GA(Relief-F)-SVM 99.07 99.74 99.23 97.50 0.99 92.86 124
GA(MI)-SVM 97.91 98.47 99.23 85.00 0.98 91.89 1

BRCA

GA-KNN 90.91 93.94 96.17 39.82 0.95 51.72 1892
GA(Pearson)-KNN 97.44 98.28 98.91 83.19 0.98 88.68 8
GA(Relief-F)-KNN 98.18 99.09 98.91 91.15 0.99 89.57 30
GA(MI)-KNN 98.68 99.27 99.27 92.92 0.99 92.92 433
GA-SVM 99.09 99.82 99.18 98.23 0.99 92.50 28,773
GA(Pearson)-SVM 99.01 99.73 99.18 97.35 0.99 92.44 529
GA(Relief-F)-SVM 99.34 100.00 99.27 100.00 0.99 93.39 625
GA(MI)-SVM 99.01 99.63 99.27 96.46 0.99 93.16 629
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(a) Colon cancer dataset
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(b) Prostate cancer dataset

Figure 2. The convergence graphs of the GA(Relief-F)-SVM method in terms of accuracy and the number of selected
genes for colon cancer and prostate cancer datasets.
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(a) Breast cancer (2) dataset
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(b) CNS dataset

Figure 3. The convergence graphs of the GA(Relief-F)-SVM method in terms of accuracy and the number of selected
genes for breast cancer (2) and CNS datasets.

4. Conclusion
In this study, the genetic algorithm is improved using filter feature selection methods to form GA-KNN and
GA-SVM hybrid methods for classification of the gene expression datasets. The Pearson correlation coefficient,
Relief-F, and mutual information are used as the filter methods to improve and specialize the selection and
crossover operations of the genetic algorithm. The classification performances of the proposed methods are
evaluated by using eight different gene expression datasets. It is observed that the proposed methods improve
all performance metrics. Moreover, the highest accuracy rates and F1 score values for all datasets are obtained
with the proposed methods. In the six proposed methods, the highest results are obtained using the methods
that include SVM as the classifier. The GA(Relief-F)-SVM method achieves the highest accuracy rates for five
among eight datasets. The Relief-F method outperforms the other filter methods.

3176



SÖNMEZ et al./Turk J Elec Eng & Comp Sci

In future studies, different optimization methods and classifiers can be used to analyze and compare
the results. Other metaheuristic methods such as particle swarm optimization can be evaluated instead of the
genetic algorithm.
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