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Abstract: The need for high-volume data is one of the challenging requirements of the deep learning methods, and it
makes it harder to apply deep learning algorithms to domains in which the data sources are limited, in other words,
small. These domains may vary from medical diagnosis to satellite imaging. The performances of the deep learning
methods on small datasets can be improved by the approaches such as data augmentation, ensembling, and transfer
learning. In this study, we propose a new approach that utilizes transfer learning and ensemble methods to increase
the accuracy rates of convolutional neural networks for classification tasks on small data sets. To this end, we generate
different-sized sub-networks by fragmenting an existing large pre-trained network then gather those networks to form an
ensemble. For ensemble scoring, we also suggest two new methods. Conducted experiments with the proposed technique,
on a randomly sampled Cifar10 small subset dataset, reveals promising results.
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1. Introduction
In recent years, deep learning methods perform state of art results in many different machine learning tasks.
However, the requirements of these methods are much more than conventional machine learning techniques. In
order to learn complex relationships and features, deep learning methods need plenty of training of samples
(tens of thousands depending on the complexity of the problem). As a result of this, using special hardware
such that GPU or TPU becomes a strict requirement for acceptable training times. Large dataset requirement
makes it harder to apply deep learning techniques especially for the domains where it is difficult to collect many
training samples such as medical image analysis. In literature, there exist several approaches applying deep
learning methods successfully, especially convolutional neural networks, to small data sets. These approaches
can be examined under three main categories: data augmentation, ensembling, and transfer learning. Data
augmentation methods take the advantages of rotation, crop, zoom, shear transformation [1] PCA multipliers
[2] techniques to produce new images and the data set size is increased [3] . For the ensemble methods, outputs
of trained networks with different initial weights for the same data set are combined, and final results are
produced. Whereas, in transfer learning approaches, the layers, in other words, weights of a deep learning
model [2, 4], which were previously trained on a large data set, are transferred to a new network. By using this
technique, high accuracy rates can be achieved with a short amount of training effort [5, 6]. This study has
two folds. Firstly, we propose a new approach that uses transfer learning and ensemble methods to improve
the performance of deep learning methods on small data sets. Secondly, we introduce two new methods for
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calculating the ensemble score in ensemble methods and compare them on a small data set, which is obtained
by random sampling of a well-known Cifar10 dataset.

2. Related work
In deep learning literature, to improve model performances, transfer and ensemble learning approaches have
been employed. In one of the studies that make use of both transfer and ensemble methods [7], classification is
performed through an ensemble of deep neural networks, and those networks were constructed by transferring
layers from pretrained networks.

The transfer learning approach is one of the most preferred methods for improving model performances
on small data sets, and this technique is applied in various areas. For instance, in LIGO gravitational wave
detectors, transferred weights from pre-trained VGG19 [25], ResNet[26], Inception V3 [27] networks were used
for distinguishing actual signal from noisy data [8].

In another study [9] for medical image classification, which is another domain where the data is limited,
subnetworks were created by using pretrained VGG16[25], and ResNet networks, and these networks were
combined with a handcrafted neural network to constitute an ensemble. The final classification results were
obtained by the majority voting method. In [5], the features which were transferred from the ImageNet dataset
was employed for thoracoabdominal lymph node (LN) detection and interstitial lung disease (ILD) classification.
In [10], they made use of CNN ensembles to identify vessels that appear in retinal images. To this end, random
patches were cropped from retinal images, and 12 different CNN models were trained. Then, prediction results
were calculated by taking the simple arithmetic mean of CNN models’ posterior output probabilities. Similarly,
in [33–35], to increase the performance of the classification system on limited number of medical images, the
transfer learning and ensemble methods were used together. To create ensembles, they took the advantages of
pretrained VGGNet, ResNet and DenseNet architectures.

Hierarchically, CNN ensembles were also shown to be effective. In [11], 2 different CNN ensembles
were created and used for coarse and fine grade classification respectively. The outputs of those CNNs, which
have common layers, were combined by averaging their last layers’ outputs. In [12], deep learning algorithms
were combined with support vector machine (SVM) ensembles for semantic event detection. Hence, support
vector machine ensembles were fed with feature vectors, which were created by deep learning algorithms. The
final results were obtained by taking the weighted average of SVM outputs, and aforementioned weights were
determined with respect to the performances of each support vector machine on the validation set.

In the transfer learning approach, layers’ weights are taken from a model that is trained on a different
large data set. In the literature, there exist different techniques that employ transfer learning. For an
emotion prediction task, transfer learning was applied by using two-staged fine-tuning [13]. Combinations
of different data sets can also be used for fine-tuning operations; in [14], different deep convolutional neural
network architectures such as VGG-19[25], AlexNet[28] and GoogleNet[29] were focused and fine-tuned with a
common loss function. Transferred features from different pretrained networks can also be used as a single large
feature vector. In [15], the feature vectors of the several pretrained models were concatenated to obtain better
feature representations for medical image datasets. In [31], the transfer learning approach adapted to AdaBoost
algorithm and used with CNN models to improve classification performance on imbalanced datasets. For each
iteration of the AdaBoost, the CNN weights were transferred from the previous iteration’s CNN classifier. As
a different domain than medical imaging, the CNN ensembles, which were created via transfer learning, were
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used for fault diagnosis in [32].
Instead of ensemble weighting, ensemble performance can be improved by member selection. In [16],

they proposed an ensemble selection framework that takes the advantages of meta-learning. In addition to
utilizing transfer learning and ensemble learning methods to improve performance on small data sets, efficient
neural network architectures can be obtained by applying iterative optimization methods such as evolutionary
algorithms and reinforcement learning. For the automated deep neural network architecture generation, a special
reinforcement learning method, namely Q-Learning, was used, and sequential basic layer types (convolutional,
fully connected, pooling, softmax) were combined with Q-learning. To this end, various layer types were modeled
as nodes on an acyclic graph, and the connections between the layers were shown as graph node connections.

In CoDeepNEAT [18], one of the studies that take the advantages of evolutionary algorithms for neural
network generation, new network architectures were created and hyperparameter optimization was performed
with genetic algorithm technique. The method starts with extremely simple network architecture and iteratively
improves it by adding new layers to the network. In a similar study [19], the network performance was improved
by changing the layer connections of LeNET reference CNN architecture by utilizing a genetic algorithm. This
method employs fixed length chromosomes, and the reference model is evolved from a chain-network to a
multipath-network.

3. Methodology

In this study, we take the advantages of both transfer and ensemble learning methods to improve the classification
accuracy of deep convolutional neural networks (CNN) on small data sets. To this end, we firstly create a
heterogeneous CNN ensemble by transferring weights of different convolutional layers from a pretrained VGG16
model, later on, we combine the outputs of each ensemble item by employing different scoring methods.

This study differs from its counterparts in terms of ensemble creation, ensemble scoring, and the goal.
As a goal; rather than a specific use-case, we aim to propose an end-to-end framework to improve the image
classification performance for small data sets. For ensemble creation, we generate different-sized sub-networks
by fragmenting an existing large pretrained network then gather those networks to form an ensemble. This
approach allows us to create a sufficiently diverse predictor set to reduce overfit effects. To calculate the
ensemble’s output, we propose different approaches and evaluate them. In the following sections, the details of
the method are explained and experiment results are discussed.

3.1. Creating an ensemble by transferring different layers of a pretrained network

In the first stage, we transfer different layers from a VGG16 network that has been trained on the ImageNet
dataset and create varying sized submodels. For each submodel m , we transfer the layers from pretrained source
VGG16 network by starting from the first layer to layer tm . Thanks to the varying tvalues, we introduce
heterogeneity to our ensemble. Submodel creation and layer transfer processes are shown in Figure 1. The
model, which is created by transferring the first t layers from VGG16 network is denoted as mt (Eq. 1).

mt = {l0, l1, . . . , lt} (Eq.1)

mt+1 = {l0, l1, . . . , lt+1}

mt+2 = {l0, l1, . . . , lt+2}
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where lt denotes tth layer of V GG16
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Figure 1. Transferred layers from pre-trained VGG16 network for sub-model creation.

In case of data input scale mismatch between source and target datasets, the performance of the transfer
learning becomes limited. To address this issue, we add ‘BatchNormalization’ layers after each convolutional
layer while transferring layer weights. The inserted ‘BatchNormalization’ layers to a submodel that includes
the first 6 layers m6 of VGG16 are shown in Figure 2. The number of transferred layers directly affects the
classification accuracy and generalization ability of the model. When a few layers are transferred, the resulting
network does not learn well enough (underfit). Similarly, depending on the target dataset characteristics,
transferring all layers of the source model does not always guarantee the best transfer learning performance, since
the resulting model might memorize the data (overfit). The risk of overfitting is dependent on the destination
task’s domain specificity and the number of training samples. Hence, complex models which contain many
layers are more prone to overfitting on a limited data domain. In [38], it was showed that altering the CNN
architecture depth improves accuracy on limited datasets.

As shown in Figure 3, for a randomly sampled (with even class distribution) Cifar-10 data set, including
750 training and 150 test images, the highest classification accuracy is achieved when the first 16 layers of the
VGG16 network are transferred. The last data point in Figure 3 corresponds to the results of a network trained
by transfer learning without any layer removal. To obtain a CNN based robust classification ensemble, we
create different-sized 8 new mt models by transferring the first t layers from VGG16 network. These t values
for mt models defined as 6, 8, 10, 12, 14, 16, 18, and 19. The motivation behind this different-sized CNN
ensemble approach is minimizing overfit effects which occurs due to the limited data and providing a general
framework regardless of target domain for applying CNN models to small datasets. CNN ensembles can also
be formed by gathering same-sized large models; however, depending on the characteristics of the target set,
it reduces generalization capability and classification performance. The experimental results for homogeneous
and heterogeneous CNN ensembles on small datasets are presented in the Experiments Section.
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Figure 2. The ‘BatchNormalization’ layers which are added to m6 submodel.
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Figure 3. Single model accuracy with respect to transferred layer count from the reference model.

3.2. Ensemble scoring
Ensemble-based classification systems require a scoring mechanism to merge the ensemble’s items’ prediction
results and to produce the final output. Thereby different approaches such as simple averaging, majority voting,
etc. exist in the literature. Under the scope of this study, we propose a new approach, which takes the advantages
of transfer and ensemble learning for improving the performances of deep learning models on small datasets. We
aim to have an end-to-end solution and ensemble scoring is one of the important parts of it. Therefore we also
suggest various ensemble scoring approaches and investigate their effects on our approach. Besides applying
existing ensemble scoring techniques, we propose two new approaches, namely “majority voting with ensemble
elimination” and “neural network-based ensemble weighting” to calculate the ensemble’s prediction result. The
overall architecture of the proposed method is shown in Figure 4.

3.2.1. Ensemble scoring via probability distribution based majority voting
As a first approach, we calculate the final prediction result of the ensemble by employing a majority voting
schema. Unlike previous studies, we make use of output probabilities of each ensemble item, instead directly
counting the frequencies of the top answers. The calculation of the ensemble’s final prediction result yensemble

(2) is shown in Eq. 2 where the total model count is T , the total class count is S and the output classification
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Figure 4. The overall architecture of the proposed method.

probability vectors, which includes the likelihood probabilities of each class ys for a model mt are Pmt
(x) .

Pmt(x) = [y0, y1, . . . , yS ] (2)

PE(x) =

T∑
t=1

Pmt
(x)

yensemble = argmax (PE(x))
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3.2.2. Ensemble scoring via majority voting with ensemble elimination

The ensemble consists of models with different generalization performance, the generalization ability of the small
models are higher than more complex ones, thus eliminating some of the models from the ensemble considering
their performances could improve the overall performance of the ensemble. Based on this idea, as a second
approach, we remove the models whose classification accuracies are lower than a threshold value. To determine
model performances, firstly we create a Gaussian noise added variant of the actual training set and measure
each model’s classification accuracy on it. Then, we adopt the mean classification accuracy of the models as a
threshold and eliminate the ones whose performance worse than the threshold. Since we evaluate models on a
similar but noisy set, this approach allows us to select robust models for the final ensemble. The details of the
yensemble calculation with this procedure are shown in Eq. 3 where the scorei is classification accuracy of the
model i in noisy reference dataset, and the mean accuracy of the ensemble on the reference dataset is thr .

PE(x) =
∑T

t=1

{
Pmt(x) scorei ≥ thr (3)
0 scorei < thr

yensemble = argmax (PE(x))

3.2.3. Ensemble scoring via neural network weighting

Artificial neural networks (ANN) can be utilized to optimize weights to produce the best linear neural network
combination for an ensemble [30]. In this technique, which is shown in Figure 5, the ensemble weights are
considered as an artificial neuron’s weights and optimized with the standard backpropagation method.

Model - 1

Model - 2

Model - n

…

Neuron

W
1

W2

Wn

Ensemble 

Output

Figure 5. Ensemble scoring via NN

For the third ensemble scoring approach, we adopt a similar neural weighting technique with a couple of
modifications. Instead, employing a single scalar weight value for each ensemble item, we use weight vectors.
More specifically, we define a weight value for each models’ corresponding probability output of each class. By
considering some of the ensemble items are good at predicting only specific classes, this method allows us to
control ensemble weights with respect to classes. The relation between neuron weights wt , output probability
vector of each ensemble item Pt , and ensemble’s final prediction is shown in Eq. 4 where the t denotes the id
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of a model in the ensemble.

yensemble = argmax

(
T∑

t=1

wtPt

)
(4)

When an ensemble with 8 different models and a sample dataset with 10 classes are considered, this
approach requires 10 different input layers each of which corresponds to output probabilities for each class. The
input vector length of the input layers is equal to the model count. The layer connections and the details of the
modified neural network architecture are shown in Figure 6 and Figure 7, respectively.

The neural network which is used for ensemble weighting requires an additional training set for weight
optimization. Hence, we utilize the Gaussian noise added variant of the actual training set, as we do for
Ensemble Elimination, and limit the training iteration count to 5 to avoid memorization.

C1-Probs: Input C2-Probs: Input C3-Probs: Input C4-Probs: Input C5-Probs: Input C6-Probs: Input C7-Probs: Input C8-Probs: Input C9-Probs: Input C10-Probs: Input

C1_WO C2_WO C3_WO C4_WO C5_WO C6_WO C7_WO C8_WO C9_WO C10_WO

OptimizedWeight_Merger: Concatenate

Activation_Layer: Activation

Figure 6. Modified neural network architecture.

4. Experiments
To evaluate the performance of the proposed approach on a small dataset, we took the advantages of Cifar10
dataset which is frequently used in computer vision studies of deep learning literature. The original Cifar10
dataset includes 32x32 RGB images in balanced 10 different classes, 50000 of which are in training and 10000
are utilized for test sets. Although the Cifar10 dataset contains relatively fewer images compared to other
general-purpose image datasets such as ImageNet, it is still a large set for a 10 class classification task and
slightly affected by overfitting effects. Therefore, to reveal overfit effects, we created and used different-sized
subsets of Cifar10 dataset by applying stratified random sampling. We decided subset sizes by measuring over
fit effects with a pre-trained VGG16 model and accepted the sub (balanced) datasets, which cause more than
15 % training-test accuracy difference.

We conducted all experiments on GPU instances that are running on the Google Colab system and to
minimize the nondeterministic behavior of the GPU job scheduler, we repeated training and test procedures 40
times and calculated mean classification accuracies. Besides ensemble-based ones, we also conducted experiments
with individual neural networks with the following configurations to understand the effect of ensembling on this
particular small dataset:

- Only the largest model: the model that includes the whole layers of VGG16 network.
- Only the most successful model: a model that is chosen from a heterogeneous ensemble of different

sized models. The classification accuracy on Gaussian noise added variant of the training set was considered as
success criteria.
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__________________________________________________________________________________________________

Layer (type)                               Output Shape         Param #     Connected to                     

=======================================================================================

C1-Probs (InputLayer)                          (None, 8)         0                                            

__________________________________________________________________________________________________

C2-Probs (InputLayer)                          (None, 8)       0                                            

__________________________________________________________________________________________________

C3-Probs (InputLayer)                          (None, 8)      0                                            

__________________________________________________________________________________________________

C4-Probs (InputLayer)                          (None, 8)      0                                            

__________________________________________________________________________________________________

C5-Probs (InputLayer)                          (None, 8)       0                                            

__________________________________________________________________________________________________

C6-Probs (InputLayer)                          (None, 8)      0                                            

__________________________________________________________________________________________________

C7-Probs (InputLayer)                          (None, 8)       0                                            

__________________________________________________________________________________________________

C8-Probs (InputLayer)                          (None, 8)    0                                            

__________________________________________________________________________________________________

C9-Probs (InputLayer)     (None, 8)     0                                            

__________________________________________________________________________________________________

C10-Probs (InputLayer)     (None, 8)   0                                            

__________________________________________________________________________________________________

C1_WO (Dense)           (None, 1)    9           C1-Probs[0][0]                   

__________________________________________________________________________________________________

C2_WO (Dense)                                    (None, 1)        9           C2-Probs[0][0]                   

__________________________________________________________________________________________________

C3_WO (Dense)          (None, 1)      9           C3-Probs[0][0]                   

__________________________________________________________________________________________________

C4_WO (Dense)          (None, 1)      9           C4-Probs[0][0]                   

__________________________________________________________________________________________________

C5_WO (Dense)          (None, 1)      9           C5-Probs[0][0]                   

__________________________________________________________________________________________________

C6_WO (Dense)       (None, 1)      9           C6-Probs[0][0]                   

__________________________________________________________________________________________________

C7_WO (Dense)       (None, 1)     9           C7-Probs[0][0]                   

__________________________________________________________________________________________________

C8_WO (Dense)       (None, 1)      9           C8-Probs[0][0]                   

__________________________________________________________________________________________________

C9_WO (Dense)               (None, 1)       9           C9-Probs[0][0]                   

__________________________________________________________________________________________________

C10_WO (Dense)            (None, 1)      9           C10-Probs[0][0]                  

__________________________________________________________________________________________________

OptimizedWeight_Merger (Concate (None, 10)) 0           C1_WO,C2_WO,C3_WO,C4_WO,C5_WO,

C6_WO,C7_WO,C8_WO,C9_WO,C10_WO  

__________________________________________________________________________________________________

Activation_Layer (Activation)   (None, 10)      0           OptimizedWeight_Merger[0][0]     

=======================================================================================

Total params: 90

Trainable params: 90

Figure 7. Layers of the modified NN architecture.

Heterogeneous neural network ensembles, which are created by transfer learning is one of the outcomes of
this study. Therefore, we also compared the performances of homogeneous and heterogeneous CNN ensembles.
The classification performances of the proposed method for various ensemble scoring approaches and the
comparison of heterogeneous/homogeneous ensembles are shown in Table 1 and Table 2, respectively.
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Table 1. Mean accuracy, maximum - minimum accuracy difference and standard deviation results for 40 different
training-test operations.

Only the
largest
model

Only the
most
successful
model

Majority
voting
for
ensemble

Majority
voting for
eliminated
ensemble

Ensemble
weighting
with NN

750 Train
150 Test

Mean
Accuracy

72.29 % 73.98 % 76.11 % 75.97 % 76.15 %

Max – Min
Accuracy difference

8.67 % 8.67 % 7.33 % 4.67 % 6.67 %

Standard
Deviation of accuracy

0.0417 0.0500 0.0300 0.0250 0.0267

3000 Train
600 Test

Mean
Accuracy

81.18 % 81.07 % 83.22 % 83.41 % 83.36 %

Max – Min
Accuracy difference

1.92 % 2.08 % 1.34 % 0.98 % 1.26 %

Standard
Deviation of accuracy

0.0098 0.0120 0.0061 0.0063 0.0057

Table 2. Heterogeneous vs. homogeneous ensembles for 40 different training-test operations.

Majority
voting
for ensemble

Majority
voting for
eliminated
ensemble

Ensemble
weighting
with NN

Heterogeneous
Ensemble
750 Train
150 Test

Mean
Accuracy

76.11 % 75.97 % 76.15 %

Max – Min
Accuracy Difference

7.33 % 4.67 % 6.67 %

Standard
Deviation of Accuracy

0.0400 0.0667 0.0333

Homogeneous
Ensemble
750 Train
150 Test

Mean
Accuracy

75.71 % 75.40 % 75.69 %

Max – Min
Accuracy Difference

1.34 % 0.98 % 1.26 %

Standard
Deviation of Accuracy

0.0090 0.0136 0.0077

P Value
Hom. vs. Het.
Ensembles

Unpaired
t-test

0.05 0.05 0.03

Paired
t-test

0.03 0.06 0.02
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5. Performance evaluation of the ensemble scoring methods for different data set sizes

We investigated the performances of the aforementioned ensemble scoring methods for different dataset sizes via
5-folds cross-validation. According to the results, which are shown in Table 3, the contribution of the suggested
scoring methods are not statistically significant (p values are greater than 0.05). However, when the training
item count exceeds 3000, suggested “majority voting for eliminated ensemble” and “ensemble scoring via neural
network weighting” produce better results than other approaches. Based on these results we think that one
may select a different ensemble selection method depending on the dataset sizes. To reveal the contribution
of different but similar CNN network architectures, we also tested the VGG19 based weight transfer instead
of VGG16. To this end, we created an ensemble that consists VGG19 based subnetworks and obtained the
ensemble’s final outputs by employing “majority voting for eliminated ensemble.”

Table 3. Cross-validation results of ensemble scoring methods on different-sized datasets. To express statistical
significance, the P values of the paired t-tests are also shown for suggested scoring methods.

750 Train
150 Test

1500 Train
300 Test

3000 Train
600 Test

6000 Train
1200 Test

Only the largest model 73.02 % 78.35 % 82.76 % 87.01 %
Only the most successful model 71.59 % 78.11 % 82.48 % 86.21 %
Majority voting for ensemble 74.70 % 80.02 % 83.73 % 87.23 %
Majority voting for
eliminated ensemble

74.88 %
(p-val. > 0.05)

80.37 %
(p-val. > 0.05)

84.01 %
(p-val. > 0.05)

87.86 %
(p-val. = 0.02)

Ensemble weighting
with NN

74.62 %
(p-val. > 0.05)

80.37 %
(p-val. > 0.05)

84.34 %
(p-val. = 0.01)

87.96 %
(p-val. = 0.02)

Majority voting for
eliminated ensemble (VGG-19)

73.77 % 80.24 % 82.73 % 86.14 %

The conventional machine learning methods still favorable for small datasets due to the performance
degradation of deep learning variants on limited data. In addition to deep learning techniques, we conducted
experiments on the same datasets with traditional techniques such that histogram of oriented gradients (HOG)
[23] and local binary pattern (LBP) [24]. Those methods are commonly used as feature descriptors for pattern
and scene recognition tasks [20–22] in the literature. We extracted HOG and LBP based features from our
dataset and classified the images via Support vector machines (SVM).

For HOG features, we used 4x4 windows and for LBP features, we employed 4-pixel neighborhoods. To
determine HOG, LBP and SVM parameters, we applied 5-folds cross-validation and selected the best parameter
combinations. HOG and LBP based classification results are shown in Table 4. Well-known conventional
texture/scene classification methods, HOG + SVM and LBP + SVM, are applied to the same randomly sampled
(750 train / 150 test) Cifar10 subdataset, the 5 folds cross-validated and parameter optimized accuracy rates
are below 45%.

6. Conclusion
In this study, we propose a new method that combines transfer and ensemble learning techniques to improve the
classification performance of CNN models on small datasets. Our method directly focuses on small datasets and
differs from other studies in generating transfer learning based ensembles, creating submodels, and calculating

3207



Gültekin and Uğur/Turk J Elec Eng & Comp Sci

Table 4. Cross-validated and parameter optimized classification results of conventional texture classification methods
on subsampled (750 train 150 test) Cifar10 dataset.

Standard Deviation of
Classification Accuracy

Mean Classification
Accuracy

Histogram of Oriented
Gradients (HOG) + SVM

0.011 43.10 %

Local Binary Pattern
(LBP) + SVM

0.017 21.10 %

ensemble score.
In this method, first, we create subnetworks by dividing an existing pre-trained VGG16 model into

different sized submodels. Then, we combine the results of models in the ensemble by employing three different
ensemble scoring methods. Besides introducing this new ensemble generation technique, we also propose new
ensemble scoring approaches. We take the advantages of Cifar-10 dataset for performance evaluation. Although
Cifar-10 dataset is a small one especially when it is compared with ImageNet, it is still a large dataset and
does not considerably suffer from overfit effects. Thus, performance comparison tests of the different methods
are conducted on randomly sampled 2 different Cifar-10 subdatasets. These 2 subsets are balanced and consist
of 750 training / 150 test and 3000 training / 600 test images, respectively. Sizes of the generated subsets are
decided empirically by checking the overfit effects and accuracy decreases. Performance results of the methods
are shown in Table 1 and Table 2.

Conducted experiments revealed that the proposed method performs better classification accuracies
than the classical one-model transfer learning approach. For ensemble-based transfer learning approaches, the
proposed heterogeneous ensemble method exposes better results than the ensemble consisting of homogeneous
models. Also performed t-tests validate the statistical significance of the contribution of our heterogeneous
ensemble approach by providing p-values lower than 0.05.

Some of the existing studies in the literature [5,7,9] use an ensemble of different pre-trained network
architectures to classify images. Unlike other studies, our model pruning-based heterogeneous ensemble creation
approach requires only one pretrained transfer learning source to create ensembles. We also compared single and
multiple source network-based ensembles. To this end, first, we created an ensemble that incorporates models
from pretrained (and fine-tuned) VGG16, ResNet50, DenseNet121, MobileNetV2 then compared the cross-
validation results with our single source model based ensemble approach. The average 5-folds cross-validation
accuracy of the ensemble, which includes 4 different models is 72.62%, whereas our single source model based
ensemble approach reaches 74.70% accuracy. According to these results, one might say that our ensemble
approach produces better results than the ensemble of 4 different source models; however, it’s expected that to
get higher accuracies by using larger or more sophisticated pretrained model ensembles.

On the other hand, the contributions of the proposed ensemble scoring methods do not seem statistically
significant (p values greater than 0.05) on very small datasets (750 training samples, 10 classes). However,
for larger sets, they become more profitable and statistically significant (p values are lower than 0.05). The
cross-validation results in Table 3 show that “majority voting for eliminated ensemble” and “Ensemble weighting
with NN” approaches deliver better results than “direct majority voting” method, which is frequently used in
literature and those two methods could be employed interchangeably.

Also, the deep learning methods still perform better on our subsampled Cifar-10 datasets than the
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conventional machine learning techniques. Therefore, we think that the proposed method would be adopted for
the deep learning based image classification tasks on small datasets.
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