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Abstract: Multimodal medical image fusion approaches have been commonly used to diagnose diseases and involve
merging multiple images of different modes to achieve superior image quality and to reduce uncertainty and redundancy
in order to increase the clinical applicability. In this paper, we proposed a new medical image fusion algorithm based
on a convolutional neural network (CNN) to obtain a weight map for multiscale transform (curvelet/ non-subsampled
shearlet transform) domains that enhance the textual and edge property. The aim of the method is achieving the best
visualization and highest details in a single fused image without losing spectral and anatomical details. In the proposed
method, firstly, non-subsampled shearlet transform (NSST) and curvelet transform (CvT) were used to decompose
the source image into low-frequency and high-frequency coefficients. Secondly, the low-frequency and high-frequency
coefficients were fused by the weight map generated by Siamese Convolutional Neural Network (SCNN), where the
weight map get by a series of feature maps and fuses the pixel activity information from different sources. Finally,
the fused image was reconstructed by inverse multi-scale transform (MST). For testing of proposed method, standard
gray-scaled magnetic resonance (MR) images and colored positron emission tomography (PET) images taken from Brain
Atlas Datasets were used. The proposed method can effectively preserve the detailed structure information and performs
well in terms of both visual quality and objective assessment. The fusion experimental results were evaluated (according
to quality metrics) with quantitative and qualitative criteria.
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1. Introduction
Medical image fusion is an important way to get both high spatial (MR) and high spectral (PET) information
with as many details as possible for correct medical diagnosis and therapy. A PET scan is mainly used to show
how blood circulates through the brain’s arteries and veins or to get functional information. MRI scan is used
to show the physical anatomy or structural information of the brain. Medical image fusion is used to extract
the high special resolution part of the MR and added to the high spectral part of the PET image to get a more
informative fused image than any of the input images. In multiscale transforms (MST) fusion methods, the
most significant information of input multiscale coefficients is transferred to the fused coefficients. In general,
the methods most commonly used as MST in image fusion include discrete wavelet transform (DWT) [1, 2],
Laplacian pyramid (LP) [3, 4], curvelet transform (CVT) [5, 6], non-subsampled shearlet transform (NSST) [7]
and non-subsampled contourlet transform (NSCT) [8]. The general image fusion based MST is performed as
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follows: image decomposition into low and high-frequency sub-bands at different resolutions, applying image
fusion rules for combining the coefficients of different sub-bands, image reconstruction to achieve a merged image
by taking the inverse MST of composite coefficients. In general fusion methods, a simple fusion rule such as
choosing max or weighted average is applied to obtain the fused coefficients. These fusion strategies may cause
loss of part of spectrum information, details, and the contrast in the fused image. To address this problem and
enhance the fusion performance, many fusion methods have been proposed in the literature. Shen et al. [9]
presented a cross-scale fusion rule for volumetric image fusion T1-weighted and T2-weighted MR images. That
is used to select an optimal set of coefficients by effective exploitation of neighborhood information for each
decomposition level, and it guarantees interscale consistencies. Du et al. [10] introduced the methods combine
Laplacian pyramid with multiple features to completely transfer salient features from the source medical images
into a fused image. Singh et al. [11] proposed MR-CT medical image fusion based on a shearlet transform and
spiking neural network. In this work, high-frequency sub-band coefficients of shearlet transform are fused with a
biologically motivated pulse coupled neural network as a bio-inspired neural network. Metaheuristic algorithms
were also used in fusion studies, and successful results were obtained [12–14].

Recently, image fusion based deep learning is gaining popularity because it is able automatically to extract
elective features from data without any intervention. Deep learning models can provide potential image
representation approaches, which could be useful to the study of image fusion. This models can be listed as
convolutional neural network (CNN) [15], convolutional sparse representation (CSR) and stacked auto encoder
(SAE) [16]. Liu et al. [17] introduced CNNs to the field of image fusion for the first time and proposed a
multifocus image fusion method based on CNN mode to achieve the state-of-the-art results in terms of visual
quality and objective evaluation. In the same year, Liu also proposed a CNN based medical image fusion
algorithm, which applies image pyramids to fuse multi-modal medical image in a multi-scale manner [18]. Liu
et al. [19] presented an infrared (IR) and visible (VIS) image fusion method by using Siamese CNN (SCNN).
In this method, SCNN-based image feature coding and feature classification approach were applied to create
a weight map, and the resulting weight map was combined with activity measurement for image fusion. The
fusion method aimed to retain thermal radiation information and texture detail information in IR images. After
then, Li et al. [20] proposed a multimode medical image fusion by CNN and supervised learning, in order to
solve the problem of practical medical diagnosis, to overcome the difficulty of manual design that the deep
learning models using to extract the most effective features automatically from data.

In this paper, to get the best fusion result, we proposed medical image fusion based CNN with multiscale
transforms (Curvelet (CvT) and non-subsampled shearlet transform (NSST)). A siamese convolutional neural
network is applied to obtain a weight map from the focus map, then these weights are used in fusion process to
fuse the pixel activity information of the source medical images. In fusion process, the medical source images and
weight maps are decomposed using curvelet transform (CvT) and non-subsampled shearlet transform (NSST).
Then, the weighted average fusion rule is used to merge the information from two source images. Finally, the
fused image based on the focus map using the weighted-average fusion rule of high frequency and using activity
level measurement of low-frequency coefficient is obtained. In the proposed method, it is aimed to improve
the quality of the fusion image by using the weight map created by CNN and MST. By using MST (CvT and
NSST) together with CNN, edges and details of source images were better preserved in the fusion result image
at the combination of high and low frequency coefficients.

2781



ABAS et al./Turk J Elec Eng & Comp Sci

2. Material and methods
2.1. Convolutional neural networks architecture
Siamese convolutional neural network (SCNN) model is a pre-training model proposed by [17–19]. SCNN has
two branches and these branches share the same set of weights. The uniform architecture, as well as each
branch, has three convolutional layers with a non-linear layer like ReLU. The ReLU layers always follow a
convolutional layer, max-pooling layers, and fully connected layers. The first convolutional layer is used for
feature extraction and it is used to extract simple features of the image. In the second layer, the number of the
feature maps are increasing with the depth of the network. The feature maps of two branches are combined
and then pass through one fully-connected layer [17]. The size of each convolutional layer is set as 3 ×3 and
max-pooling layer is set as 2 ×2. The convolution layers are used to extract the features from an input image,
and it has a set of filters. Max-pooling layer is used to calculate the maximum value for each patch of the feature
map of the image and reduces the dimension of the feature maps. The output network having fully-connected
layer with the 256-dimensional vector is fed a (2-way) softmax layer. The full- connection has a fixed size on
input and output data of images. The 256 feature maps obtained by each branch are concatenated and then
fully-connected to a 256-dimensional feature vector. To avoid repeated calculations and to allow arbitrary input
size, the fully-connected layer is converted into an equivalent convolutional layer containing kernels of size 8 ×
8 × 512. The output of the network is a 2-dimensional vector fed into a 2-way softmax layer, which calculates
a probability distribution of different characteristics over two classes. The two classes correspond to two kinds
of normalized weight assignment results for a pair of image patches (p1, p2). The method proposed in this
study aimed to obtain the output (weight map) of the CNN, which contains the value of the integrated pixel
and is in the range of [0,1]. A weight map is calculated using the pre-trained CNN model. The network aims
to measure the activity level and generate weight map automatically. The network structure, which is deeper
than the “shallow” network as proposed in [17–19] is given in Figure 1.
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Figure 1. The architecture of the siamese neural network.

In this study, SCNN parameters given in Table 1 were used as suggested in [17, 18].
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Table 1. Parameter settings of SCNN.

Layers Patch size Kernel size Stride Feature dimension
Conv 1 16×16 3×3 1 64
Conv 2 16×16 3×3 1 128
Max-Pooling 8×8 2×2 2 128
Conv 3 8×8 3×3 1 256
Concatenation 8×8 - - 512
FC1 8×8 8×8 - 256

2.2. Training of CNN
In this study, training examples are generated using high-quality images with blurred version patches by the
network [21]. Initially, each image is converted into grayscale image. Then, a 7 × 7 Gaussian filter with a
standard deviation of 2 is applied to the input image to obtain five blurred images with different blur levels [21].
Next, for each original and blurred image, the 20 pair’s patches of 16 ×16 image blocks are randomly sampled.
A training example is labeled as Equation (1).

If (p1 = pc) and (p2 = pb) then Label = 1 (positive)
If (p1 = pb) and (p2 = pc) then Label = 0 (negative) (1)

Here, p1 and p2 are the input patch images; pc is the clear patch of image and pb is the blurred patch of
the image. In this work, the softmax loss function is used as the optimization objective of the network. The
stochastic gradient descent (SGD) is applied to minimize the loss function. The batch size is set to 16 ×16.
The momentum is set to 0.9, and the weight decay is 0.0005. The weights are updated with the Equations (2)
and (3):

vi+1 = 0.9 ∗ vi − 0.0005 ∗ a ∗ wi − a ∗ ∂L

∂wi
(2)

wi+1 = wi + vi+ 1 (3)

Where vi represents the momentum variable at ith iteration, wi is the weight at ith iteration, α denotes the
learning rate and L denotes the loss function. CNN model is trained using the popular deep learning framework
Caffe [22]. Weight initialization of each convolutional layer is achieved with the Xavier algorithm [23]. The
biases in each layer are initialized with the value of 0. The weight map is the output of the training phase. The
output of the training network is a weight map for the final decision.

2.3. The weighted map
The input source images are subject to a 2-dimensional vector that fed into a 2-way softmax layer, which
produces a probability distribution between two classes in a range of [0, 1]. In the output network, the value of
each coefficient map contains the relative clarity information of a pair source image patches. Finally, to get a
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network output with the same size of input images, a weight map is achieved by assigning the value of all the
pixels and averaging the overlapping patches (image pixel).

2.4. Image fusion based on MST decomposition
MultiScale transforms (MST) algorithms are used in frequency domain to represent images in different scales and
levels to extract features and information such as edges and corners; these algorithms are also used to attenuate
noise. The MST methods decompose an image to the frequency sub-bands where the high-pass sub-band gives
details about edges and the low-pass bands contain outlines about texture and energy.

General image fusion methods of MST can be summarized as follows: First, the source images are decomposed
into high and low frequency sub bands using MST transform. Second, the coefficients of sub band images are
fused using the average (mean) for low-frequency sub bands, and max absolute value for high-frequency sub
bands [24]. Finally, the fused image is reconstructed by the inverse MST.

The curvelet transform (CvT) and non-subsampled shearlet transform (NSST) have a good performance in
representing edges and curves; therefore, in this work, we have used NSST and CvT transform based on CNN
to obtain a fused image, and we have compared the results of performance methods with each other.

2.4.1. Curvelet transform (CVT)
Curvelet Transform (CvT) is a multiscale directional transform and it is used to represent the image at different
angles and scales. It is developed by Candès and Donoho to solve the problem limitation of Wavelet and
Gabor transform [6]. The proposed CvT, based on an anisotropic geometric wavelet called Ridgelet transform,
decomposes the image into a set of wavelet bands and to analyze each band by a local ridgelet transform. In
this work, we used a 2D discrete CvT version implemented via the “wrapping” transform (FDCT-Wrap) that
utilizes fast Fourier transform and proposed by Candès et al. in 2005 [25]. This method is faster and more
robust than curvelet based ridgelet. In the frequency domain decomposition, the 2D curvelet transform adopts
local Fourier transform and is applied at four steps (FDCT-Wrap):

1. The Fourier coefficients are obtained by applying 2D Fast Fourier transform to the source image and
obtain Fourier coefficient f̂ [i, j] (Equation (4)).

f̂ [i, j],−n

2
≤ i, j <

n

2
(4)

Where i, j are the index of the pixel; f̂ [i, j] is the Fourier coefficient and n is the Fourier sample.

2. For each scale j and angle i, multiply the interpolated object with the parabolic window (Equation (5)).

f̂ [i, j] = f̂ [i, j − i tan θi]xÛ [i, j] (5)

Where Û [i, j] is the parabolic window like “Cartesian”, θ is the orientation in the range
(
−π

4 ,
π
4

)
.

3. Wrap this data for the origin and obtain re-index data (Equation (6)).

f̂ [i, j] = W [Û f̂ ]x[i, j] (6)
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4. In the last, the inverse 2D FFT is applying to each f̂ to collect the discrete coefficient to obtain the 2D
curvelet.

2.4.2. Non-subsampled shearlet transform (NSST)

Wavelet transform (WT) is not very efficient in capturing edges and other anisotropic features in the image.
Direction information in an image is not determined with WT since it depends on scale and transformation
parameters. Shearlet transform was proposed to overcome these limitations of WT. The shearlet transform is
based on an affine system with composite dilations, and it has become the most successful and effective method
in recent years to represent multidimensional data efficiently. Non-subsampled shearlet transform (NSST) is
proposed by Easley [26] based on non-subsampled Laplacian pyramid (NSLP) and shift-invariant shearlet filter
banks (SFB) to provide multiscale decomposition. It is used to represent an image in multidimensional space.
NSST combines the NSLP filter and several shearing filters in shearlet transform [27, 28]. The NSST performs
sub-band decomposition similar to the shearlet transform, but downsampling and upsampling that are used in
shearlet transform are not used here because it causes a lack of shift-invariance, which is a very critical feature
to prevent the undesirable Gibbs phenomenon of image fusion. In high-frequency components of NSST, the
geometric information like edges, curves and textures of images is preserved while a salient feature and energy
are preserved in the low-frequency.

At each NSLP decomposition level, one high frequency and one low-frequency sub-images are produced, and
further, the low-frequency sub-band is decomposed iteratively. At the decomposition level m = 3, an image is
decomposed into m + 1 = 4 sub-bands with the same size of the source image in which one sub-band image is the
low-frequency component and other m images are the high-frequency sub-band images. Shearing filter is also
used in higher frequency sub-images decomposition without sub-sampling, which satisfies the shift-invariance
property. The steps of obtaining standard fusion image with NSST are given below:

1. Images A and B are decomposed using NSST into one low frequency and a series of high-frequency
sub-band images.

2. After the NSST is analyzed, fusing the high-frequency coefficients based on the maximum selection
(MAX(A, B)), and fusing the low-frequency coefficients based on the average ((A+B)/2) fusion rules.

3. Inverse NSST is performed on the fused low and high-frequency coefficient to get the fused image.

3. Proposed fusion methods
Fusion rule plays an important role in image fusion algorithms. The low-frequency band represents the
approximate component, which contains the base information of the source image and which can control in
contrast to the fused image. High-frequency sub-images represent detailed components and contain much
salient information of edge details information of the input image at the different directions and scales. For
fusion, the fusion rules like average or weighted average are commonly used in the low-frequency domain. This
method might not be suitable for all types of images and usually cause loss of contrast preserving the overall
brightness. Max absolute fusion rule is often used in the high-frequency domain and may transfer less fine-scale
details between source images. To solve this problem in the fused image, the method based on MST and SCNN
is proposed. In this study, images with the size of M = 256 and N = 256 are used. The schematic diagram of
the proposed fusion method is shown in Figure 2. The proposed image fusion method is described as follows:
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1. Apply siamese CNN network model to calculate a weight map (W ) of the original images (MR/PET).

2. Convert original PET image from RGB (Red-Green-Blue) to IHS (Intensity-Hue-Saturation) color space.

3. Decompose the both source images (MRI, PET) into sub-bands using NSST and CVT to obtain low and
high-frequency components.

4. Transform a weight map W into the frequency domain using NSST and CVT to obtain weights in frequency
domains.

5. Multiply the values of the activity level measurement (WLE ) (Equation (7)) and the weight map extracted
by CNN from the source images to fuse the coefficients of the low frequency band. For this, apply the
fusion rule given in Equation (8).

WLES(i, j) =

r∑
m=−r

r∑
n=−r

W × (m+ r + 1, n+ r + 1)LS(i+m, j + n)2 (7)

LFMST
F =

{
LFA(i, j), WLEA(i, j).Wcnn(i, j) ≥ WLEB(i, j).Wcnn(i, j)

LFB(i, j), otherwise
(8)

Where WLE denotes activity level measurement based on local energy proposed in [29]. The S ∈ {A,B}
and W is a (2r + 1) x (2r + 1) weighting matrix with radius r . WCNN (i, j) is a weight map generated
by CNN.

6. Apply the the ”weighted average” fusion mode [37] based on the weight map W to fuse the coefficients of
the high frequency band. For this, apply the fusion rule given in Equation (9).

HFMST
F = Wcnn(i, j)xHFA(i, j) + (1−Wcnn(i, j))xHFB(i, j) (9)

7. To obtain the fused image in greyscale, perform the inverse MST on the fused low-frequency coefficients
and high-frequency coefficients.

Fused = MST−1(LFMST
F ,HFMST

F ) (10)

8. Finally, apply inverse IHS transform to get the fused RGB color image.

At Algorithm 1 , the pseudo-code of fusion process with CNN is given.

In this study, image fusion was performed using MRI and PET images. Within the scope of the study, image
fusions were performed by using both MST and CNN-MST together, and the results were given comparatively.
In order to examine the effects of high and low frequency coefficients in the image fusion with CNN, the results
were obtained by using the coefficients separately in the fusion process. Different fusion studies carried out
within the scope of the study are given below.
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Algorithm 1 Steps of the proposed medical image fusion algorithm using CNN with MST
Input: the source images: MR and PET.
Part CNN feature extraction to get weight map
1:Inputs two same size source images MR and PET (PET resized to 256 ×256 and converted to greyscale
image) to the trained siamese network;
2:Obtained feature map from each branch contains convolutional layers;
3:Generates a dense prediction map S, where each prediction has two dimensions;
4:for any prediction Si do
5:each prediction normalization processing to obtain a corresponding image weight with a dimension value of 1;
6:end for
7:for an overlapping region of two adjacent predictions, Sj and Sj+1 do
8:Averaging process to obtain the mean value of the overlapping image patches(pixels) to obtain the output
weight map (W) of the same size of the source images;
9:same size of source images is obtained from the score map by averaging the overlapping patches.
10:end for
Parameters: the number of MST decomposition levels: L, the number of directions at each decomposition
level
Part 2: MST decomposition
11:Convert image (PET) from RGB (Red-Green-Blue) space to IHS (Intensity-Hue-Saturation) space to get
Grayscale (intensity) image;
12:For each level l = 1 : L
13:For each direction k = 1 : K(l)
For Weighted map (W) and each source image MR and PET;
14:Decomposed source images (MR and PET) to obtain {High, Low} coefficients;
15:end for
16:end for
Part 3: Fusion of high-frequency bands
17:For each source image (MR and PET) with weight map (W);
18:For each level l = 1 : L
For each direction k = 1 : K(l)
19:Weighted-average rule is used to merge (HFA(i, j),HFB(i, j) ) according to Equation (9) to obtain HFMST

F ;
20:end for
21:end for
Part 4: Fusion of low-frequency bands
For each source image (MR and PET) with weight map (W);
22:Calculate the WLE with weight map (W) for ( LFA(i, j), LFB(i, j) ) using Equation (7) and Equation (8);
to obtain LFMST

F ;
23:Perform the inverse MST on

(
LFMST

F ,HFMST
F

)
according to Equation (10) ;

24:The inverse IHS transform is used to get the fused RGB color space image.
Output: The Fused image.
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1. Only using MST (CvT / NSST with basic fusion rules for low / high bands): While applying the “average”
rule for low frequency components; the “max-absolute” rule was chosen for high-frequency components
[38].

2. Using CNN for only high frequency (CvT / NSST + basic fusion rule for low band + (CNNHF )) : The
“average” rule was applied for low frequency components and the proposed method given in Equation (9)
was applied for high-frequency components.

3. Using CNN for both low and high frequency (CvT / NSST + CNNHF + CNNLF ), Equation (8) was
applied to low-frequency and Equation (9) was applied to high-frequency. The flowchart of the proposed
medical image fusion is given in Figure 2.
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Figure 2. Flowchart of the proposed medical image fusion.

4. Experimental results
The source and reference medical images (“Alzheimer” image set) were taken from the Whole Brain Atlas
database [30] that is available publicly, which is created by Harvard Medical School. Alzheimer images are of a
70 years old man who began experiencing difficulty with memory. While PET images are 128x128 pixels, MRI
images are 256x256 pixels. Therefore, PET is resized to 256 ×256. The reference images were used to help
evaluate the quality of the test image, and MATLAB MathWorks, Inc., Natick, MA, USA) was used for the
experiments. The sample MRI and PET images from “Alzheimer” image data set are shown in Figure 3.

Comparisons show that the results are obtained by the proposed method, which has a better performance
than basic MST methods. This means that the proposed method retains more information than other MST
algorithms from source images. Evaluations of fusion performance were calculated by some fusion metrics as
given below.
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Figure 3. Sample MR and SPECT images of Alzheimer image data set [30].

1. Entropy: It’s an important measurement used to evaluate the richness and information detail of pixel
value in the image given in Equation (11).

E = −
L−1∑
i=0

pi log2(pi) (11)

Where i is the probability density of the grayscale of a pixel value (Pi) and L is the number of intensity
levels in the image.

2. Fusion factor(FF): This is used to measure the dependency and amount of mutual information (MI)
between the source and fused image where MI measures the amount of information transferred from
source to fused image as given in [31] (Equation (12)).

FF = MIAF +MIBF (12)

Where MIAF and MIBF are mutual information is given in Equation (13).

MIA,BF =
∑
I,J

PA,BF (I, J)(log
PAF,BF (I.J)

PA,B(I)PF (J)
) (13)

Where PA,B , and PAF,BF are the normalized joint grayscale of reference and fused images. The larger
value of FF indicates a good amount of information comes from two source images.

3. Objective edge-based measure(QAB/F ): This is used to evaluate the amount of edge information trans-
ferred from the input images into the fused image at the pixel level by measuring the relative amount of
edge or gradient information and employing a Sobel edge detector [32] (Equation (14)).

QAB/F =

∑N
n=1

∑M
m=1 Q

AF (n,m)wA(n,m) +QBF (n,m)wB(n,m)∑N
i=1

∑M
j=1(w

A(i, j) + wB(i, j))
(14)

where QAF and QBF denoted to the edge preservation values, respectively. n, m are image pixel location,
wA and wB are the weighting factors.
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4. Standart deviation (STD): This is the most widely used method to measure the contrast and distribution
between the pixel values and the mean values of the fused image [33] (Equation (15)).

STD =

√√√√ M∑
x=1

N∑
y=1

(F (x, y)− F (x, y))2 (15)

STD represents the standard deviation of the fused image. F (x, y) is the mean of the fused image.

5. Piella’s metric (QW): This is used to measure the structural similarity between the fused image and source
images by addressing contrast, coefficient correlation, and illumination all at once [34] (Equation (16)).

QW (a, b, f) =
∑
w∈W

c(w)(λ(w)Q0(a, f |w) + (1− λ(w)Q0(b, f |w))) (16)

Where c (w) is overall saliency, a and b represent input images, f represents the fused image, λ(w)

represents a local weight between 0 and 1. The value Q0 represents the similarity of the fused and source
images and takes values between –1 and 1. w represents sliding window of pixels.

The sample results of fusion images getting from the study are given in Figure 4. All resulted images of fusion
process are also given in Appendix. The MR source image (given in Figure 4 (a) as the gray-scaled image) and
PET source image (given in Figure 4 (b) as the colored image) were fused both by only MST and proposed
fusion methods (MST with CNN).

Figure 4. The sample input MR (a) and SPECT (b) images and the resulting images of fusion algorithms: CVT
(c), NSST (d), CVT+High-Pass+CNN (e), NSST+High-Pass+CNN (f), CVT+Low-Pass&High-Pass+CNN (g) and
NSST+Low-Pass&High-Pass+CNN (h).

Experimental results (average of objective evaluations of twenty three MR- PET image fusions) are given in
Table 2. As seen from the results, the fused image obtained by our proposed methods has less color distortion
and richer anatomical structural information. The box-plot graphics of performance metrics are shown in
Figure 5.

The results we obtained by the methods used in the study were compared with the ones in other studies in the
literature. According to the literature, it has been seen that different types of medical images (MR, CT, PET
and PET) are used for image fusion [9, 11, 20, 29, 35, 36]. However, in terms of the reliability of the comparison,
the results were compared to the ones obtained by Yin et al. [29], Wang et al. [35] and Asha et al. [36] and
the comparison results are given in Table 3. The comparisons have been done according to literature studies
on the image fusion methods where only three images of the dataset were used.
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Table 2. Experimental results of CVT, NSST and proposed methods.

Fusion methods MI/Fusion
Factor

QAB/F Entropy Piella
(QW)

STD Running
Time [s]

CVT 1.085207 0.495873 4.195350 0.67998 58.23761 2.23338
NSST 1.192435 0.398118 3.973277 0.926117 57.34500 5.27105
CVT+High-Pass +CNN 1.058632 0.551544 4.078167 0.894842 59.4448 56.17472
NSST+High-Pass+CNN 1.057745 0.566145 3.776068 0.886778 61.71 67.37383
CVT+Low-Pass& High-Pass+CNN 1.297150 0.590004 4.304213 0.920476 73.91037 62.90322
NSST+Low-Pass& High-Pass+CNN 1.2849701 0.605715 4.197245 0.93356 74.22369 64.31998

 

Figure 5. The graphic representation of performance metrics.
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Table 3. Comparison of image fusion results with the literature.

Fusion methods MI/Fusion
Factor

QAB/F Entropy Piella
(QW)

STD

CNN + Contrast Pyramid [35] 1.0925 0.4449 - - -
NSST + Chaotic Grey Wolf Optimization [36] - - 4.8686 0.8097 77.61502
NSST + Parameter-adaptive Pulse-coupled NN [29] - - 4.9461 0.8769 62.4796
CvT + CNNLF + CNNHF (Proposed) 1.306892 0.507295 4.920098 0.893203 82.0025
NSST + CNNLF + CNNHF (Proposed) 1.285977 0.551556 4.829476 0.914767 81.7243

As can be seen from the Table 3, the proposed approach gave better results in terms of Piella and standard
deviation metrics. In terms of entropy metrics, the result achieved by Yin et al. [29] is high, but it is close to
the result of our proposed method. These experimental results show that the methods we propose have yielded
very successful and satisfying results.

5. Conclusion
In this paper, a new image fusion technique based on deep learning is proposed. In the proposed method,
MST decomposes the source images into sub-band images and low and high sub-band coefficients of the source
images are fused based on the weight map obtained by a siamese convolutional neural network. This method
improves the quality of the final fused image. The fused images were evaluated visually and quantitatively by
employing base fusion metrics. The simulation results show that the proposed techniques provide better fusion
performance than the other methods; therefore, they can be utilized for better medical diagnosis.
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Appendix. Result images of fusion process
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Appendix: (a) MR source image; (b) PET source image; (c) Result of CVT fusion; (d) Result of NSST fusion;
(e) Result of CVT+High+CNN fusion; (f) Result of NSST+High+CNN fusion; (g) Result of CVT+Low&
High+CNN fusion; (h) Result of NSST+Low&High+CNN fusion.
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