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Abstract: Paroxysmal atrial fibrillation (PAF) is the initial stage of atrial fibrillation, one of the most common
arrhythmia types. PAF worsens with time and affects the patient’s life quality negatively. In this study, we aimed to
diagnose PAF early, so patients can start taking precautions before this disease gets worse. We used the atrial fibrillation
prediction database, an open data from Physionet and constructed our approach using convolutional neural networks.
Heart rate variability (HRV) features are calculated from time-domain measures, frequency-domain measures using
power spectral density estimations (fast Fourier transform, Lomb-Scargle, and Welch periodogram), time-frequency-
domain measures using wavelet transform, and nonlinear Poincare plot measures. We also normalized these features
using min-max normalization and z-score normalization methods. In addition, we also applied alternatively the heart
rate normalization (HRN), which gave promising results in a few HRV-based research, before calculating these features.
Thus, HRV data, HRN data, and HRV features extracted from six different combinations of these normalizations, in
addition to no normalization cases, were applied to the convolutional neural networks classifier. We tuned the classifiers
using 90% of samples and tested the classifiers’ performances using 10% of data. The proposed approach resulted in
95.92% accuracy, 100% precision, 91.84% recall, and 95.74% fl-score in HRV with z-score feature normalization. When
the heart rate normalization was also applied, the proposed approach reached 100% accuracy, 100% precision, 100% recall,
and 100% f1-score in HRV with z-score feature normalization. The proposed method with heart rate normalization and
z-score normalization methods resulted in better classification performance than similar studies in the literature. In
addition, although deep learning models offer no use of separate feature extraction processes, this study reveals that
using HRV-specific feature extraction techniques may improve the performance of deep learning algorithms in HRV-based
studies. Comparing the existing studies, we concluded that our approach provides a much better tool to diagnose PAF

patients.
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1. Introduction

Atrial fibrillation (AF) is one of the most common heart rhythm disorder diseases that can cause blood clotting,
heart failure, stroke, and even death [1]. AF usually begins in a paroxysmal (self-terminating) form. Paroxysmal
AF (PAF) is a type of AF that lasts within 2 min to 7 days. It gradually worsens and transforms into more

permanent forms [2]. As with all diseases, it is essential to diagnose AF at an early stage (PAF stage) and
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initiate treatment to increase patient comfort and reduce the risk of death [3]. However, PAF is usually not
diagnosed earlier because it is asymptomatic in general [4]. When PAF cases reach the clinically detectable
stage, symptoms that decrease the quality of life emerge suddenly [5]. This study aims to distinguish individuals
with PAF disease from individuals without known heart disease.

Electrocardiography (ECG) is the most commonly used functional test to diagnose and monitor the
treatment progress of several heart diseases [6]. The doctors examine ECG graphs directly, or a computer
program analyzes numerical ECG data. Many studies in the literature present methods to detect heart diseases
using ECG numerical data [7, 8]. Heart rate variability (HRV), an analysis of variations between the peaks of
ECG signals, has become widely used [9].

In HRV studies, there are various features extracted from HRV data. These features include time-domain
statistical calculations, frequency-domain measures from Fourier transform or Lomb—Scargle periodogram, time-
frequency-domain features from Wavelet transform, and nonlinear measurements from Poincare plot [10-12].
Although HRV studies use different data lengths (mostly 5 min) in the literature, Seker et al. [13] concluded that
nonlinear HRV features provide reproducible results after 10,000 heartbeat samples at least. For this reason,
since this study covers nonlinear HRV measurements, 30-min HRV data were used in this study. We extracted all
these commonly used features from the AF prediction database (atrial fibrillation prediction database, AFPDB,
distributed for "The Computers in Cardiology Challenge 2001”) in this study. It is freely available and frequently
used in PAF studies [14].

In addition, Hallstrom et al. [15] suggested fixing the average heartbeat to 75 bpm (or 800 ms) to
minimize individuals’ average heart rates on some HRV features. HRV features, calculated from HRV data after
this heart rate normalization, are called normalized HRV (HRN) features. HRN analysis increased classifier
performances in CHF diagnosis Isler2010, systolic dysfunction diagnosis [16] and PAF diagnosis [17]. Surucu
and colleagues also observed that feature normalization affects the classifier accuracies in PAF diagnosis [17].
Hence, three feature normalization (direct use, min-max normalization, and z-score normalization) methods
were tested on both HRV and HRN features, resulting in six different feature combinations addition to HRV
and HRN data in this study.

A general pattern recognition study reveals various classification methods after the features were cal-
culated. Many studies, based on disease diagnosis using HRV, have employed different well-known classifier
algorithms like k-nearest neighbors (kNN), linear discriminant analysis (LDA), decision tree (DT), fuzzy logic
(FL), multilayer perceptron (MLP), support vector machines (SVM), stochastic gradient descent (SGD), and
radial basis function (RBF), etc. [3, 5, 16, 18]. Similarly, various studies evaluated different classifiers to dis-
criminate PAF patients from normal subjects. For example, Maier and colleagues [19] achieved 80.00% accuracy
using LDA and polynomial LDA. Another study resulted in 82.00% using FL with morphological ECG features
[20]. Boon and colleagues evaluated different periods of 5 [21], 10, 15, and 30 [22] min to diagnose PAF patients.
They achieved 83.90% accuracy using an SVM classifier with 30-min HRV data. They also reached 87.70% ac-
curacy with 5-min HRV data when they practiced genetic algorithms (GAs) as a feature selection. Surucu and
colleagues obtained 81.00% accuracy from min-max normalized HRV features and 86.00% accuracy from z-score
normalized HRN features using kNN [17]. Thong et al. [23] achieved 90.00% accuracy using DT on premature
atrial contraction timings. Ros and colleagues achieved 92.00% accuracy using the kNN classifier [24]. Using
the same classifier, Ozcan and Kuntalp obtained 92.20% accuracy with the help of feature selection based on

a genetic algorithm [25]. Chesnokov et al. reached 95.50% accuracy using MLP classifier [26]. Martinez et
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al. [27] achieved the highest accuracy of 96.05% using SGD classifier on morphological ECG measurements.
Among these studies, Surucu et al. [17] emphasized the importance of both feature normalization and heart
rate normalization in the diagnosis of PAF patients.

Conventional machine learning methods require the use of suitable feature extraction techniques before
classifying the data. Deep learning (DL) is a popular machine learning method to obtain features and classes
together from the raw data [55]. Recently, deep learning algorithms have become very popular, especially in
image classification studies [28, 29]. DL classifiers are more complex than conventional artificial neural network
structures. They seem to have more layers to extract features themselves and classify the inputs as one of two or
more decisions [52-54]. Convolutional neural network (CNN) is the most frequently preferred DL structures in
the literature. CNN shows excellent success in classifying two-dimensional (2D) images and three-dimensional
(3D) video data; recently, it also becomes popular in one-dimensional (1D) time-series data classification [30, 31].
For example, Pourbabaee and colleagues evaluated a deep learning model with the last stage as the kNN, and
they achieved 91.00% accuracy [32] in the diagnosis of PAF patients. Due to its promising superior success in
many classification problems, we decided to evaluate the deep learning algorithm with the convolutional neural
network (CNN) structure to classify PAF patients. On the other hand, although the feature extraction is not
necessary in DL studies, we experimented with both data itself and handy-crafted features for the classification
performances to test whether the use of feature extraction gives another approach in classifying data using CNN

classifiers in HRV-based studies.
In summary, this study investigates the effects of both heart rate normalization and feature normalization

methods in the PAF diagnosis using CNN from 30-min HRV data. For this purpose, eight different input
combinations (two data and six feature sets) were given to the inputs of the CNN-structure deep learning

classifier. Consequently, these classifiers were trained and tested.

2. Materials and methods

We summarized our study in Figure 1 by determining blocks from the HRV-based literature and our previous
studies. The dashed line indicates the alternative heart rate normalization method. The long dashed line
shows the path when HRV (or HRN) data is used with skipping the feature extraction processes. Feature
extraction methods were time-domain parameters, frequency-domain measures (using FFT, Lomb—Scargle, and
Welch), time-frequency-domain measures (using Wavelet transform), and Poincare plot’s measures. Then, one
of the feature normalization methods (no normalization, min-max normalization, and Z-score normalization)
was applied to the extracted HRV (or HRN) features. Finally, a deep learning classifier decides whether the
ECG data belongs to a PAF patient or a normal subject. The following subsections cover brief definitions of
these blocks.

2.1. ECG data

The AFPDB database, which is freely available', comprises two channels of 30-minute ECG data with a
resolution of 16 bits at a sampling frequency of 128 Hz [14]. ECG data are acquired from 50 healthy subjects
(named Group A) and 50 patients with PAF. Twenty-five patients (Group C) faced PAF attacks just after their
ECG recordings, while other patients (Group B) didn’t have PAF attacks following ECG recordings. Two ECG

data, obtained from n27 and p37 subjects, were excluded from the study because these involve many noises. As

! Pyshio.net website https://www.physionet.org/content/afpdb/1.0.0/
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Figure 1. Block diagram of the proposed study.

a result, the 49 ECG records from PAF patients (Group B + Group C) and 49 ECG data from healthy subjects
(Group A) were objected to the PAF diagnosis in this study.
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2.2. Beat detection and generating HRV data

Ventricular depolarization, characterized by QRS peaks in ECG, resulted in blood pumping to the body. It is
easy to detect these peaks due to their higher amplitudes. Therefore, the time differences between these peaks
constitute the heartbeat periods.

First, the ECG signal is passed through a band-pass filter. Then, the signal is subjected to differentiation,
squaring, time averaging, and finally peaks are detected by applying threshold logic [33]. HRV data is the time
differences between these peaks versus their occurring times points. Since the peak detection time points are

not equal, the HRV data becomes irregularly-sampled signal, naturally.

2.3. Removing ectopic beats

Heartbeats that are not originating from the sinoatrial node of the heart are called ectopic beats. The workgroup
has offered to remove these irregular beats before the HRV analysis [34]. Langley and colleagues [35] presented
an easy method to detect these premature beats. In this method, a heartbeat and its following heartbeat shape
an ectopic beat together if the occurring time of the heartbeat is 20% less than the average occurring time.

Simply eliminating these beats from the data is called the ectopic removal process.

2.4. Heart rate normalization

Heart rate normalization, pioneered by Hallstrom and colleagues [15], is a process to remove the mean from
HRV data by

data = 60 X datap ry (1)
HRN = new_bpm  mean(datagpry)
1000 dat

datagry = X CAHRY (2)

new_mean_period  mean(datagry)

where datagpry is HRN data, datamry is HRV data, new_ bpm is the new beat per minutes, new__mean__period
is the mean of new heartbeats, mean(data__HRV is the mean of HRV data given.
We used mean values as 75 beats/min (or 800 ms in period) in this study as offered in the original article

[15] and some similar research [16, 18].

2.5. Resampling and detrending

HRYV data are unevenly sampled and contain non-stationary components. Some feature extraction methods (Fast
Fourier Transform-FFT, Welch, and Wavelet) require the data sampled at equal time intervals [36]. Resampling
(or interpolation) is the solution to cope with this issue. Although there are several interpolation methods in
the literature, Clifford and Tarasenko [37] have offered a robust interpolation method, called Cubic-Spline, to
resample HRV data. The various sampling frequencies (number of sample points in a second) of 1 to 10 Hz
have been used [38]. We preferred 4 Hz, similar to our previous studies, in this study.

All linear feature extraction methods use linear data, naturally. The possible nonlinear components of
the data disturb the results. Slowly changing polynomials or sinusoidal trends are common non-stationarity
origins [39]. In recent years, Tarvainen et al. [40] pioneered the Smoothness Priors method to make the data

non-stationary by the following equation (3).
Ryctrended = (I - (I + )\DgDQ)il)R (3)
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where R is HRV data, Rgeirended 18 the non-stationary HRV data, I is the unity matrix, A is the regularity

parameter, D is the second-order derivative operator, and 7 is the transpose of a matrix. We used A = 1000
as offered in [40].

2.6. Feature extraction

Feature extraction discovers the data to calculate features [41]. We decided to extract 16 time-domain features,
24 frequency-domain features from 4 different transforms, 4 time-frequency wavelet entropy measures, and 4
non-linear features, which equals to 48 features in total. Although these methods are outlined summarily here,

a detailed information can be discovered in [3].

2.6.1. Time-domain features

The time-domain features are calculated from the raw time-series data, in general. These features hold statis-
tical measures like mean, minimum, maximum, standard deviation (SDNN), root means square of successive
differences (RMSSD), standard deviation of successive differences (SDSD), NN50 (the number of successive
differences greater than 50 ms), NN20 (the number of successive differences greater than 20 ms), PNN50 (the
ratio of NN50), PNN20 (the ratio of NN20), etc. as offered in [34].

2.6.2. Frequency-domain features

These features are estimated from the power spectral density (PSD) estimation. There are some methods to
estimate PSD that require some preprocessing steps. Among them, the Lomb-Scargle algorithm doesn’t require
resampling and detrending sub-steps, but it is a computationally expensive method by comparing to other
methods [42, 43]. On the other hand, the Fast Fourier Transform (FFT) and Welch Periodogram algorithms
require both resampling and detrending steps since these methods can work on evenly sampled stationary data
only [37, 44].

The spectrum of the HRV analysis bases consists of components from four frequency bands: ultra-low-
frequency (ULF), very-low-frequency (VLF), low-frequency (LF), and high-frequency (HF) bands [34]. Total
power, powers of each frequency band, and the ratio of LF band to HF band powers are frequency-domain
features (Table 1) [3, 34]. These features can be calculated from FFT-based periodogram, Welch periodogram,
and Lomb-Scargle periodogram like similar studies [3, 5, 18]. There are several excellent signal processing

textbooks, which describe these periodogram methods in detail.

Table 1. Commonly used frequency-domain heart rate variability measures.

Features | Description Frequency Range
Pyrr Spectral power in the ultra-low frequency (ULF) band | 0.000 — 0.003 Hz
Pyrr Spectral power in the very-low frequency (VLF) band | 0.003 — 0.040 Hz

Prr Spectral power in the low frequency (LF) band 0.040 — 0.150 Hz
Pyrp Spectral power in the high frequency (HF) band 0.150 — 0.400 Hz
Protal Total spectral power 0.000 - 0.400 Hz
1L Spectral power ratio of Prp to Pyp 0.040 — 0.400 Hz
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2.6.3. Nonlinear features

Since heartbeats show nonlinear nature and the Poincare plot (Figure 2) reflects this nature, the Poincare plot
becomes popular in HRV studies [45, 46]. There are two commonly used measures [47] derived from the fitted

ellipse [48] on this plot:

SD;

%(SDSD)Q (4)

SD, = \/Q(SDNN)Q—;(SDSD)Q (5)

where SDSD and SDNN are standard time-domain features. In addition, there are two measures [3], derived

from SD; and SDs, also calculated as

SD15D2 = SDl XSDQ (6)
SD,
ATI =
RATIO D (7)

2.6.4. Time-frequency-domain features

The wavelet transform can examine signals in both the time and frequency domains. It also eliminates
polynomial non-stationarity [49]. Various features extracted from Wavelet transform have been used in HRV
studies [3, 5].

Although choosing an appropriate mother wavelet is an important issue [50, 51], many HRV-related
studies preferred Daubechies-4 as mother wavelet [5, 16, 18]. This study applied Daubechies-4 with the level of
7 to the resampled data as reported enough to group wavelet packets into specific HRV frequency bands [3].

The energy of each coeeficinet was calculated using the following equation:

E;=C? (8)

where C is the wavelet coefficients. Total energy of an HRV band, E, was calculated separately:

Ef=> Ej (9)

Jef

where, f represents the the HRV frequency band [3]. The wavelet entopy features (ENTy) was calculated as
follows:
ENTy == (p;loga(p;)) (10)
JjEf
where the probability of energies of all frequency ( f) values in the frequency band of interest is calculated as
p; [3, 49] and p; is the value obtained by dividing the energy of the frequency of interest by the total band

energy (%) The entropy features were calculated for the standard frequency bands (Table 2).
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Figure 2. An example of Poincare plot. The red arrow shows SD1 feature, and the green arrow shows SD2 feature from
the fitted ellipse.

Table 2. Time-frequency-domain heart rate variability measures.

Features | Description

ENTyrr | Wavelet entropy of the ultra-low frequency (ULF) band
ENTyr | Wavelet entropy of the very-low frequency (VLF) band
ENTrp Wavelet entropy of the low frequency (LF) band
ENTyr | Wavelet entropy of the high frequency (HF) band

2.7. Feature normalization

Since ranges of features are very different, bigger-value features affect the classifier performances more than
small-value features [41]. To eliminate this negative effect becomes very important in many pattern recognition

applications [17]. There are two commonly used feature normalization methods: min—max normalization (11)

and Z-score normalization (12). The min-max normalized (f/™"~™**) and z-score (f;™*“"°) normalized
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samples can be calculated using

min—maxr  __ fl - mll’l(f)
5 ~ max(f) — min(f) (11)
z—score  __ fl — Mf
e = Lo (12)

where f; is the i-th sample, min(f) is the minimum value, max(f) is the maximum value, ps is the average
value, and oy is the standard deviation of the feature f.
This study iterates HRV and HRN features using no normalization, min-max normalization, and z-score

normalization and reports corresponding classifier performances to examine the effect of feature normalization
methods.

2.8. Classifier: convolutional neural networks

Among deep learning algorithms, convolutional neural networks (CNNs) include at least one grid-like convolution
layer. A general CNN classifier has an input layer, one or more convolution blocks, a dropout block, a pooling
block, one (or more) fully connected classifier block(s), a dense layer, and an output layer. The Input layer
accepts 1D data from the real world, and the output layer reflects the decision given by the classifier. Other
blocks process some mathematical operations. For example, Conv1D layers compute convolutions with different
sizes, behaving filters to extract hidden information from the data. The Dropout layer prevents overfitting by
randomly disconnecting some connections from input to output, named regularization [56]. The pooling layer
reduces the number of parameters by calculating averages of small-size input boxes. The fully connected layer
works as a hidden layer of a conventional multi-layer perceptron (MLP), in general. In some applications, other
classification algorithms like k-nearest neighbors can be preferred instead of MLP [32]. The dense layer applies
activation functions (ReLU, tanh, or sigmoid) to calculate raw output values. Figure 3 visualizes the flowchart
of the proposed CNN classifier for this study. Class I is the decision of normal subject (or negative), and Class
IT is the decision of PAF patient (or positive) in this study.

Patient Features

feat 1
feat 2

Class I
feat n /

feat 1
feat 2

feat n

(5]

Input Layer
Cort 1D
v
Conv 1D
v
Conv 1D
v
Dropout
v
Pooling
v
Fully Connected
v
Dense
v
Output Layer

feat 1
feat 2

feat n

Figure 3. Block diagram of the proposed convolutional neaural network classifier.

The Adam algorithm is used to optimize parameters in the training of the proposed CNN model. It has
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found common use in DL studies since it is computationally efficient and requires a small memory size [57]. We
used this algorithm with its default parameters as given in the Keras library of Python. Also, we preferred the

ReLU (rectified linear unit) activation function, which has been the most commonly used one in DL models:

0, ifx<0

13
z, ifx>0 (13)

ReLU(z) = {

All layers between the input and output layers should be determined by trial-and-error or by experience
[58] since the performance of a CNN network is strictly dependent on its hyper-parameters [59]. We proposed

this model by tuning hyper-parameters in 1000 iterations.

2.9. Evaluating classifier performances

In pattern recognition applications, the performance of a classifier is calculated by its responses against unseen
inputs before [41]. All samples were divided into two parts by 90% for training and 10% for testing the classifier
in this study. The performance of the classifier is calculated using test samples, while hyperparameters of the
classifier is adjusted using the training data.

The confusion matrix is calculated for evaluating classifier performances. It is generated by comparing
the responses of the classification algorithm to the test set with the actual values in the data set. In the case
of two-class problems, it is a table consisting of four different situations (Table 3). True positive (TP) is the
number of patients classified correctly, and true negative (TN) is the number of healthy subjects classified
correctly. On the other hand, false negative (FN) is the number of patients misclassified as healthy ones, and

false positive (FP) is the number of healthy subjects misclassified as patients [41]:

Table 3. 2-by-2 confusion matrix for normal subjects versus PAF patients.

Classifier output
Normal subject | PAF patient
Normal subject | TN FP
PAF patient FN TP

Actual case

Four commonly used performance measures (Accuracy, Recall, Precision, and F1-Score) were used to

evaluate classifiers in this study [41, 60]:

TP+TN

A = 14
ceuracy TP+ FP+FN TN (14)

TP
Recall = m (15)

. TP
Precision = TP+ FP (16)
Fl— Score — Precision x Recall (17)

Precision + Recall
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3. Results and discussion

This study investigated the effects of both heart rate normalization and feature normalization methods in the
PAF diagnosis using CNN from 30-min HRV data. Eight different input combinations were given to the inputs
of the CNN-structure deep learning classifier. Consequently, these classifiers were trained and tested using
programming language of Python 3.8.

The first part of our study repeated the classifiers using the HRV data and the HRV features for no
normalization, min-max normalization, and z-score normalization cases. The achieved classifier accuracies are
89.38%, 82.65%, 95.92%, and 95.92% (Table 4), respectively. Since both the min-max and z-score normalizations
give higher accuracies, the CNN classifier using one of these two normalization methods seems enough in the
PAF diagnosis based on HRV data.

Table 4. Classifier performances achieved in this study. The bold-indicated row emphasizes the highest classifier
accuracy among them. HRV is heart rate variability and HRN is the heart rate normalized HRV where the 'data’ stands
the raw data and the ’features’ shows the extracted features from the raw data.

Inputs Feature Normalization | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%)
HRV data - 89.38 89.70 89.38 89.54
HRV features - 82.65 86.36 77.55 81.72
HRYV features Min-—max 95.92 97.87 93.88 95.83
HRV features Z-Score 95.92 100.0 91.84 95.74
HRN data - 55.44 53.50 94.76 68.39
HRN features - 78.57 75.00 85.71 80.00
HRN features Min-Max 98.98 100.0 97.96 98.97
HRN features | Z-Score 100.0 100.0 100.0 100.0

The second part of our study repeated the classifiers using the HRN data and the HRN features for
the same normalization cases. The achieved classifier accuracies become 55.44%, 78.57%, 98.98%, and 100.0%
(Table 4), respectively. Although the min—max normalization gives satisfactorily noticeable accuracy again, the
z-score normalization method results in excellent accuracy. As a result, the CNN classifier using both the heart
rate normalization and z-score feature normalization methods together is enough to diagnose PAF patients from
30-min HRN data.

Table 5 summarizes PAF diagnosis studies using 30-min HRV data given in the literature. The achieved
classifier accuracies varied from 80.00% to 95.96% in the table. Our proposed method, using CNN classifier
with heart rate normalized and z-score normalized heart rate variability features, gives the highest classifier
accuracy of 100%. By comparing the accuracy of the proposed classifier to other studies, our method has
superior accuracy among them, to the best of our knowledge.

Consequently, our proposed method to diagnose PAF patients is to use CNN classifier with conventional
HRV features derived from heart rate normalized HRV data. To our knowledge, this method resulted in better
classification performance than similar studies in the literature. We may pretend that our approach provides a
better tool to discriminate PAF patients from normal individuals.

In addition to the classifier performance, the other important outcome of this study is to use hand-crafted
features in a CNN study. Since feature extraction is an embedded part of deep learning models, the researchers
used raw data instead of extracted features as usual. In this study, we compared the CNN performances using
raw HRV data with those using HRV features. In our opinion, it may indicate that the feature extraction part
of deep learning models does not fit the HRV data well.
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Table 5. PAF diagnosis studies using 30-min heart rate variability measures in the literature. The bold-indicated row
emphasizes the highest classifier accuracy.

Study Features Classifier Description Accuracy (%)
[19] HRV LDA, polynomial LDA | - 80.00
[17] HRV kNN Min-max 81.00
[20] Morphological ECG FL - 82.00
[22] HRV SVM Genetic algorithms | 83.90
[17] HRN kNN Z-Score 86.00
[23] Premature atrial contractions | DT - 90.00
[32] ECG CNN with kNN - 91.00
[24] Morphological ECG kNN - 92.00
[25] HRV kNN Genetic algorithms | 92.20
[26] HRV MLP - 95.50
This study HRV CNN Z-Score 95.92
[27] Morphological ECG SGD - 96.05
This study | HRN CNN Z-Score 100.0

On the other hand, CNN works well with big data. The database used in this study consists of ECG

data obtained from only 49 patients with PAF and 49 healthy subjects, which is a weakness of this study. The

findings obtained in our study, which is preliminary research in character, need to be supported by another

study that will use a much larger data set.
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