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Abstract: Skin cancer is one of the most common cancers worldwide caused by excessive development of skin cells.
Considering the rapid growth of the use of deep learning algorithms for skin cancer detection, selecting the optimal
algorithm has become crucial to determining the efficiency of computer-aided diagnosis (CAD) systems developed for the
healthcare sector. However, a sufficient number of criteria and parameters must be considered when selecting an ideal deep
learning algorithm. A generally accepted method for benchmarking deep learning models for skin cancer classification is
unavailable in the current literature. This paper presents a multi-criteria decision-making framework for evaluating and
benchmarking deep learning models for skin cancer detection based on hybridisation of entropy and VIseKriterijumska
Optimizacija I Kompromisno Resenje (VIKOR) methods. Twelve well-known convolution networks are evaluated and
tested on eleven publicly available image datasets to achieve the target of the study. Several criteria related to deep
convolutional neural networks (CNNs) architectures, including optimisation technique, transfer learning, class balancing,
transfer learning, data augmentation, and network complexity, have been considered in the multi-criteria evaluation. The
decision matrix (DM) is designed based on a crossover of the five evaluation criteria and twelve (CNNs) classification
models on different datasets. Subsequently, in the benchmarking and ranking of deep learning classification models,
multi-criteria decision making (MCDM) techniques are used. The MCDM uses a scheme that involves the integration of
entropy with VIKOR approaches. For the weight calculations of evaluation criteria, entropy is applied, while VIKOR
is used to benchmark and rank the models. The obtained results reveal that the InceptionResNetV2 model gained the
first rank and is selected as the optimal architecture for skin cancer detection considering the five criteria investigated
in our study. The presented framework achieves a significant performance in selecting the best algorithm, which could
provide substantial guidance to the researcher working in the field.

Key words: Skin cancer, deep convolutional neural networks, benchmarking

1. Introduction
Cancer is an irregular and uncontrolled growth of dividing cell that damages various body cells and leads to
the second major cause of death in the world [1]. In 2040, 466,914 new cases of skin cancer (54.27% males and
45.73% females) are expected to be diagnosed, according to the World Health Organisation, and 105904 (58.14
% males and 41.86% females) are predicted to die. The five-year survival rate of malignant melanoma tumour,
the deadliest type of skin cancer, is as high as 99.0%, but delayed diagnosis dramatically contributes to a 23.0%
drop in survival rate. Reliable early detection, however, is vital as the five-year survival rate would increase by
∗Correspondence: baidaa.q@gmail.com
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approximately 90.0% 1. In general, dermatologists investigate images by naked-eye visual inspection, involving
a high degree of skill and concentration. Dermatologists’ manual review is also very tedious, time-consuming,
subjective, and error-prone. In the US, South Australia, and Europe, the ratio of dermatologists per 1.0 million
population is 34.0, 26.0, and 59.34, respectively, which are very few compared to the needed numbers 23 [2].
However, automated computer-aided diagnosis (CAD) systems have become widespread among dermatologists
to overcome the limitations mentioned above, reduce dermatologists’ workload, and enable rapid diagnostic
rates. Deep learning (DL) has recently gained considerable popularity as one of the artificial intelligence
techniques that achieved a crucial role in developing accurate and precise CAD systems due to its reliability and
rapid progress. In deep learning field, convolutional neural network (CNN) is among the most popular algorithm
used for medical image analysis [3]. By developing various CNN architectures, choosing the architecture that
yields a reliable and error-free solution is challenging. There is no single deep learning classification algorithm
that is superior for skin cancer diagnosis. Selecting the best DL model has posed a significant demand for
decision-makers, who develop CAD systems for medical centres, in identifying and evaluating various DL
classifiers for skin cancer diagnosis. When several DL classifiers and multiple criteria are present, the task
becomes more complicated. Thus, benchmarking the deep learning models under various criteria is crucial.

In the literature [4], extensive efforts conducted by researchers have shown an expert-level performance
of CNN in the identification of skin cancer, particularly in malignant melanoma detection [5–11]. However, a
deep convolutional neural network’s performance is widely dependent on the quality of the data used to train
it, the architecture of the network, and many other criteria. Accordingly, this study is designed to evaluate
and benchmark the performance of the deep convolutional neural networks trained using images collected from
multiple datasets and captured under different conditions for skin cancer detection. In this context, our study
exploits decision-making methods to systematically prioritise the deep convolutional neural network models by
considering multiple criteria. This could provide an assistance tool and inspire the researchers to choose the
most appropriate network architecture targeting to developing robust CAD systems.

Multi-criteria decision-making methods (MCDM) are among the most critical human activities in indus-
try, manufacturing, product selection, etc., as it is prevalent for the various attributes (criteria) to play an
important role in selecting the best alternatives among the existing ones. Optimisation of multi-criteria is the
way of assessing the best feasible solution according to the set of predefined criteria. Practical problems are
also defined by many competing and conflicting criteria, and all criteria can not be satisfied simultaneously by
a single solution. Thus, the solution is a compromise solution according to the desires of the decision-maker.
For a problem with conflicting criteria, the compromise solution was developed by Zeleny [12], which can help
decision-makers find a final solution. The compromise solution is a viable solution that is the nearest to the
ideal. Based on multi-criteria perspectives, the benchmarking for the selection of the best deep learning algo-
rithms for automated skin cancer diagnosis considering multiple criteria and datasets is a challenging task due
to (i) multiple assessment criteria, (ii) significance of criteria, (iii) variation of datasets, (iv) conflict among
criteria, and (v) trade-off among criteria.

In light of the above, this study attempts to contribute to the literature by proposing a hybrid entropy and

1WHO (2021). Skin Cancer Prevention and Information Sites [online]. Website https://www.who.int/uv/resources/link/
cancerlinks/en/ [accessed 15 January 2021].

2D Schmid (2017). Number of Dermatologists in Selected European Countries in 2015 [online]. Website https://www.statista.
com/statistics/873707/number-from-dermatologists-in-europe/ [accessed 01 February 2021].

3Department of Health (Commonwealth of Australia) (2016). Dermatology, 2016 Fact Sheet [online]. Website https://hwd.
health.gov.au/webapi/customer/documents/factsheets/2016/Dermatology.pdf [accessed 01 February 2021].
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VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje) methodology for the prioritisation of twelve
deep learning models used for skin cancer diagnosis. The entropy approach objectively indicates the importance
of five criteria by assigning a certain weight for each criterion. Further, the multiple criteria optimisation
compromise solution (VIKOR) method [13] is employed to rank deep learning models. The key contributions
and novelty of this work can be described as follows:

• This is the first attempt to develop benchmarking approach for deep learning algorithms used for skin
cancer detection. This has been achieved using decision-making methods.

• This study compares and assesses the performance of twelve models trained on eleven datasets. This
extensive study would help to evaluate and assess the suitability of a particular CNN model considering
predefined criteria.

• Our study takes into consideration the most important criteria that have a substantial effect on the
performance of the deep learning models. Those criteria were checked and verified by using dermoscopic
and non-dermoscopic image data.

• Our framework integrates Shannon’s entropy with the MCDM approach (VIKOR) for ranking the models
and selecting the optimal deep learning model for skin cancer detection. The leveraging of the MCDM
methods with DL models could help rank the CNN architectures according to their suitability, based on
the trade-off among the conflicts criteria, and subsequently, selecting the optimal network architecture for
a specific task.

2. Materials and methods
The block diagram of the proposed integrated decision-making framework is illustrated in Figure. All the
networks named in the yellow box (including different versions of the CNN architectures) have been trained
on eleven datasets. The CNNs’ performance was evaluated and compared in terms of five criteria: SGD,
weight balance, transfer learning, data augmentation, and execution time. In the first phase of the framework
described in Figure, the deep convolutional neural networks and the datasets are established and implemented.
In the second phase, the networks are trained, and the key criteria are identified and measured. In the third
phase, MCDM methods are employed to prioritise the alternatives (i.e., deep learning models). In the following
sub-sections, a thorough elaboration of each module of the proposed decision model is given.

2.1. Materials
Eleven public datasets are used to train and validate deep learning models. The description of datasets
is presented below in the format: the name of the dataset (number of images, class distribution [benign:
malignant]).

• MSK dermoscopic images [14]: MSK1 (1088, [787: 301]), MSK2 (1522, [1168: 354]), MSK3 (225, [206:
19]), and MSK4 (943, [727: 216]).

• UDA dermoscopic images [15]: UDA1 (557, [398: 159]) and UDA2 (60, [23: 37]).

• ISBI dermoscopic images [14, 15]: ISBI1 (1273, [1023: 250]) and ISBI2 (2745, [2223: 522]).

• HAM10000 dermoscopic images [16]: HAM10000 (7818, [6705: 1113]).
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Figure. Block diagram of the proposed decision model of the study.

• PH2 dermoscopic images [17]: PH2 (200, [160: 40]).

• MED-NODE non-dermoscopic images [18]: MED-NODE (170, [100: 70]).

All the datasets comprise images labelled as a benign or malignant tumour, thus dealing with the problem as
a binary classification task. The images (16,601 in total) were resized into 224× 224× 3 before training phase.
To conduct this study, each dataset was split to 80% for training and 20% for testing.

2.2. Methods
This section provides a description of the CNN architectures and criteria considered in the study and MCDM
methods exploited for decision making as follows:

2.2.1. Deep convolutional neural network models (CNNs)

Convolutional neural networks (CNNs) are a form of deep neural networks that primarily uses convolution fil-
ters to produce feature maps targeting to accomplish a certain task such as detection, classification or segmenta-
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tion. With graphical user interface (GPUs’) advancement, there have been numerous convolutional architectures
since Yann LeCun’s LeNet-5 [19], and more recently, with the first deep neural network implemented in the most
successful object recognition competition (ImageNet large scale visual recognition competition (ILSVRC)); the
AlexNet network [20]. Every year, new architectures emerge, outperforming the previous one and improving
performance. In our study, twelve CNN architectures are targeted including VGG16,19 [21], InceptionV3 [22],
InceptionV4 and InceptionResNetV2 [23], ResNet50 [24], DenseNet121,169,201 [25], Xception [26], MobileNet
[27], and NASNetMobile [28].

2.2.2. CNNs criteria
Several criteria are considered in the benchmarking process in our study. Each criterion has a specific priority
and is used for a particular purpose to achieve a specific goal. The presence of a trade-off among the evaluation
criteria in various DL models results from the variation in the significance of each criterion.  In the evaluation
process, it is possible to achieve a reasonable balance between a criterion’s low importance priority and another
criterion’s high importance priority. In the current work, we investigate five parameters that highly affect in the
performance of the CNN models, which are the optimisation algorithm [29], cost-sensitive class weighting [30],
transfer learning scheme [31], data augmentation strategy [32], and network complexity-computational time
[33].

2.2.3. Multi-criteria decision making (MCDM)

In this section, a description of MDCM methods used in the decision-making process is presented as follows.
Entropy: When calculating the weights of parameters, the entropy weighting approach considers uncertainty. A
sharp distribution is, thus, less unpredictable than a large distribution. This method mathematically interprets
the relative intensities of the criterion significance based on data discrimination to analyse relative weights [34].
The constructed decision matrix of MDCM DM is defined by m alternatives (twelve deep learning models)
and n criteria (five criteria) intercrossing the ith alternative to the jth criteria as follows:

DM = [xij ]m×n (1)

From the decision matrix DM , the following steps are followed to measure the weights using entropy weighting
methods:
Step1: Normalising the decision matrix using the following equation:

pij =
xij∑m
i=1 xij

, (1 ≤ i ≤ m, 1 ≤ j ≤ n) (2)

Step2: Measuring the entropy value for each criterion as follows:

ej = −k

n∑
i=1

pij ln pij , (k = 1/ lnm, 1 ≤ j ≤ n)

.

(3)

Step3: Determining the inherent contrast intensity of each criterion as follows:

di = 1− ej , (1 ≤ j ≤ n) (4)
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Step4: The entropy weights of criteria are then defined as follows:

wj = dj/

n∑
j=1

dj , (1 ≤ j ≤ n) (5)

VIKOR: The VIKOR method was introduced to optimise complex systems using multiple parameters. It
generates a compromise ranking list and a compromise solution using the provided weights. In the presence
of conflicting parameters, this approach focuses on rating and choosing from a collection of alternatives. It
establishes a multi-criteria rating index based on a specific measure of ”closeness” to the ”ideal” solution [13].
Thus, the following procedure is followed to establish the compromise ranking algorithm of the VIKOR method:
Step1: Determining the best value as xj

∗ and the worst value as xj
− of the criteria as j = 1, 2, ..., n . This

also leads to configure the criteria as beneficial and non-beneficial values. The beneficial attributes require to
be maximised while the non-beneficial need to be minimised, which are identified as follows:
Rule1: Best value for beneficial criteria is xj

∗ = maxxij , and for non-beneficial is xj
∗ = minxij ,

Rule2: Worst value for beneficial criteria is xj
− = minxij , and for non-beneficial is xj

− = maxxij .
Step2: Determining the values of Si and Ri , where i = 1, 2, ...,m using the following equations:

Si =

n∑
j=1

wj

(
x∗
j − xij

)
/
(
x∗
j − x−

j

)
,

Ri = max
j

wj

(
x∗
j − xij

)
/
(
x∗
j − x−

j

)
,

(6)

where wj are the weights of criteria computed using entropy method.
Step3: Determining the values of S∗ and R∗ as follows:

S∗ = min
i

Si, R
∗ = min

i
Ri,

S− = max
i

Si, R
− = max

i
Ri

(7)

Step4: Determining the values of Qi ; where i = 1, 2, ,m and v is defined as weight of the scheme of “the
majority of criteria” using the following equation:

Qi = v (Si − S∗) /
(
S− − S∗)+ (1− v) (Ri −R∗) /

(
R− −R∗) (8)

Step5: Ranking the alternatives by sorting the values of Qi in ascending order.
Step6: Proposing alternative M

′ as a compromise solution, which is ranked best by the measure Q (Minimum)
if the following conditions are fulfilled:
Condition1: ”Acceptable advantage”, Q(M

′′
) − Q(M

′
) ≥ DQ , where M

′′ is the alternative assigned the
second position in the ranking list Q , DQ = 1/ (m− 1) and m is the number of alternatives.
Condition2: ”Acceptable stability in decision making”, this condition requires that the best alternative M

′

must also be the best ranked by S or/and R ranking lists. If one of these two conditions is not fulfilled, a
number of compromise solutions are suggested.
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3. Results and discussion
This section summarises the experiments performed to determine the efficacy of CNN models in skin cancer
diagnosis. We conducted the experiments by harnessing twelve CNN architectures on eleven datasets (described
in the previous section). The models used for training and evaluation are two versions of VGG (16 and 19), two
version of inception (3 and 4), InceptionResNet2, ResNet50, three versions of DenseNet (121, 169, and 201),
Xception, MobileNet, and NASNetMobile. This selection was made with the aim of evaluating a diverse set of
CNN models with various architectures, depths, and complexities [11]. Xavier method [35] is used to initiate
the weights of the CNNs’ architecture. The networks are learned for 150 epochs with a mini-batch size of 8.

To study the impact of the variety of parameters and settings on deep learning models’ performance,
this work considers five different criteria. Firstly, all these deep learning models (CNNs) are trained using a
learning rate of 0.01, and a binary-cross entropy loss function minimises the error with SGD as an optimisation
algorithm. Secondly, to mitigate the effect of the data imbalance issue, as the majority of samples are benign,
wights of classes are balanced by assigning a higher penalty for minatory classes in the cost function. Third,
to explore the effect of the transfer of feature representation, pre-trained models trained on ImageNet [20] are
utilised for further training and fine-tuning the weights using skin cancer data. Fourth, to increase the size
of data artificially, aiming to tackle the data imbalance and subsequently increase generalisation performance,
data augmentation is applied. The data is augmented by flipping (vertically and horizontally) each minor class
in the training data until the number of minority class images (malignant) is equal to the major one. Finally,
the time required for each model’s training is reported (in hours) and considered the fifth criterion.

The performance of each model considering each criterion is determined. The performance evaluation
metric used in our study is the Matthews correlation coefficient (MCC) [36], which has a prediction value ranged
between -1 and 1. The stronger correlation between the original classes and predicated one, the closer of MCC
to 1. The value of 0 in the MCC metric refers to the absence of correlation between the ground truth label and
the predicated one. The following formula defines the formula of MCC:

MCC =
(tp × tn − fp × fn)√

(tp + fp) (tp + fn) (tn + fp) (tn + fn)
(9)

where tp, tn, fp, fn refer to true positive, true negative, false positive, and false negative, respectively. Table 1
(except for the last column) illustrates the evaluation performance of the twelve models trained over eleven data
sets considering the five criteria. The attained results of DL models reveal that, with the availability of large
datasets and ground truth annotations, deep learning models show very successful performance in skin cancer
diagnosis. From the experimental results, transfer learning application was beneficial to improve the cancer
identification level in all CNN models (compared to the baseline results described in the first column (OPT.SGD).
It is also revealed that data augmentation application could slightly improve the prediction results on both
dermoscopic and non-dermoscopic images. Unlikely, weight balancing did not seem to substantially increase the
performance of DL models in our conducted experiments. Furthermore, the benefits of using residual connections
or combining this form of connection with inception modules were also highlighted using InceptionResnetV2
and DenseNet, demonstrating the advantages of using either residual links or the fusion of this configuration
with Inception modules. In terms of execution time (training time), MobileNet achieved the fastest training time
of 20 min, whereas InceptionResNetV2 has the slowest training time due to the complexity of its architecture.
The presented CNN models were found to be appropriate for skin cancer diagnosis. However, explaining
the predictions made by the models remains an essential task for the proper design and adoption of CNNs
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in real-life environments. This role is critical for determining the reliability of the predictions made by DL
models and, as a result, for a successful interaction between biomedical experts and deep learning systems.
To ease selecting the suitable CNN model that could be deployed in a CAD system considering a given set
of criteria, the establishment of a link between the skin cancer diagnosis models and support decision-making
methods becomes crucial. To accomplish this goal in our study, the criteria described in Table 1 are harnessed
to construct the decision-making matrix typically used in the decision-making systems.

Table 1. The decision matrix along with VIKOR ranking.

Models Dataset/
Cr.

OPT.SGD WB TL DAU NC.RT VIKOR-
Rank

DenseNet121

HAM10000 0.553 0.559 0.75 0.558 3.88 7
ISBI2016 0.342 0.314 0.441 0.318 1.13 62
ISBI2017 0.179 0.235 0.442 0.284 1.75 89
MED-NODE 0.506 0.496 0.678 0.485 0.68 28
MSK-1 0.575 0.559 0.658 0.587 1.06 20
MSK-2 0.314 0.282 0.45 0.306 1.24 73
MSK-3 0.093 0.088 0.225 0.153 0.7 116
MSK-4 0.406 0.318 0.568 0.3 0.99 66
PH2 0.778 0.779 0.872 0.675 0.69 12
UDA-1 0.386 0.432 0.549 0.378 0.84 43
UDA-2 0.465 0.46 0.332 0.428 0.66 61

DenseNet169

HAM10000 0.547 0.554 0.757 0.552 5.14 4
ISBI2016 0.321 0.294 0.437 0.301 1.56 60
ISBI2017 0.224 0.242 0.439 0.322 2.37 65
MED-NODE 0.504 0.462 0.691 0.503 0.95 30
MSK-1 0.56 0.544 0.653 0.591 1.46 17
MSK-2 0.323 0.303 0.429 0.295 1.69 56
MSK-3 0.114 0.162 0.328 0.168 1 110
MSK-4 0.391 0.329 0.557 0.254 1.36 75
PH2 0.766 0.773 0.909 0.741 0.97 5
UDA-1 0.4 0.351 0.513 0.38 1.17 45
UDA-2 0.455 0.408 0.397 0.464 0.91 37

DenseNet201

HAM10000 0.628 0.568 0.756 0.57 6.5 2
ISBI2016 0.367 0.316 0.444 0.278 1.93 54
ISBI2017 0.217 0.27 0.448 0.303 2.97 51
MED-NODE 0.508 0.464 0.701 0.514 1.16 27
MSK-1 0.555 0.545 0.665 0.594 1.81 15
MSK-2 0.325 0.276 0.436 0.315 2.11 49
MSK-3 0.165 0.129 0.315 0.163 1.21 109
MSK-4 0.393 0.311 0.577 0.282 1.67 55
PH2 0.771 0.819 0.861 0.679 1.18 10
UDA-1 0.394 0.406 0.514 0.395 1.44 33
UDA-2 0.596 0.345 0.465 0.385 1.11 44
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Table 1. (Continued).
Models Dataset/

Cr.
OPT.SGD WB TL DAU NC.RT VIKOR-

Rank

InceptionResNetV2

HAM10000 0.55 0.564 0.674 0.536 7.83 1
ISBI2016 0.389 0.329 0.441 0.322 2.06 39
ISBI2017 0.284 0.281 0.412 0.236 3.36 41
MED-NODE 0.505 0.561 0.6 0.562 1.09 23
MSK-1 0.592 0.595 0.701 0.55 1.9 14
MSK-2 0.327 0.323 0.458 0.261 2.29 50
MSK-3 0.095 0.162 0.084 0.322 1.14 113
MSK-4 0.398 0.36 0.536 0.366 1.77 34
PH2 0.762 0.794 0.716 0.789 1.12 6
UDA-1 0.419 0.437 0.501 0.524 1.49 31
UDA-2 0.438 0.385 0.325 0.484 1.01 57

InceptionV3

HAM10000 0.591 0.588 0.686 0.55 3.87 8
ISBI2016 0.307 0.288 0.427 0.316 0.97 77
ISBI2017 0.225 0.255 0.457 0.242 1.63 83
MED-NODE 0.567 0.54 0.68 0.614 0.48 29
MSK-1 0.574 0.607 0.668 0.582 0.9 19
MSK-2 0.282 0.265 0.45 0.262 1.08 81
MSK-3 0.08 0.167 0.125 0.218 0.51 118
MSK-4 0.365 0.331 0.516 0.323 0.82 64
PH2 0.647 0.771 0.738 0.703 0.5 24
UDA-1 0.336 0.368 0.509 0.386 0.65 63
UDA-2 0.54 0.537 0.406 0.477 0.44 40

InceptionV4

HAM10000 0.462 0.476 0.724 0.438 5.46 9
ISBI2016 0.155 0.209 0.492 0.26 1.27 102
ISBI2017 0.089 0.092 0.444 0.2 2.22 105
MED-NODE 0.494 0.532 0.62 0.417 0.57 35
MSK-1 0.368 0.3 0.695 0.557 1.16 52
MSK-2 0.197 0.202 0.429 0.19 1.43 96
MSK-3 0.044 0.069 0.383 0.273 0.61 119
MSK-4 0.27 0.27 0.513 0.288 1.05 80
PH2 0.58 0.661 0.781 0.72 0.58 18
UDA-1 0.281 0.318 0.527 0.347 0.81 78
UDA-2 0.514 0.322 0.404 0.444 0.5 70
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Table 1. (Continued).
Models Dataset/

Cr.
OPT.SGD WB TL DAU NC.RT VIKOR-

Rank

MobileNet

HAM10000 0.463 0.47 0.725 0.481 1.68 25
ISBI2016 0.309 0.302 0.481 0.298 0.4 84
ISBI2017 0.095 0.216 0.439 0.21 0.68 114
MED-NODE 0.533 0.575 0.671 0.639 0.18 95
MSK-1 0.494 0.524 0.654 0.523 0.36 46
MSK-2 0.263 0.281 0.478 0.262 0.45 90
MSK-3 0.124 0.121 0.272 0.256 0.2 115
MSK-4 0.269 0.252 0.525 0.204 0.33 104
PH2 0.7 0.78 0.834 0.78 0.19 82
UDA-1 0.36 0.395 0.507 0.38 0.26 87
UDA-2 0.375 0.432 0.471 0.355 0.16 108

NASNetMobile

HAM10000 0.578 0.584 0.709 0.568 6.03 3
ISBI2016 0.254 0.29 0.402 0.286 1.94 67
ISBI2017 0.23 0.229 0.41 0.261 2.85 53
MED-NODE 0.466 0.514 0.707 0.501 1.24 26
MSK-1 0.533 0.55 0.628 0.564 1.82 16
MSK-2 0.269 0.235 0.385 0.271 2.09 72
MSK-3 0.119 0.09 0.201 0.238 1.28 111
MSK-4 0.302 0.288 0.455 0.247 1.72 74
PH2 0.64 0.727 0.618 0.63 1.25 13
UDA-1 0.351 0.295 0.515 0.313 1.47 59
UDA-2 0.427 0.317 0.322 0.49 1.17 58

ResNet50

HAM10000 0.41 0 0.315 0.41 3.29 101
ISBI2016 0.303 0.231 0.35 0.303 0.79 93
ISBI2017 0 0.177 0.255 0 1.35 120
MED-NODE 0 0 0.472 0 0.37 130
MSK-1 0.366 0.427 0.539 0.366 0.72 48
MSK-2 0.258 0.197 0.375 0.258 0.89 99
MSK-3 0.166 0.25 0.15 0.166 0.39 112
MSK-4 0.27 0.244 0.361 0.27 0.65 94
PH2 0.719 0.76 0.467 0.719 0.38 36
UDA-1 0.33 0.364 0.521 0.33 0.52 71
UDA-2 0.414 0.478 0.484 0.414 0.33 69
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Table 1. (Continued).
Models Dataset/

Cr.
OPT.SGD WB TL DAU NC.RT VIKOR-

Rank

VGG16

HAM10000 0.383 0.369 0.546 0.461 3.81 22
ISBI2016 0 0.196 0.341 0.205 0.76 121
ISBI2017 0.176 0.199 0.272 0.232 1.45 98
MED-NODE 0 0 0.495 0.567 0.25 125
MSK-1 0.487 0.431 0.405 0.466 0.68 38
MSK-2 0.239 0.256 0.365 0.222 0.87 97
MSK-3 0 0 0.013 0.107 0.29 132
MSK-4 0 0.218 0.344 0.273 0.6 122
PH2 0.317 0.678 0.635 0.705 0.27 76
UDA-1 0.286 0.279 0.449 0.369 0.43 85
UDA-2 0 0 0.485 0.45 0.21 127

VGG19

HAM10000 0.363 0.367 0.424 0.424 4.38 21
ISBI2016 0 0 0.248 0.235 0.85 124
ISBI2017 0.188 0.181 0.155 0.222 1.65 100
MED-NODE 0 0 0.459 0.504 0.26 126
MSK-1 0.461 0.153 0.357 0.462 0.77 106
MSK-2 0.157 0.223 0.301 0.239 0.98 107
MSK-3 0 0 0.032 0.136 0.31 131
MSK-4 0 0.139 0.336 0.214 0.67 123
PH2 0.204 0.28 0.543 0.431 0.28 103
UDA-1 0.259 0.059 0.256 0.375 0.47 117
UDA-2 0 0 0.443 0.412 0.22 128

Xception

HAM10000 0.479 0.467 0.702 0.477 4.62 11
ISBI2016 0.281 0.266 0.463 0.242 0.96 86
ISBI2017 0.193 0.183 0.456 0.178 1.79 91
MED-NODE 0.539 0.534 0.718 0.544 0.35 47
MSK-1 0.405 0.407 0.645 0.375 0.86 42
MSK-2 0.232 0.221 0.437 0.236 1.1 92
MSK-3 0.149 0.133 0 0.275 0.38 129
MSK-4 0.273 0.259 0.45 0.247 0.77 88
PH2 0.808 0.794 0.773 0.744 0.37 32
UDA-1 0.348 0.348 0.535 0.331 0.56 68
UDA-2 0.439 0.416 0.357 0.488 0.3 79

This decision matrix DM , composed of OPT.SGD, WB, TL, DAU, NC.RT columns in Table 1, introduces
the twelve models as alternatives for eleven data sets producing 132 cases evaluated under five attributes
(criteria). The entries of DM represent the evaluation performance of these models. To prepare the DM

(Eq.1) for ranking and subsequently selecting the optimal model, weights should be assigned to each criterion.
The weights are computed by applying the entropy method (described in Section 2.2.3). The DM is firstly
normalised using the formula defined in (Eq.2), and then the entropy values are determined using the equation
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introduced in (Eq.3). The inherent contrast intensity of each criterion is then computed using the equation
defined in (Eq.4). Finally, each criterion’s weight is measured using the formula defined in (Eq.5). The
summation of the decision making values in each criterion (Sum), entropy values ej , the values of the inherent
contrast intensity 1− ej , and weights assigned for each criterion wj are reported in Table 2.

Table 2. The weights of criteria defined by entropy.

OPT.SGD WB TL DAU NC.RT
Sum –4.68234 –4.69665 –4.80655 –4.78727 –4.53395
ej –0.96044 –0.96338 –0.98592 –0.98196 –0.93
1− ej 1.960441 1.963375 1.985919 1.981964 1.930004
wj 0.199603 0.199902 0.202197 0.201794 0.196504

To generate a compromise ranking list and a compromise solution using the provided weights, the
VIKOR method is applied. Firstly, the criteria are dividing into two sets which are beneficial and non-
beneficial attributes. Among CNNs’ attributes, optimisation using stochastic gradient descent (OPT.SGD),
class weight balance (WB), transfer learning (TL), and data augmentation (DAU) are defined as beneficial
attributes, whereas NC.RT is non-beneficial. Thus, the first four attributes are subjected to maximisation,
contrary, NC.RT is targeted to be minimised according to the VIKOR approach. Therefore the best value
for beneficial criteria is the largest value while for the non-beneficial criteria is the smallest one according to
Step1-Rule1 (xj

∗ ) of VIKOR (described in Section 2.2.3). Likewise, the worst value is the smallest value for the
beneficial criteria and the largest value for the non-beneficial criteria, according to Step1-Rule2 (xj

− ). Using
the obtained best and worst values, the parameters Si and Ri are determined based on the DM and according
to the equation defined in (eq.6). Following that, the parameters of S∗ , S− , R∗ , and R− are computed to be
used for determining Qi (defined in eq.8). The value of v parameter (defined in eq.8) is set to value of 0.5.
Qi list is sorted in ascending order to produce a ranking list of deep learning models. The recommended best
model is the model that has the lowest of Qi , and value one is assigned to it. While the less recommended
model is the model with the highest Qi and rank 132 is assigned to it. The ranks located between 1 and 132
indicate each model’s importance according to the rank assigned to the model in a certain dataset. From Table
1, it can be noticed that the InceptionResNetV2 model trained on HAM10000 data is the best model with a
rank one. It achieves Qi value of 0.138326586 while the less recommended model is VGG16 trained on Mask-3
dataset that reports Qi value of 1. For other models, DenseNet201, for instance, is scored as two on HAM10000
data achieving a Qi value of 0.174821171. The values of Qi , Si and Ri for the remaining models have not
been reported to keep this section as concise as possible.

To validate the presented benchmarking approach, the rank list should satisfy the two conditions
described in Step 6 of the VIKOR method. Suppose that the alternative M

′ is the model with rank
1 (InceptionResNetV2), M

′′ is the alternative with position 2 (DenseNet201) where Q(1) = 0.138326586
and Q(2) = 0.174821171. The ”acceptable advantage” condition (Q(M

′′
) − Q(M

′
) ≥ DQ) is then true

(0.036494 ≥ 0.007633588), where DQ = 1/ (m− 1) , m=132 giving DQ = 0.007633588. To fulfil the sec-
ond condition, ”acceptable stability in decision-making” requires that the alternative M

′ (model with rank
1) must have the best value in S or/and R ranking lists. This condition is also satisfied in the S ranking
list where (InceptionResNetV2) achieves the lowest value reporting value of –1.510361893. Satisfying these
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conditions proves that the compromise solution (the best model) has an acceptable advantage and is stable
within a decision-making process. The developed framework helps the decision-maker in evaluating the actual
performance of a specific deep learning model through selection process, making it easier to distinguish among
models based on various criteria.

4. Conclusion
The growing number of proposed skin cancer diagnosis models has brought up the question of which diagnosis
model is best for a particular diagnosis task and what sort of criteria should be taken into consideration during
the selection of the optimal model. To address this issue, an evaluation and benchmarking framework are
developed. This paper presented a framework for investigating several deep learning models used to assess skin
cancer diagnosis, and then the optimal model is selected by integrated entropy and VIKOR approaches. Twelve
deep learning models on a various datasets treated as alternatives and five CNNs’ attributes used as criteria have
been analysed and considered to construct MCDM system. The developed framework enabled us to understand
the decision made by the statistical methods to recommend the best model for the automated cancer diagnosis
under multiple criteria and various datasets. Thus, the recommendation scheme, which is based on setting
priorities and ranking deep learning models, is viable and should be applied prior to designing diagnostic CAD
systems.
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