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Abstract: One of the main problems associated with the bagging technique in ensemble learning is its random sample
selection in which all samples are treated with the same chance of being selected. However, in time-varying dynamic
systems, the samples in the training set have not equal importance, where the recent samples contain more useful and
accurate information than the former ones. To overcome this problem, this paper proposes a new time-based ensemble
learning method, called temporal bagging (T-Bagging). The significant advantage of our method is that it assigns larger
weights to more recent samples with respect to older ones, so it reduces the selection chances of former samples, and,
thus, it addresses the adaptation to changes in dynamic systems. The experiments show that the proposed T-Bagging

method improves the prediction accuracy of the model compared to the standard bagging method on temporal data.
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1. Introduction

Ensemble learning is a machine learning strategy based on the common ideas of multiple learners to overcome
divergence and bias issues faced by a single learner. The frequently used ensemble learning techniques are
bagging, boosting, voting, and stacking. Bagging is a powerful method that aims to train a model for each
resampled training data where sampling is done randomly with replacement by obtaining the same number of
instances with the original training set in each ensemble iteration.

The standard bagging method [1] has a random sample selection phase, which is called bootstrapping.
When a purely random sample selection is performed, all samples are treated with the same chance of being
selected. However, in time-varying dynamic systems, the recent samples consist of more up-to-date and eligible
information compared to older ones because changes are observed over time. Several examples can be given
as follows: climate changes due to global warming, changes in the traffic due to urbanization, changes in
manufacturing equipment caused by aging, and the subtle changes in health due to changes in the environment.
The presence of many past samples in the training set may mislead the algorithm to produce up-to-date patterns,
leading to prediction errors. To deal with this problem, this paper proposes a new time-based ensemble learning
method, called temporal bagging (T-Bagging). The proposed method constructs a set of classifiers by using a
weighted random sample selection strategy. Our method reduces the chances of former (less concerned) sample
selection. The main advantage of our method is that it can adapt accurately to recent changes in dynamic
systems since the recent samples are weighted more heavily.

The main contributions of this study to the literature can be summarized as follows. (i) It proposes a

novel ensemble learning strategy, T-Bagging, which is a modified version of bagging. (ii) This study is also
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original in that it investigates the impact of weight method. (iii) This is the first study that analyzes the type
and size of the feature selection method used for bagging on temporal data.

In this study, we conducted several experiments on 12 publicly available temporal datasets to illustrate
the efficiency and validity of the proposed method. The experimental results showed that the proposed T-
Bagging method obtained more accurate values than the standard bagging method and some other methods
that have been successfully applied on temporal data, including ARIMAX (autoregressive integrated moving

average with exogenous variable) [2] and temporal classification method proposed in [3].

The organization of the paper is as follows. Section 2 expresses the recent studies on updated versions of
bagging and ensemble learning strategies considering time-varying dynamic systems. Section 3 comprehensively
talks about the proposed temporal bagging (T-Bagging) method. The dataset definition and experimental studies

are stated in Section 4. Lastly, the concluding remarks and future works are given in Section 5.

2. Related work

Bagging has been widely used in many fields such as health [4], finance [5], social network analysis [6], and
environment [7]. However, the standard bagging procedure [1] is not effective in handling temporal data since
it builds a prediction model based on randomly chosen samples. To overcome this limitation, in this paper,
we correspondingly changed the “random instance sampling” strategy in the standard bagging method to the
“weight-based random instance sampling” strategy.

In order to improve the capability of the original bagging, various modifications have been made by
presenting a new method such as A-Bagging (an adaptive version of bagging) [8], PCA-DC-Bagging (bagging
algorithm based on principal component analysis and decision-making committee) [9], MTSBag (the integration
of Mahalanobis—Taguchi system and bagging) [10], BagGMM (bagging of multiple Gaussian mixture models)
[11], iBagging (incremental bagging) [12], FS-HB (feature selection-based hybrid bagging) [13], and OEBag
(optimization embedded bagging) [14]. Table 1 shows the comparison of our study with the existing studies.
Our method differs from them in filling the gap of prediction when the observed data is temporal and related
to a time-based domain.

Temporal data is one of the most common forms of data which contains feature values of the events
occurring over the continuous timeline. Temporal prediction is a task to estimate future values based on the
previously known observations by considering the inherent sequence of occurrence. To correctly predict future
events over temporal data, the existing temporal value should not be ignored. Several ensemble learning tech-
niques are extended to consider the temporal value during machine learning such as temporal sampling forest
[15], Bagged. ETS.MBB [16], and time series forest [17]. Table 2 points out their details. While some of the
previous studies were implemented using the ensembles of exponential smoothing methods [16], some of them
were implemented by developing a temporal sampling module in the attribute level [15]. New methods based
on the specialties of random forest were introduced in some of the studies [15, 17]. Unlike previous studies, we
propose a new method based on the rationale behind bagging by modifying the sample selection stage by giving
weights to instances in the training set according to their up-to-dateness. All operations are implemented in

instance-level instead of attribute level.
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Table 1. Comparison of our study with the existing studies.

Ref | Year Method Applied technique Application area

[8] | 2020 A-Bagging | Clustering and then weighted majority voting Information security

9] | 2020 PCA-DC- | Discriminant analysis based on the decision Manufacturing

Bagging committee model

[10] | 2020 MTSBag Combination of the Mahalanobis—Taguchi Sys- Health care
tem (MTS) and bagging

[11] | 2019 BagGMM Bagging of multiple Gaussian mixture models Biomedicine
(GMM)

[12] | 2019 iBagging Incremental bagging with enhanced semi- | Information security
random subspace selection

[14] | 2018 OEBag Employing a decision tree to learn the complex Various domains
distributions of the minority class

[13] | 2017 FS-HB Hybrid bagging using chi-square test and prin- Banking
cipal component analysis (PCA) for feature se-
lection

Proposed method | T-Bagging | Bagging with a weighted random sample selec- | Time-based domains
tion strategy for temporal data

Table 2. Previous studies on temporal ensemble models.

Ref | Year | Method Applied Technique Application Data
[15] | 2017 | Temporal The random forest algorithm with resampling | Various domains
Sampling all features in a temporal fashion
Forest

[16] | 2016 | Bagged.ETS. | Bagging with exponential smoothing and mov- | Finance and industry
MBB ing block bootstrapping methods

[17] | 2013 | Time Series | Temporal ensemble model by using a splitting | Various domains
Forest criterion and randomly sampling features

3. Material and methods
3.1. T-Bagging: the proposed method

In the standard bagging, the samples of training sets in different iterations are chosen randomly by assuming
them with equal importance. However, in time-varying dynamic systems, this could be problematic since the
significant samples will not have enough chances to be selected in the first place when the number of available
samples is huge such as millions. To overcome this problem, this paper proposes a new method, temporal bagging
(T-Bagging) that takes more account of current instances by assigning them more weight values in the selection
stage of bootstrapping. In this way, the recent samples are more likely to influence future decisions.

Motivated by the success of bagging, this study presents how the temporalization concept can be
embedded in it with the purpose of extending its usage in temporal prediction. In our method, we assume
that the informational relevance of samples decays exponentially over time.

Figure 1 presents an overview of the proposed T-Bagging method. In the first step, the proposed method
computes a weight for each sample I;, where ¢ is ranged from 1 to n for n instances, with respect to their

temporal values. A weight can be regarded as the probability of the sample to be selected to construct a
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prediction model. In the second step, the method randomly selects a subset of samples with a weight-based
strategy, whereby the recent samples possess higher chances of selection. In the meantime, the randomness in
the weight-based sampling ensures that each base learner in the ensemble will be trained on different instance
subsets to provide diversity. Many training sets are generated from a single data. After that, each model is
built on a bootstrapped sample of the original data. In the next step, test instances are given to each trained
model to produce individual outputs of different iterations. Finally, the estimation of previously unseen data is

made by majority voting on the predictions of individual models in the ensemble.
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Figure 1. A general overview of the proposed T-Bagging method.

3.2. Formal definition

Given a dataset D with n samples D = {(¢1,z1,y1), (t2,22,Y2 ),y (tn,Zn,yn)} where each component (¢, z,
y) is composed of timestamp ¢ with the ordering t; < t2 < .. < t,, a d-dimensional input vector z = [4;,
As, ..., Ag], and a categorical label y. The weights W = {W;, W, .., W, } are computed for every sample in
the dataset according to their timestamps. These weights are then utilized in the selection of the samples which
will be used to build the models in the ensemble. Using temporal bootstrapping strategy, a number of training
sets { D1, Da, .., Dy, } are generated, and then each dataset D; is used to construct a new classification model
M; . In other words, the method separately builds a number of classification models M* = { My, My, .., My, }
on temporal bootstrapped samples. The final prediction is determined by applying majority voting on the label
outputs of all models on the unseen input z, denoted by M* (z).

To add a temporal learning methodology into the bagging procedure, we developed a temporal boot-
strapping scheme as defined in Definition 1.

Definition 1 (Temporal bootstrapping) Temporal bootstrapping is a special type of bootstrapping, whereby
a subset of n samples (D; ) is randomly selected with replacement from the original temporal dataset D with n

samples by considering their weights (W).
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In the due course of adoption of temporal bootstrapping, we expect the models will be built by using
recent samples; thus, an important prediction performance improvement could be attained through the ensemble
of all the learners. We propose a new type of bagging to encourage the algorithm to give more credits to the

more recent samples as defined in Definition 2.

Definition 2 (Temporal bagging) The temporal bagging (T-Bagging) is a time-based ensemble learning
technique that builds multiple models, denoted by M* = {M;, My, .. , My, }, on temporal bootstrapped
samples, and each model M; casts a unit vote at given input x, and the most occurring class label among the

ensemble outputs is selected to make the final decision.

To allow a reasonable differentiation in a dynamic system, this paper introduces a novel weighting
procedure that renders recent events more important than the past ones. A weight can be regarded as the
probability of the sample to be selected to build a classification model. Equation (1) to Equation (7) present
the formulas used throughout the experiments in this study for weight assignment, where d is a constant
referring to the total time for data collection and ¢ is the timestamp for a specific instance. Zhao [18] proposed
nine different temporal weighting strategies. Our study differs from her study in several respects. First, the
impact of some weighting strategies given in [18] is strong, i.e. the weights drop quickly; whereas, our weighting
strategies show smooth variations in time. Second, when the time period is increased, the strategies given in
[18] show abnormal trends. On the other hand, we designed the formulas by considering longer time periods.
Third, Zhao [18] presented a solution for a specific problem (pharmacovigilance); whereas, we demonstrated the
generalization ability of our weighting strategies on real-world datasets obtained from various domains. Our

weighting strategies follow a k-degree polynomial function of ¢, where k£ = 1.5, 2.5, and 4.

WFy = (d—t)/d (1)
WFy = (d—t)5/d"® (2)
WF; = (d — t)25 /d?® 3)

WFy = (d—t)*/d* (4)
WF5 =1 — (t8°/d"P) (5)
WFg = 1 — (t*° /d*) (6)

WF, =1—(t*/d*) (7)

The applied weighting strategies are displayed in Figure 2. The lines express the influence of the weighting
strategy on a new sample. Weights decrease from present to past records. They are ordered by the left to right
in terms of their strength in decreasing order. The lines under diagonal (i.e., WF4 to WF,) demonstrates a
quicker drop over time compared to the upper side (i.e., WF5 to WF7), which means the recent samples have

a more significant impact on the class label prediction of a test case compared to earlier samples.
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Figure 2. Alternative weighting strategies.

3.3. An example of the proposed method

Table 3 shows a simple example to demonstrate the temporal bootstrapping phase of the T-Bagging. To
illustrate, we applied the method for one of the weighting strategies (WF3) to a small dataset containing 10
instances. Other weighting strategies are also implemented in the same way. The cumulative weight value
close to zero means that the corresponding sample is meaningless for prediction; thus, eliminating this sample
increases the accuracy of the estimation. The recorded timestamps of the samples are given as t; > to > .. >
t10, where t; represents the former and ¢1o9 represents the recent timestamp. According to Equation (2), the
weight values of the samples are calculated as shown in Table 3. The next step is to obtain the cumulative weight
of each sample by taking the sum of its own weight and the weight values of all previous samples. After that, the
bootstrapping iterations are performed to randomly select 10 instances with replacement by taking cumulative
weights into consideration. Table 4 demonstrates the temporal randomly sampling (temporal bootstrapping).
A new random number is generated in each selection step. The first cumulative weight larger than the generated
random number is looked for to select the respective sample. For example, when the random number is 0.61,
the first cumulative weight greater than 0.61 is 0.8919 which is the weight of sample 5 in the timestamp 5. As
a result, the 5" sample is selected in this step. It is also apparent in the given example that the possibility
of selection is higher for recent samples compared to former ones because cumulative weight ranges get larger

from past to present.

3.4. T-Bagging algorithm

Algorithm 1 presents the pseudo-code of the Temporal Bagging method. In the first loop, a selected weighting
strategy is applied, and the cumulative total is assigned to each sample. In this way, the most recent sample
is given by the highest weight. A cumulative weighting list is the output of this loop. In the next step of the
algorithm, a random number is generated for n times to select samples for the creation of a new training set
for each ensemble iteration. Since the recent samples have the largest range in terms of weight, their chances of
selection are more compared to former ones. Hence, the more recent the sample is relevant and non-redundant,
the higher it is used in the model construction. In the main loop, the algorithm builds m models on temporal

bootstrapped samples. At the " iteration, the dataset D;, which contains temporal bootstrapped samples, is
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Table 3. A sample weight calculation step of the proposed method.

Sample ID | Time Weight Calculation | Weight | Cumulative Weight
1 t1 (former) | (10-9)*° / 10! 0.0316 | 0.0316
2 to (10-8)1® / 1015 0.0894 | 0.1210
3 t3 (10-7)+5 / 10t 0.1643 | 0.2853
4 ty (10-6)* / 1015 0.2530 | 0.5383
5 ts (10-5)1-> / 10%° 0.3536 | 0.8919
6 tg (10-4)*5 / 1015 0.4648 | 1.3567
7 ty (10-3)1-> / 10%° 0.5857 | 1.9424
8 ts (10-2)+5 / 1015 0.7155 | 2.6579
9 tg (10-1)t-> / 10%° 0.8538 | 3.5117
10 t1o (recent) | (10-0)'5 / 105 1 4.5117

Table 4. Temporal randomly sampling (temporal bootstrapping).

Selected timestamp

Random number | Comparison | Selected sample

former recent
0.61 0.61 < 0.8919 | 5 !
0.15 0.15 < 0.2853 | 3
1.84 1.84 < 1.9424 | 7
2.50 2.50 < 2.6579 | 8
2.26 2.26 < 2.6579 | 8
1.68 1.68 < 1.9424 | 7
1.21 1.21 < 1.3567 | 6
3.10 3.10 < 3.,5117 | 9
4.20 4.20 < 4.5117 | 10
2.46 2.46 < 2.6579 | 8

used to build the i** model M;, which is added to the ensemble M*. Finally, in order to classify an unseen
instance z, the constructed models under M* are used and each one estimates a class label for the specified
sample. The final class label is then assigned by taking the joint decision on the outputs of M* via majority
voting.

The time complexity of the proposed T-Bagging algorithm is O(m . L(n) + T), where m is the number
of learners (ensemble size), n is the number of instances in the dataset, L is the time required for the execution

of a learning algorithm on n instances, and T represents the time needed for the temporal sampling process.

3.5. The advantages of t-bagging
A number of advantages are valid for both bagging and the proposed method, called T-Bagging. First, both

of them can be used with the combination of any base learner such as support vector machines, k-nearest

neighbors, and neural networks. They are entirely unaware of the classification method. In this way, T-Bagging
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Algorithm 1: Temporal Bagging (T-Bagging)

Inputs :
D: The temporal dataset D = {(t1, x1, y1), (t2, T2, Y2)s v, (tn, Tn, Yn)}
Dirain: Training set
Dyesi: Test set
W F': Weight assignment formula
m: The number of models (ensemble size)
n: The number of instances in the training set
Output:
M*: A collection of models in the ensemble
M* (z): Predicted class label in a new sample x

begin
cumulative =0
M* =&

for i=1 ton do

weight = WF(i)

cumulative = cumulative + weight
W, = cumulative

end

for i=1 to m do
for j=1 ton do
rnd =GenerateRandNum (0, W,,)
for k=1 ton do
if rnd <= W}, then
D;(j) = Dirain(k)
break
end

end

end

M; =Training (D)

M* = M*U M,

end

M*(z) =Voting (M, (z), Ma(z), ..., My, (x))
= argmazy Y i @) L

end

simply learns from temporal data. Furthermore, their implementation simplicity makes them favorable to be
applied, for instance, the temporal bootstrapping step of T-Bagging is easy to implement. Both of them have
advantages over single models since multiple predictors are combined to improve generalizability, accuracy, and

robustness. Besides, they can handle input features with different types (i.e., categorical, numerical).

In addition to these similarities, the advantages of the proposed method that differ from the traditional

bagging method are as follows:

o It takes into account the timeliness of the data while making a prediction for a future sample.

o It extends the classical bagging method with the ability to handle temporal data. In this way, it expands
the usage of bagging.

e It can be applied to any temporal data without any prior information about the dataset. It does not make
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any specific assumptions and specific knowledge for the given data.
o It is easy to deploy temporal sampling since its parameters can be set easily.

o It is easily parallelized to speed up the training phase when temporal bootstrapping is applied. Data can

be distributed over many nodes in a time-based manner.

3.6. Feature selection

Feature selection is a very critical component in machine learning studies by reducing the dimensions without
much loss of the total information and decreasing the training time and the risk of overfitting resulting from
the increasing number of features.In this study, four feature selection methods, namely information gain, gain
ratio, correlation-based feature selection, and ReliefF, were used to investigate the most informative attributes
when T-Bagging was implemented.

Information Gain is one of the feature selection techniques that evaluates the gain of each feature in
the context of a target variable. It is performed by taking the mutual information (i.e. the determination of
the statistical dependence) between two random variables. It measures the reduction in entropy before and
after splitting a dataset according to a given value of a random variable as expressed in Equation (8) where
S is a dataset with a set of instances, A is an attribute, v is all the possible values of attribute A, and S, is
the subset of S where attribute A has the value v. Entropy expresses the amount of information in a random
variable. Lower probability events yield more information with high entropy and higher probability events yield

less information with low entropy.

InfoGain(S, A) = Entropy(S) — Z fsf)' .Entropy(Sy) (8)

vevalues(A)

Gain Ratio is another feature selection technique. In case there are attributes with the large number of
values, Information Gain does not perform well, and results can be obtained as biased. Gain Ratio can address
this flaw and attributes with many values are penalized. When selecting an attribute, the number and the size

of the branches are considered. Information Gain is normalized with the split information as given in Equation

(9)-

EntTOpy(S) - Zueualues(A) %EntTOpy(Sv)

_y Bilgg, IS
i=1 5] 1982 T3]

GainRatio(S, A) = (9)

One of the measures used for feature selection is dependency measures. In order to determine how close
two variables are to having a linear relationship with each other, a correlation metric is used. In this context,
correlation-based feature selection is another way of finding the association between the continuous features and
the target variable. Pearson’s correlation is one of the most used correlation measures that is calculated for a
pair of variables (z, y), where n is the number of pairs of data, as given in Equation (10) by resulting with a

correlation coefficient R.

PR T) oF ) B O L2 10 OF)

10
Vinya? = (o) y? - ()] 1o
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Relief is another feature selection method that evaluates the worth of an attribute according to how well
their values distinguish among instances that are near each other. If an attribute has the same value for samples
in the same class but it differentiates between samples from a different class, it is assumed as a “good” attribute.
Its extension ReliefF' can deal with noisy and incomplete datasets and effectively handles multi-class problems.
It randomly selects [ instances. Assuming that z; and z; are instances, to predict the class feature C, where
|C] is the number of classes, it searches for k-nearest neighbors of the same class (called nearest hit and denoted
by Hp), and then the same procedure is applied for each of the other classes (called nearest miss and denoted

by Mj) by computing the distances d and probabilities p. The feature rank is calculated by Equation (11).

IR | ol |
RF = |C|; M| Z d(zk, x;) + Z (1 = p() Z d(xk, x;) (11)

;€ Mjy c#c(zy) x;€Hy,

4. Experimental studies

In order to demonstrate the effectiveness of the proposed T-Bagging method, the experiments were carried out
on 12 temporal datasets. In this study, we preferred to use support vector machines (SVM) as the base classifier
because of its advantages such as nonlinear learning ability and good generalization capability. However, other
classification algorithms such as decision tree, k nearest neighbors, artificial neural networks can also be used.
The proposed method T-Baggingsyy was compared with two existing methods: a single version of SVM [19] and
its ensemble version Baggedsym [1] and and two temporal methods: a classification method based on ARIMAX
[2] and temporal SVM (TSVM) implemented as in [3].

Except for ARIMAX, the implementation was developed in the C# programming language using the
WEKA open-source machine learning library [20]. In order to apply SVM, the sequential minimal optimization
(SMO) algorithm under WEKA was used with its default parameters where the complexity parameter is 1 and
the applied kernel is the polynomial kernel. ARIMAX, which is one of the multivariate time series methods,
was implemented on Spyder using Python. The parameters of ARIMAX were set as default values in the
“statsmodels” library such that the number of auto-regressive lags (p), the degree of differencing (the number
of times the dependent variable has to be differenced to produce the stationary series) (d), and the number
of moving average lags (¢q) are (1, 0, 0). ARIMAX produces numerical predictions for the class attribute
for multivariate time series datasets. In our study, it was performed to produce a numerical output for each
instance, then these predictions were transformed into categorical labels that represent the real classes of the
respective dataset. Assume that there are two classes of a dataset with the labels of “0” and “17. If the result
from ARIMAX is less than 0.5, the class label 0 is assigned to the corresponding instance, otherwise, 1 is
assigned. Conversions from numeric to categoric predictions were done in this way for all datasets and results
were obtained.

The temporal classification method presented in [3] was implemented using SVM as the base classifier for
the model. In this study, it is mentioned as the temporal SVM method (TSVM). The parameter d of the model
represents the number of timestamps that any particular instance depends on before its timestamp. Given that
d = 2 and an instance is recorded at the timestamp ¢;, then this instance is concatenated with the features of
the instances at the timestamps of ¢;_; and ¢;_o. In this way, the temporal dimension is added to the dataset.
After updating the data format, classical SVM is applied for classification. In our study, d = 2 was used to
implement the TSVM model.
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The classification accuracies of the aforementioned methods were obtained using all features. Further-
more, in order to select the most informative attributes, feature selection was applied to all datasets. “Infor-
mation gain”, “ Gain ratio”, “ ReliefF” and “ Correlation-based feature subset selection” methods were performed
to evaluate the worth of the features when T-Bagging was implemented. Ranker was set as the search method.
In ReliefF, the number of nearest neighbors for attribute selection was 10. The number of selected features was
analyzed from 10% to all of the features with a 10% increase in order to determine the optimum number of

attributes in model creation for each weight formula.

4.1. Dataset description

In this study, the experiments were carried out on 12 univariate time series datasets available in the repository!.
The records in the datasets are ordered according to their timestamps. Table 5 presents the main properties of

the datasets, including their train/test sizes, the number of attributes, and the number of classes.

Table 5. Characteristics of the datasets used in the experiments.

Dataset Num of classes | Num of features | Train size | Test size
ArrowHead 3 251 36 175
Earthquakes 2 512 322 139
ECG200 2 96 100 100
ECG5000 5 140 500 4500
ElectricDeviceDetection 2 256 623 3767
FreezerRegularTrain 2 301 150 2850
FreezerSmallTrain 2 301 28 2850
GunPoint 2 150 50 150
Ham 2 431 109 105
MiddlePhalanxOutlineCorrect | 2 80 600 291
PhalangesOutlinesCorrect 2 80 1800 858
Wafer 2 152 1000 6164

4.2. Experimental results

Table 6 shows the accuracy results of the applied methods ARIMAX, TSVM, SVM, Baggedsyy, and T-
Baggingsyn for the balanced and imbalanced datasets, separately. The ensemble size of Baggedsyy and
T-Bagginggyw is 10. The outputs of different weight functions of T-Bagging are indicated in different columns,
separately. The best results for each dataset are displayed in bold font.

It is clearly seen that the accuracy values of SVM and Baggedsyy were enhanced for all datasets by
considering temporal effects. When the average accuracy values are examined, the best one was obtained by
T-Baggingsyy when WF5 was used. While SVM and Baggedsyy performed 79.10% and 79.65% accuracy
respectively, T-Baggingsyy with WFEF 5 achieved more accurate classification as 81.19%. Our method clearly
increased the classification performance of each model in the ensemble since the models were built by using more

informative samples. For example, the accuracies of T-Bagging and the standard bagging methods are (88.67%)

IBagnall A, Keogh E, Lines J, Bostrom A, Large J. (2020). Time Series Classification Repository [online]. Website http:
//timeseriesclassification.com [accessed 1 July 2020]
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and (78%), respectively, on the GunPoint dataset. In particular, the biggest accuracy difference of T-Bagging
and Bagging was observed on the Ham dataset, where T-Bagging increased the accuracy by over 12%. Therefore,
it can be concluded that the proposed method yields better results than the standard bagging method when
dealing with temporal data. Furthermore, when temporal methods were examined, T-Bagging performed more
accurate classification in most of the datasets (9 out of 12). TSVM achieved the best performance on only 3
datasets with an overall accuracy of 78.09%, while the ARIMAX model could not manage to classify well with

the overall accuracy of 68.61% compared to its counterparts.

Table 6. Comparison of the proposed method with the existing methods in terms of classification accuracy (%).

B/I | Dataset ARIMAX | TSVM | Baggedsyy | SVM T-Baggingsvm
WF1 | WF2 | WF3 | WF4 | WF5 | WFG | WE7
Arrow head | 61.71 | 32.37 | 73.71 7314 | 7714 | 7029 | 7371 | 69.71 | 76.57 | 78.86 | 72.00
ECG200 51.00 | 78.35 | 82.00 81.00 | 83.00 | 83.00 | 82.00 | 83.00 | 84.00 | 81.00 | 77.00
Freezer
Regular 90.98 | 96.98 | 97.30 97.02 | 96.67 | 96.88 | 95.44 | 92.49 | 97.37 | 94.81 | 97.16
Train
Freezer
Small 6821 | 89.15 | 88.67 90.39 | 80.49 | 91.30 | 90.95 | 94.84 | 82.11 | 80.74 | 90.49
o Train
€ [ GunPoint 78.67 | 76.87 | 78.00 80.00 | 88.67 | 75.33 | 80.00 | 84.67 | 87.33 | 73.33 | 78.00
é Ham 52.38 | 82.52 | 60.00 60.00 | 65.71 | 64.76 | 62.86 | 67.62 | 72.38 | 69.52 | 70.48
Middle
Phalanx 5842 | 69.20 | 63.57 63.23 | 66.67 | 65.64 | 63.23 | 65.64 | 64.26 | 67.01 | 65.29
Outline
Correct
Phalanges
Outlines 66.08 | 69.40 | 65.15 64.69 | 65.15 | 64.92 | 64.92 | 65.85 | 65.85 | 66.43 | 65.38
Correct
Average 65.93 | 74.36 | 76.05 76.18 | 77.94 | 76.52 | 76.64 | 77.98 | 78.73 | 76.46 | 76.98
Earthquakes | 64.03 | 70.80 | 71.94 64.03 | 72.66 | 72.66 | 74.82 | 73.38 | 69.78 | 72.66 | 73.38
ECG5000 57.07 | 91.22 | 94.07 93.84 | 93.96 | 93.91 | 94.33 | 93.11 | 93.58 | 93.58 | 93.64
2 Electric
£ | Device 84.29 | 84.73 | 85.56 85.91 | 85.11 | 86.31 | 85.3 | 85.56 | 85.14 | 85.27 | 86.68
E Detection
£ [Water 9048 | 95.49 | 95.86 95.98 | 94.87 | 95.28 | 96.04 | 93.19 | 95.93 | 96.03 | 94.32
Average 73.97 | 85.56 | 86.86 84.94 | 86.65 | 87.04 | 87.62 | 86.31 | 86.11 | 86.89 | 87.01
General Average 68.61 78.09 79.65 79.10 | 80.84 | 80.02 | 80.30 80.76 | 81.19 | 79.94 | 80.32

A key feature of our T-Bagging method is that it can be applied to any temporal data without the
knowledge of its structure. It is clear from Table 6 that the accuracy values for WF 5 ranged between 64.26%
and 97.37%, changing from dataset to dataset. For example, the T-Bagging method achieved the best accuracy
(97.37%) on the FreezerRegularTrain dataset. Hence, it experimentally confirmed that the characteristics of
the data have a significant impact on the performance of the algorithm. When the datasets are analyzed
considering the class values in the most recent time interval, four of them show imbalanced data characteristics.
When we elaborate further by taking this into account, the proposed method also achieved successful results
in the imbalanced datasets. The highest accuracies were obtained using the T'— Baggingsyy with WF3 with
the average of 87.62%. On the other hand, the best results in the balanced datasets were attained using the
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T — Baggingsvy yr with WF 5 as in the overall results with the average of 78.73%. It is clear that the best results
for both balanced and imbalanced data were obtained when the proposed method was performed.

As expected, a single SVM method showed the worst performance (79.10%) on average compared to
ensemble methods. This is because of the fact that ensemble methods usually improve the generalization and
robustness by combining the decisions of multiple classifiers. In this way, they utilize the strengths of a group
of predictors while avoiding the weaknesses of a single predictor.

The ranking procedure applied to all data was started by assigning rank 1 to the most accurate method,
rank 2 to the second-best one, and was continued until giving rank 9 to the worst one. In the case of a tie, the
average rank value was assigned to each method. According to the results in Figure 3, the proposed T-Bagging
method exhibited the best performance compared to the existing methods because it had the lowest rank value
with WF5 (4.75). The T-Bagging with WF 3 method followed it with a rank value of 5.13. Therefore, it can

be concluded that T-Bagging performed well on the average ranks.
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Figure 3. Comparison of the methods in terms of average rank.

In addition to accuracy evaluation, other metrics such as precision, recall, and F-measure are also
important to consider in model selection in favor of the bias-variance tradeoff. Figure 4 shows the variations in
the average values of the precision, recall, and F-measure for all datasets when SVM, Baggedgyn, ARIMAX,
TSVM, and T-Baggingsyn using different weights were applied. As in the case of accuracy, WF' 5 attained the
best results compared to its counterparts in the criteria of Recall and F-measure with the values of 81.19%
and 79.74%, respectively. WF 1 achieved the best precision as 80.72%. SVM and Baggedsyym did not manage
to defeat their T-Bagging counterparts here either with the precision, recall, and F-measure values as 79.22%,
79.10%, 77.46% for SVM and 79.24%, 79.65%, and 77.82% for Baggedsyn. The lowest values were obtained by
the ARIMAX method as 68.62% precision, 70.30% recall, and 68.43% F-Measure. TSVM followed ARIMAX
with the values of 76.63% precision, 78.10% recall, and 76.68% F-Measure. The existing temporal methods
could not reach the values obtained by the proposed T-Bagging method.

In order to determine the number of the most informative attributes explaining the datasets, various
feature selection methods were applied when T-Bagging was implemented. At first, 60% of the total number of

features was selected using gain ratio, information gain, ReliefF feature selection, and correlation-based feature
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Figure 4. The results of precision, recall, and F-measure performance metrics when T-Bagging, Bagging, ARIMAX,
TSVM, and SVM were applied.

subset selection with Pearson’s correlation to select the best method among them. Table 7 displays the average
accuracy results obtained for all datasets using different weight formulas. It is obvious that the Correlation
feature selection method provided the best accuracy compared to others in general. Therefore, for further

analysis, it was chosen among others.

Table 7. Comparison of the feature selection methods under different weights when 60% of features were chosen.

Weight | Gain Ratio | Info Gain | Correlation | ReliefF
WEF, 81.37 79.36 81.77 81.79
WFo 79.66 77.42 80.29 79.84
WF3 80.54 79.59 80.77 80.56
WEFy 80.62 78.90 81.96 80.89
WF5 82.00 80.39 82.20 81.77
WF¢ 80.85 79.75 81.54 80.40
WEF7 80.13 78.92 80.82 80.48

Figure 5 demonstrates the trend in the classification accuracy as the selected percentage of features were
changed from 10% to whole attributes when Pearson’s correlation feature selection method was used. It is
evident that the correctly classified samples mostly increased as the number of selected features was increased.
It is also shown that after a specific percentage (generally 50% — 70%) the classification accuracy started to
decrease. This is expected because the whole feature set can include some redundant attributes which do
not affect the general pattern explaining the data. Feature selection facilitates the determination of the most
informative attributes to construct the model for optimal classification. The scenario in Figure 5 proves this
inference by obtaining the eliminated feature set resulting in the most accurate results. For example, in the
case of WFy, a general increase is clearly seen in the accuracy until 70% of the selected features and the peek
accuracy is obtained here as 81.97%. From here on, classification accuracy begins to decline due to the inclusion
of redundant features in model creation.
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Figure 5. The impacts of different selection ratios when Correlation feature selection was applied.

5. Conclusion and future work

To take into account the fact that the recent past is more significant than the remote past, this study proposes
a new time-based ensemble learning method, called temporal bagging (T-Bagging). In the proposed T-Bagging
method, the prediction ability of base learners is enhanced through the adoption of a weight-based random
sampling on the original dataset for the purpose of building models on training sets having more informative
samples.

In the experimental studies, SVM was selected as a base classifier and it was compared with its bagging
and T-Bagging versions. In addition, temporal methods, namely ARIMAX and TSVM, were also compared
with the proposed method to investigate whether T-Bagging can be an alternative to them for temporal data
classification or not. In terms of accuracy, T-Bagging achieved the most accurate classifications compared to its
counterparts using different temporal weight functions. Besides, a considerable performance was also observed
in precision, recall, and F-measure metrics. When Pearson’s correlation feature selection method was applied,
the overall performance was improved even more.

This study mainly contributes to the following subjects:

o Bagging is promoted with a time-specific specialty in case the dataset is highly dependent on temporal

effects.

e The temporal effects are investigated in detail by considering the impacts of various weights.

o The impact of different feature selection techniques on the proposed method are analyzed comprehensively

by varying the percentages of the selected features.

In the future, differently from the applied scenario, the proposed method can also be implemented in
regression and clustering problems by changing the base learner and the decision rule instead of using majority
voting. Moreover, as an alternative to bagging, other ensemble learning techniques such as boosting, or stacking
can be performed by considering temporal impacts. Furthermore, rather than SVM, other base classifiers such as

decision trees, neural networks may be implemented according to the performance values on different datasets.
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