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Abstract: Medical image analysis, especially of the retina, plays an important role in diagnostic decision support tools.
The properties of retinal blood vessels are used for disease diagnoses such as diabetes, glaucoma, and hypertension. There
are some challenges in the utilization of retinal blood vessel patterns such as low contrast and intensity inhomogeneities.
Thus, an automatic algorithm for vessel extraction is required. Active contour is a strong method for edge extraction.
However, it cannot extract thin vessels and ridges very well. In this research, we propose an improved active contour
method that uses discrete wavelet transform for energy minimization to solve this problem. The minimization formula
terminates segmentation into two regions, foreground and background. We found out that foreground pixels are more
important than background. Therefore, we change the minimization formulation in such a way that gives more weight
to the foreground. The contour edge has orientation in each region. The wavelet terms in the minimization formula
help to detect edge direction in horizontal, vertical, and diagonal orientations. Since bright and dark lesions do not have
direction, these terms can decrease false vessel detection. The second part of the innovation is called the optimization
process, which works instead of reinitialization. Sometimes, the evolution in the iterated process destroys the stability
of the evolution. To prevent the destruction of the stability of evolution, we used an optimization process formula
whose task is to keep contour on the edges of the image. The performance of the proposed algorithms is compared and
analyzed on five databases. The values achieved are 94.3%, 73.36%, and 97.41% for accuracy, sensitivity, and specificity,
respectively, on the DRIVE dataset, and the proposed algorithm is comparable to the state-of-the-art approaches.
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1. Introduction
A retinal image is achieved by capturing a photograph of the back of the eye. The retinal images are composed
of three parts, blood vessel, optic disc, and macula. The vessels have widths of one pixel to twenty pixels
[1]. Other items that may appear in these images are pathologies such as in the form of bright and dark
lesions. Medical image analysis plays an important role in diagnostic decision support tools. However, manual
extraction of the vessels is a difficult and time-consuming task and also requires sufficient skill. There are some
vascular characteristics that lead to inaccurate vessel extraction. For example, the intensity of the images is
inhomogeneities. Moreover, the contrast of the images is low and the intensity of the vessel pixels can be close
to the background pixels. Furthermore, some background features may appear in the image, whose intensity is
similar to vessel intensity such as pathologies. These issues warrant an accurate automatic algorithm for vessel
∗Correspondence: mahtab_shabani@sco.iaun.ac.ir
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extraction. The vessel extraction methods can be divided into multiscale approaches, deformable model, match
filtering, and CNN-based approach.

Multiscale approach: The multiscale approach segments blood vessels by different precision. Its advantage
is robustness and quick processing [2]. This approach can help us to be more accurate in the algorithm. In
the work in [3], multiscale was used for denoising. In [4], line detection is used in multiscale analysis for
segmentation. Their approach has three stages. The first stage is the basic line detector. Second multiscale line
detectors and last is a combination method. In [5], discrete wavelet transform is integrated with Tyler Coye
algorithm to extract the blood vessels. The authors in [6] presented a retinal vessel segmentation method by
using the random walk algorithms based on the centerlines. In this work, a Hessian-based multiscale filter is
used for vascular enhancement.

Matched filter approach: Another approach used for segmentation is matched filtering. Chaudhuri et
al. [7] proposed matched filtering to vessel enhancement. They demonstrated a vascular template determined
by Gaussian kernel. Then in [8], Coushy probability distribution is used instead of Gaussian. The authors in
[9] demonstrated that vessel template gray level intensity cannot be approximated by Gaussian, and Gumbel
distribution is more appropriate than Gaussian. There is a lot of false detection in the matched filter. Because
this filter considers nonvessel boundaries as vessels. Zhang et al. [10] proposed the MF-FDOG (matched filter
- first-order derivative of Gaussian) to reduce false vessel detection.

CNN: A convolutional neural network (CNN) is a deep learning algorithm that has been introduced as a
powerful tool method in segmentation. The authors in [11] used a graphics processing unit implementation of
deep convolutional neural networks to separate blood vessels from the background. The authors in [12] consider
the graphical structure of vessel shape for segmentation, using both local and global vessel structures. The work
in [13] proposed a supervised method by using a wide and deep neural network with strong induction ability to
model the transformation.

Deformable model: There is another approach in vessel segmentation entitled deformable models that are
also called partial differential equation-based methods. They are divided into snakes, active contour, and level
set methods. Some of these methods are region-based and some are edge-based. Edge-based models obtain an
object’s boundaries using edges information to attract the active contours toward the object. The region-based
method includes a region descriptor that the active contour move [14]. Region growing and level set are two
favorite methods in this category. The authors in [15] presented a new algorithm based on level set and region
growing. Vessels were enhanced by the CLAHE and 2D Gabor wavelet. Then thin vessels are extracted by
region growing and the main vessel extracted by the level set method. In [16], a new region-based method is
proposed to deal with intensity inhomogeneities in images. The local intensity clustering property was used to
formulate the energy formula. There is a neighborhood of each point that global criterion of image segmentation
obtains with respect to the neighborhood center. This work was implemented on the MR images of the brain.
The results are good on the MRI dataset but it cannot extract weak edges. Papers [17, 18] were proposed
specifically for the vessel segmentation problem. The authors in [17] designed an algorithm based on ribbon of
twins (ROT). The ribbon of twins is an active contour that one ribbon inside and one ribbon outside captured
the vessel. The accuracy of ROT model depends on parameter values. The authors in [18] proposed a new
infinite active contour model that segments vessels using different types of region information such as intensity
information and local phase-based enhancement map. The infinite perimeter regularizer has more ability to
detect small branches compared to the traditional models. Therefore, the vessel detection rate significantly
increases. Nevertheless, the background detection rate can decrease with different enhancement filters.
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Due to inhomogeneity’s intensity, the similarity of the thin vessel intensities to the background pixels
and in the presence of pathology spots, vessel segmentation has become a difficult issue. So far, many studies
have been carried out to improve the accuracy of vessel detection. However, it is not possible to present an
appropriate solution without considering existing issues. The level set method (LSM) is an exact tool for edge
extraction in an image. This method is often used for another medical image analyses and is rarely used for
retinal vessel segmentation. This is due to the characteristics of the retinal vessels. As noted previously, the
intensity of thin vessels is close to the background. In other words, the gradient of edges in the retinal image is
low and close to the background. Chan et al. [19] proposed an active contour model that is independent of the
gradient of the image and that can be used for retinal images. However, the thin vessels of retinal images can
be very close to the background and the CV model [19] cannot extract ridges and weak edges.

According to the approaches mentioned above and the problems and limitations of these methods, it
is required to develop an approach that can reduce false detection and increase vessel detection percent. In
this work, to increase the true classified rate, we modified the process of the traditional CV model, so that for
changes in the process of active contour, we examined what parameters and functions have the most effect on
the energy evaluation. One problem of the active contour is the destruction of energy minimization. Therefore,
to solve the issue, we use a combination of matched filter and eigenvalue of the Hessian matrix filter called
optimization process. The remainder of this paper is organized as follows. In Section 2, the proposed algorithm
for retinal vessel segmentation is described in detail. In Section 3, we discuss the performance algorithm and
experimental results are presented. Finally, in Section 4, conclusions of the paper and future suggestions are
discussed.

2. Proposed segmentation algorithm

Our proposed retinal blood vessel extraction algorithm is a region-based segmentation approach. The block
diagram of the proposed approach is shown in Figure 1. The first step is preprocessing by channel selection
and contrast limited adaptive histogram equalization. Then to improve the contrast of vessels, an enhancement
filter is used. In the next step, modified active contour which optimizes energy formula by adding wavelet
terms and optimization process are described. The minimization energy formula is the most important part
of active contour. We use the discrete wavelet transformation to improve the performance of the algorithm.
The optimized energy formula reduces the effect of noise. In addition, we have added an optimization level to
modification of the active contour process. For this work, we use two algorithms to make matrices for use in
the optimization process formula. For more information, see Section 2.3.3. Afterward, it is necessary to extract
the vessel tree. In this paper, we use the Otsu method for thresholding. Finally, postprocessing is used for false
predictions reduction. In what follows, the details of the proposed segmentation algorithm are described.

2.1. Preprocessing

The preprocessing level of the proposed algorithm contains two steps. The first phase of preprocessing is channel
selection. The green channel image has a higher contrast between the vessels and the background than the red
and blue channels of the RGB color retinal image. Therefore, the green channel of the retinal fundus image is
used as the input of the algorithm. To improve the quality of the image, we apply the contrast limited adaptive
histogram equalization (CLAHE) on the green channel image, in the second phase of preprocessing.
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Figure 1. Block diagram of the proposed algorithm.

2.2. Vessel enhancement
After preprocessing, we need an enhancement method of the retinal vessel image. In this work, we use the vessel
enhancement method in [20]. The authors in [20] present an algorithm based on iterated morphology operators.
This algorithm uses the difference between the supremum and infimum of the opening of the original image
with two linear structuring elements of different lengths. They use twelve structuring elements; each element
is rotated 15◦ apart from the previous element. Morphology reconstruction is used to keep small details. A
second derivative is used to emphasize thin vessels. There are many reasons for using this filter such as to
reduce inhomogeneities illumination and eliminate the false edge around the optic disk.

2.3. Modified active contour
Firstly, we explain some basic knowledge about active contour for readers. Chan-Vese method [19] is a subset
of LSM that the Chan-Vese method evolved from Mumford-Shah [21]. CV algorithm is started by initial curve
and based on changing formulation to minimization energy. The minimizing energy functional in the CV model
is:

F (ϕ) = µ(

∫
Ω

| ▽H(ϕ)|dx)p + v

∫
Ω

H(ϕ)dx+ λ1

∫
Ω

|I − C1|2 H(ϕ)dx+ λ2

∫
Ω

|I − C2|2 (1−H(ϕ))dx (1)

where µ , v, λ1 , and λ2 are positive constants. Also c1 and c2 are two constants; c1 is average intensities
inside C and c2 average is intensities outside C. C is the contour. The first term can be a penalty for contour
length. Similarity, second term is a penalty on the sum of the vessels. The third term is the variance of the
foreground intensity and measures uniform the light intensity measured by the area. The fourth term does
the same for the background. Minimization of the set of the third and fourth term to terminate segmentation
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into two regions; each region is uniformly [22]. By minimizing terms, the variational formulation is achieved as
follows:

dϕ

dt
= δ(ϕ)[µ.div(

▽ϕ

| ▽ ϕ|
)− v − λ1(u0 − c1)2 + λ2(u0 − c2)2] = 0 (2)

where H(ϕ) is the Heaviside function used for decision, and µ(ϕ) is the Dirac function that δ(z) =

d
dzH(z) . In the following, the modified active contour steps are described.

2.3.1. Initial curve
The active contour method starts with an initial curve. The shape of the initial curve is effective in the growth
rate of the algorithm. In our proposed method Canny edge detector is used to make the initial curve shape.
Then the closing operator morphology is used. Wide vessels are extracted by the initial contour. This initial
contour has some advantages. The number of iterations of the algorithm is significantly reduced. Therefore, the
speed of the algorithm is increased and the computational overhead and runtime are decreased. The accuracy of
the active contour depends on initial parameters. This initial curve can reduce the dependence of the algorithm
with the values of the µ , v. Therefore, these parameters can be set to one.

2.3.2. Wavelet terms
A lot of work has been done to improve the level set formulation. The minimization formula terminates segmen-
tation into two regions, foreground and background. In other researches, the authors paid the same attention
to these two regions while the foreground pixels are more important. Therefore, we change the minimization
formulation in such a way that gives more weight to the foreground. Discrete wavelet transformation [23] is
used in our algorithm. Wavelet transform has many usages in image processing such as compression, reducing
the effect of noise, and feature extraction. The wavelet transform decomposes the image into four subbands:
approximation and the three detail subbands in the horizontal, vertical, and diagonal directions. The detail sub-
bands keep the intensity variations in the directions of 0, 45, and 90 degrees. The energy functional defined by
F (ϕ) = FCV (ϕ)+FWavelet(ϕ) . The wavelet energy (FWavelet(ϕ)) is computed by the sum of the following terms:

FWaveletH (ϕ) =

∫
inside(C)|horizontal

u0(x, y).Dh(x, y)
1/2H(ϕ(x, y))dxdy

FWaveletV (ϕ) =

∫
inside(C)|vertical

u0(x, y).Dv(x, y)
1/2H(ϕ(x, y))dxdy

FWaveletD (ϕ) =

∫
inside(C)|diagonal

u0(x, y).Dd(x, y)
1/2H(ϕ(x, y))dxdy (3)

where u0 is the input image. Equation (3) represent the continuous average values of the root of local
wavelet terms. Dh , Dv , and Dd are detail subbands of wavelet that can cover the range of intensity of vessels
in the directions of 0, 45, and 90 degrees. H(ϕ(x, y)) is the Heaviside function that acts on all level curves.
It equals H(ϕ(x, y)) = 1

2

(
1 + 2

π arctan x
ϵ

)
. The underlying idea behind the related wavelet terms is as follows:

Multiplying the original image (u0 ) in the Dh , Dv , and Dd increases the intensity of the wide vascular structure
greatly because intensity pixels of wide vessels are higher than thin vessels. Therefore, multiplying two large
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numbers gives a larger response. The root of terms reduces the different intensity values between wide vessels
and thin vessels because the root operator causes the large numbers to get too small and has less effect on small
numbers. The logarithm does the same work. Hence, logarithm (0) = infinite, so we do not use logarithm. The
contour edge has direction in each region. The contour edge has orientation in each region. The wavelet terms
help to detect edge direction in horizontal, vertical, and diagonal orientations. For as much as, bright and dark
lesions do not have direction, these terms can decrease false vessel detection. Therefore, the energy functional
from traditional active contour in Equation 1 is rewritten by:

F (ϕ) = µ

∫
Ω

| ▽H(ϕ(x, y))|dxdy + v

∫
Ω

H(ϕ(x, y))|dxdy + λ1

∫
inside(C)

|u0(x, y)− C1|2 H(ϕ(x, y))dxdy +

λ2

∫
outside(C)

|u0(x, y)− C2|2 (1−H(ϕ(x, y))dxdy + λ3

∫
inside(C)|horizontal

u0(x, y).Dh(x, y)
1/2H(ϕ(x, y))dxdy+

λ4

∫
inside(C)|vertical

u0(x, y).Dv(x, y)
1/2H(ϕ(x, y))dxdy+λ5

∫
inside(C)|diagonal

u0(x, y).Dd(x, y)
1/2H(ϕ(x, y))dxdy

(4)
where µ ,v, λ1 , λ2 , λ3 , λ4 , λ5 are positive constants, and c1 , c2 are average (u0 ) in ϕ0 >= 0 and ϕ0 < 0 ,

respectively. µ
∫
Ω
| ▽ H(ϕ(x, y))| is regarding the total length of edge contour. Similarly, v

∫
Ω
H(ϕ(x, y))| is

regarding the total area in the contour. The third and fourth terms are similar to the CV model. Fifth to
seventh terms are related to wavelet terms (Equation 3). Finally, the proposed energy fitting minimization can
be written:

dϕ

dt
= δopt(ϕ)[µ.div(

▽ϕ

| ▽ ϕ|
)−v−λ1(u0−c1)2+λ2(u0−c2)2+λ3(u0.Dh)

1/2+λ4(u0.Dv)
1/2+λ5(u0.Dd)

1/2] = 0 (5)

For larger numbers, algorithm gives us a better response although these terms reduce true vascular
detection. It is a trade-off for us between higher accuracy and true positive rate. Wavelet terms help to receive
upper accuracy. However, it can reduce vessel detection rate.

2.3.3. Optimization process
In the previous section, we used wavelet terms in energy minimization, but wavelet terms can eliminate thin
vessels whose directions are different from the wavelet terms orientations. Moreover, sometimes nonvessel
structures have high intensity such as pathologies. In such cases, the active contour cannot detect edges good
and pathologies parts are considered as vessels. In Figure 2 you see a part of an image that has signs of
pathology. In this image, the active contour cannot detect edges good and pathology regions are considered as
vessels. In presence of the high intensity in these regions, active contour in the next iterations cannot modify
evolution function. Generally, false edge detection happened for one or more of the below reasons: The presence
of pathology or intensity inhomogeneities in the image.

Sometimes, the level set function develops irregularities during its evolution and may destroy the stability
of the evolution. Therefore, a solution for modification is used that is called ’reinitial’, but it is difficult to do.
The active contour does not have ’reinitial’. To prevent the destruction of the stability of evolution, we use an
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(a) (b)

(c)

Figure 2. A part of image of DRIVE. (a) the original image, (b) the image after applying enhancement filter, (c) the
result of active contour after lot of iterations.

optimization process formula that its task is to keep contour on the edges of the image. The proposed algorithm
develops an equation below for modification of evolution function:

Eopt(x, y) = α1En(x, y) + α2IHess(x, y)En(x, y) + α3IMf (x, y)En(x, y) (6)

where α1 > 0 , α2 > 0 , and α3 > 0 are constants that control the priority of each term. En is achieved
from Equation 7.

En(x, y) = En−1(x, y) + ∆tF (ϕ, x, y) (7)

where F (ϕ, x, y) is energy functional, ∆t is time step, and n is number of iterations. E0 is the initial
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curve and its obtained as E0(x, y) = ϕ0(x, y) ϕ(0, x, y) . IHess and IMf in Equation 6 are binary images from
Hessian matrix [24] and matched filter [7], respectively. Matched filter considers a model for vessels. It has a
2-D Gaussian kernel and convolves by the main image. The convolution kernel needs to be applied at several
rotations. Twelve times the kernel is rotated in 15◦ increments to fit into vessels of different orientations. The
maximum response of the filter is selected for each pixel and then uses a threshold method to provide a binary
vessel image. In [24] a vessel enhancement filter by components of Hessian matrix is presented. The Hessian
matrix is a square matrix that contains partial second derivatives. These matrixes can be formed by convolutions

of image and three second derivatives Gaussianxx , Gaussianyy , and Gaussianxy as H(f) =

[
fxx fxy
fxy fyy

]
.

Eigenvalues γ1 and γ2 are obtained as γ1 = 1/2(fxx + fyy + temp) and γ2 = 1/2(fxx + fyy − temp) that

temp is achieved as temp =
√
(fxx− fyy)2 + 4f2

xy) . The filter is given as:

Hess =

{
0 ifγ2 > 0

exp(− R2
β

2β2 )(1− exp(− s
2c2 )) otherwise

(8)

where Rβ = γ1

γ2
and s =

√
γ2
1 + γ2

2 . Hessian matrix has some properties such as noise elimination, determination

of linear structures and spot like. Frangi filter [24] can ignore pathology regions easily. On the other hand, the
matched filter has achieved good results for thin vessel detection. Therefore, using the advantages of the filters
can improve the active contour result. IHess and IMf are both binaries. Multiplying IHess and En(x, y)

eliminated the pathologies and noises that the energy function detected as the vessel. However, this term ignores
ridges. Matched filtering detects thin vessels very well. To summarize, in Equation 6 we have three results for
each pixel (i,j): The first term pointed original pixel in the energy function. The second term replaces zero
when the pixel included low intensity or the pixel did not orient. In the third term, the intensity of thin vessels
pixels is increased. Set of the probabilities, make an optimal evaluation functional that controls active contour
and repair itself in each iteration. Optimal process pulls contour toward the foreground.

2.4. Vessel tree generation

The final step is to extract the vessels tree. There are several methods for classification. In this work, we
used simple thresholding with a global threshold level that obtains from Otsu’s method [25]. We have two
classes of pixels in the vessel segmentation. The pixel (i,j) belongs to the foreground or background. The Otsu
algorithm calculates the optimum threshold separating these classes so that their interclass variance is maximal
[25]. Optic disc or bright lesions can increase false positives. Moreover, some thin vessels are fragmented.
Therefore, the restoration of fragmented-edges and eliminating noise requires postprocessing. For this work, we
used morphological operators. Noise pixels are not connected to the vessel tree. Thus, we consider a number as
a threshold level and eliminated regions whose number of pixels is less than the threshold. For linking edges,
bridge morphologies operator was used. Bridge operator connects pixels, they have two nonzero neighbors.

3. Experimental results and method evaluation

We carry out the algorithm in MATLAB version R2014a on a personal computer running Windows 10 with an
Intel(R) Core i5-7200U, the processor 2.5GHz and 8 GB of memory. The proposed algorithm is examined on
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the five public available datasets. The DRIVE database 1 contains 40 color retinal images that are divided into
two equal parts: a training set and a test set which the training set is used for initialization parameters. We use
set A of the manual segmentation at the ground truth. The images of the DRIVE dataset were obtained using a
Canon CR5 3CCD camera with a 45-degree field of view, with 8 bits per color plane at 565 by 584 pixels. Notice
that the performance of active contour depends on its initial parameter values, and determining parameters is
a demanding issue. We set the parameters in such a way that yields good performance. The parameters that
should be determined are as follows: ∆t , µ , v, λ1 , λ2 , λ3 , λ4 , λ5 , α1 , α2 and α3 that λ3 , λ4 , λ5 , α1 , α2

and α3 are additional parameters in the proposed active contour. The parameters of µ and v control length
and area of contour. µ , v can be set to one due to the special initial curve in the part 2.3.1. ∆t is the time step.
The lower value of ∆t decreases the speed of evaluation and the result of segmentation becomes more reliable.
We set it as ∆t = 0.001 by experimenting. λ1 controls the foreground region and λ2 acts the same work for
background. By increasing the value of λ1 , the true classified rate is decreased and accuracy is increased. The
effect of λ2 is the opposite of λ1 . λ3 , λ4 , λ5 are constants of wavelet terms. These parameters have the same
act of λ1 . We determined these parameters to gain a good value of accuracy and the must thin vessel detection
rate. Therefore, it is a trade-off to select the initial values of these parameters. In this work, the best selections
are λ1 = 0.6 , λ2 = 0.7 , λ3 = 5 , λ4 = 5 , λ5 = 4 . α1 , α2 , and α3 are related to the optimization process in eq
5. α1 , α2 and α3 parameters have a significant effect on segmentation results. Moreover, the effect of all three
parameters should be determined together. We examined these values experimentally by changing the values
of the parameters on the images of DRIVE. Finally, these set as follows: α1 = 0.8 , α2 = 0.07 , α3 = 0.08 . All
parameters of the modified active contour model are given in Table 1.

Table 1. The parameters of the modified active contour model.

∆t = 0.001 µ =v=1 α1 = 0.8 α2 = 0.07 α3 = 0.08

λ1 = 0.6 λ2 = 0.7 λ3 = 5 λ4 = 5 λ5 = 4

STARE2 contains 20 color retinal images, which size of the images is 605 by 700 pixels. We use the hand
labeled provided by Hoover at the ground truth. HRF3 is an image dataset of high-resolution that contains 45
images. This database consists of three groups: 15 healthy patients, 15 patients with diabetic retinopathy, and
15 glaucomatous patients. All images were used for the test. To decrease the computational cost, all images
on the HRF dataset were downsampled by a factor of 2. CHASEDB14 dataset contains 28 images that Each
image is annotated by two independent human observers. We use the hand-labeled provided by observer 1.
All images were used for the test. Similarly, ARIA online dataset5 contained three groups; healthy subjects,
diabetic subjects, and age-related macular degeneration subjects. All 59 Diabetic images were used for the test.
In the following, the evaluation measures are introduced. Then the proposed algorithm is compared with other
work and also compared in the absence of main vessels.

1DRIVE (2004). Digital Retinal Images for Vessel Extraction [online]. Website
http://www.isi.uu.nl/Research/Databases/DRIVE

2STARE (1975). STructured Analysis of the Retina [online]. Website http://cecas.clemson.edu/ ahoover/stare/
3HRF (2013). High-Resolution Fundus (HRF) Image Database [online]. Website http://www5.informatik.uni-

erlangen.de/research/data/fundus-images/
4CHASE DB1 (2011). Retinal image database [online]. Website http://blogs.kingston.ac.uk/retinal/chasedb1
5ARIA Online (2006). Retinal Image Archive [online]. Website http://www.eyecharity.com/aria
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3.1. Evaluation measures
In the vessel segmentation, we have two classes: vessels and nonvessels. Nine measures are used to evaluate the
proposed algorithm: accuracy (ACC), true positive rate, or TPR (vessel pixel counts that true classified), false
positive rate (FPR) (nonvessel pixel counts that false classified), sensitivity (SN), specificity (SP), precision
(Pr), negative predictive value (NPV), F1, and AUC. Accuracy (ACC) is calculated as the number of all true
classified pixels divided by the total number of all pixels. Hence, there are usually background pixels more than
vessel pixels, so accuracy measure is not useful to indicate performance, alone. Therefore we use other measures.
Sensitivity is calculated as the number of true positive divided by the total number of positives. Specificity
(SP) is calculated as the number of true negative pixels divided by the total number of negatives. It is also
called the true negative rate (TNR). Precision (Pr) is calculated as the number of true positive pixels divided
by the total number of positive predictions. It is also called positive predictive value (PPV). F1 is a harmonic
mean between precision and sensitivity. Finally, AUC is a mean between sensitivity and specificity. AUC is a
better measure of indicating classification performance. The formulas above are defined as follows:

TPR = TP
V esselpixelcount FPR = FP

non−V esselpixelcount Acc = TP+TN
FOV pixelcount

SN = TP
TP+FN SP = TN

TN+FP AUC = SN+SP
2

PR = TP
TP+FP NPV = TN

TN+FN F1 = 2PR.SN
PR+SN

The enhancement phase is very important in the performance of segmentation. There are different
enhancement filters to highlight vessels. We carried out two enhancement filters on the DRIVE dataset:
morphologies filter [20] and Frangi filter [24]. The parameters of the Frangi filter are shown as follows: scales:
1-5, scale ratio:1, β1 = 0.25 and β2 = 5 . However, all of the parameters of [20] were not changed. Their
results are shown in Table 2. According to Table 2, it is obvious that morphologies filter [20] gives a better
result than the Frangi filter [24]. Therefore, we used [20] to enhancement filter. Table 3 shows the performance
measures of the proposed algorithm for the images of DRIVE, STARE, HRF, CHASEDB1, and ARIA datasets,
by morphologies filter [20]. The average accuracy, sensitivity, and specificity of DRIVE are achieved 0.943,
0.7336, and 0.9741, respectively. The value of average sensitivity is high and it demonstrates that thin vessels
are well detected. Moreover, the value of the average AUC of DRIVE is equal to 0.8539. Pr and NPV of DRIVE
are equal to 0.8078 and 0.9612, respectively. The precision metric is the probability that pixels detect as vessels
truly be the vessel pixels. Negative predictive value is the probability that pixels detect as nonvessels, truly be
the background pixels.

Table 2. Performance of using different enhancement method with the proposed segmentation on the DRIVE.

Enhancement method Acc Sn Sp AUC
Frangi filter [24] 0.9257 0.6614 0.9645 0.8130
Morphologies filter [20] 0.9430 0.7336 0.9741 0.8539

In addition, the proposed algorithm is analyzed on STARE, HRF, CHASEDB1, and ARIA datasets,
in which the average accuracy, sensitivity, and specificity of STARE are achieved 0.9372, 0.7831, and 0.9553,
respectively. HRF is a new dataset that is first used in 2013 [26]. The average accuracy, sensitivity, and
specificity of all 45 images in the HRF dataset are achieved as 0.9441, 0.7799, and 0.9611, respectively. Table 4
shows the comparison of the work in [26] and our algorithm. The performance of [26] for healthy images is
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the same as our approach but the performance of [26] is higher than our algorithm for diabetic retinopathy
images. On the other hand, we achieved better performance with glaucomatous images than [26]. The average
sensitivity of the ARIA dataset is the lowest of the five databases because we have used diabetic images for the
test. In contrast, The CHASEDB1 dataset has the worst false positive rate of the five databases.

Table 3. Performance metrics on the DRIVE, STARE, HRF, CHASE DB1, and ARIA databases.

Performance TPR FPR ACC SN SP Pr NPV AUC F1 score
Mean DRIVE 0.7333 0.0259 0.9430 0.7336 0.9741 0.8078 0.9612 0.8539 0.7649
Mean STARE 0.7829 0.0447 0.9372 0.7831 0.9553 0.6917 0.9743 0.8692 0.7244
Mean HRF 0.7799 0.0375 0.9441 0.7799 0.9611 0.6839 0.9769 0.8705 0.7219
Mean CHASEDB1 0.7876 0.0611 0.9242 0.7928 0.939 0.5905 0.9763 0.8659 0.6721
Mean ARIA online 0.6254 0.0377 0.9317 0.6267 0.9623 0.6344 0.9627 0.7945 0.614

Table 4. Performance of vessel segmentation methods on the HRF database.

Healthy Glaucomatous Diabetic retinopathy
Acc Sn Sp Acc Sn Sp Acc Sn Sp

Odstrcilik [26] 0.9539 0.7861 0.975 0.9497 0.79 0.9638 0.9445 0.7463 0.9619
Proposed algorithm 0.9516 0.7897 0.9723 0.9515 0.7869 0.9666 0.9292 0.763 0.9446

3.2. Comparison with published methods
In this section, the performance of the proposed algorithm is compared with the papers in the literature. Firstly,
it is compared with several active contour methods and then is compared our model with other methods. The
active contour models used in this comparison are: Chan-Vese (CV) [19], ROT [17], active contour based on
intensity inhomogeneities (ACII) [16] and IPACHI [18]. The results of these comparisons are shown in Tables 5
and 6. We implemented the CV model and ACII model based on the original papers [16, 19], for the DRIVE
database. We need to set initial parameters of [16] to using the DRIVE database. Because it was performed
for MR images of the brain. To get the best performance, the parameters of the ACII are set as follows:
k ≥ (2σ)2 + 1 , ∆t = 0.01 , and µ = 1 . The parameters of the CV model are set as our algorithm. The results
of the ROT and IPACHI are taken from respective original papers [17, 18]. All methods were performed on
DRIVE and STARE datasets. The ACII [16] have the worst results because this work was not designed for the
retinal images. The results of ROT are close to those our approach. The value of the accuracy of the proposed
algorithm is close to that of CV model. The sensitivity and AUC of our approach are better than those of
the traditional CV model for DRIVE images. The value of specificity in the Chan-Vese method is higher than
that of our method. In contrast, the value of Sn and AUC in the CV model are higher than our method. The
IPACHI model is not in Table 5. IPACHI has an enhancement that is different from our enhancement filter.
To make a fair comparison, we changed our enhancement phase from [20] to Frangi filter [24]. Therefore, the
Frangi filter parameters were set to the same as the values of parameters used in the IPACHI model: Scales are
1-8 and the scale ratio is 2. You can see the results in Table 6. As expected, the performance of the proposed
algorithm was reduced by changing the enhancement filter. The accuracy, specificity, and AUC in our approach
are better than those of IPACHI on the DRIVE dataset. Just the sensitivity of IPACHI is higher than that
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of our approach. In contrast, for the STARE database, IPACHI has better performance of the accuracy and
specificity. Overall, our results segmentation is better than that of our competitors.

Table 5. Performance of different active contour methods on the DRIVE and STARE databases.

DRIVE STARE
Acc Sn Sp AUC Acc Sn Sp AUC

Chan-Vese [19] 0.9435 0.6905 0.9809 0.8357 0.9309 0.7953 0.9476 0.8714
Intensity inhomogeneities [16] 0.9126 0.6142 0.9566 0.7854 0.9195 0.5874 0.9569 0.7722
ROT [17] —— 0.7282 0.9551 0.8417 —— 0.752 0.968 0.860
Proposed algorithm 0.9430 0.7336 0.9741 0.8539 0.9372 0.7831 0.9553 0.8692

Table 6. Performance of two active contour models on the DRIVE and STARE databases.

Enhancement method Database Acc Sn Sp AUC
IPACHI [18] Frangi filter DRIVE 0.853 0.686 0.867 0.776

STARE 0.938 0.634 0.967 0.801
Proposed algorithm Frangi filter DRIVE 0.9189 0.6502 0.9583 0.8043

STARE 0.9287 0.7355 0.9504 0.8429

Previous experiments indicate that our method is comparable to the state-of-the-art active contour
models. In this section, we want to make a comparison with other methods. Table 7 shows the performance
of our method and the others on the DRIVE, STARE, HRF, and CHASE DB1 datasets. Gao et al. [6] only
used the STARE dataset. Frangi and Heneghan were implemented based on the original papers on the DRIVE
database. To get the best results for Frangi on the images of DRIVE, the parameters are set as follows: Scales:
1-5, scale ratio:1, β1 = 0.25 and β2 = 5 . Frangi filter is a vessel enhancement method. We use the Otsu
threshold [25] to convert the gray level to a binary image for Frangi. Except for the above papers, The results
of the other methods are taken from respective original papers. It is observed from Table 7 that our approach
has the highest performance of segmentation on the DRIVE images. Only the results obtained by Fraz et al.
[27] and Dash et al. [5] are close to the proposed algorithm, but the results of the pathological images in the
Fraz method are much lower than those of our method. The average accuracy of Fraz for three images (3, 8,
14) of DRIVE is the same as our approach but its average sensitivity is 0.6759 while the average sensitivity of
our approach is 0.7406 and it demonstrates that the proposed algorithm is more efficient than Fraz for vessel
segmentation in pathological images. Similarly, the average accuracy of [5] for three pathological images is
lower than the average accuracy of the proposed algorithm. In a similar way, we have a better performance
measure of pathological retinal images than [38]. The average sensitivity of [38] in the pathological images is
0.7181. Although the accuracy of Heneghan is the highest value, Heneghan has the worst values of sensitivity
in Table 7. The value of accuracy in our approach based on STARE images is less than other related work,
but the proposed algorithm has a higher sensitivity than other algorithms. The authors in [12] obtained the
highest sensitivity, in all datasets, while the average of specificity in [12] is the lowest. It shows that this work
has low power in pathology detection and noise elimination. The average accuracy of [12] of DRIVE and HRF
is lower than our method. In contrast, our average accuracy of CHASEDB1 is lower than [12]. We do not know
how the average of AUC is calculated in [12]. AUC is a mean between sensitivity and specificity but in [12] it
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is calculated differently. It should be mentioned that the proposed algorithm is less dependent on the training
set and although we did not set the parameters for STARE, HRF, and CHASEDB1 datasets, the performance
of the proposed algorithms is comparable to the state-of-the-art approaches.

3.3. Comparison in the absence of main vessels

In retinal blood vessel extraction, a major limitation is that thin blood vessels cannot be detected very well,
due to lower contrast. On the other hand, most of blood vessels’ pixels are thick vessels. Therefore in these
images, the accuracy measure depends on thick vessels and it is clear that the percentage of accuracy typically
will be high. Similarly, sensitivity is not useful to indicate performance alone. Therefore, we decided to ignore
larger vessels by eliminating thick vessels from images of the Drive dataset. In the next step, to exhibit the
performance of the detection of thin vessels, we need a new benchmark of the DRIVE database in the absence
of thick vessels. To remove thick vessels, the Canny detector is used. Figure 3 illustrates a randomly chosen
benchmark of DRIVE and the corresponding new benchmark image. Afterward, we calculated the measures in
Table 8 for all the 20 images of the test set of the DRIVE dataset with a new benchmark.

(a) (b)

Figure 3. (a) Expert’s annotation, (b) the corresponding new benchmark that made by us.

The average TPR is achieved 0.4544 which means our algorithm can detect 45.44 percent of the thin vessel
pixels. The average accuracy, FPR, and informedness are achieved as 0.9616, 0.0164, and 0.4387, respectively.
We calculated these five metrics for papers [8, 16, 19, 20, 24], and present them in Table 8. We use Otsu’s
method for thresholding in all five papers to make a fair comparison. In this section, we use a new measure
called J index or informedness. It is obtained as J = sensitivity + specificity – 1. F-score only considers two
positive classes (precision and sensitivity) but the J index considers information from both positive and negative
classes (sensitivity and specificity). The ability of the algorithms with informedness shows better than TPR
alone. It is observed in Table 8 that the J index of the proposed algorithm is higher than the other methods
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Table 7. Performance of vessel segmentation methods on the DRIVE, STARE, HRF, and CHASEDB1 databases.

DRIVE
Method Accuracy TPR FPR Sensitivity Specificity AUC

Chaudhuri [7] Match filter 0.8709 0.6326 0.0936 —— —— ——
Frangi [24] Multiscale 0.9244 0.6804 0.0398 0.6808 0.9602 0.8205
Henghen [20] Morphology 0.9531 0.5456 0.0075 0.5456 0.9925 0.7691
Fraz [27] Morphology 0.9422 —— —— 0.7302 0.9742 0.8522
Nguyen [4] Multiscale 0.9404 —— —— —— —— ——
Zhang [10] Match filter 0.9382 0.7120 0.0276 —— —— ——
Zolfagharnasab [8] Match filter 0.9269 0.6239 0.0286 —— —— ——
Khan [28] Morphology 0.96075 —— —— 0.7462 0.9801 0.8631
Singh [29] Match filter 0.9522 0.7594 0.0292 —— —— ——
Roy [30] Match filter 0.9295 —— —— 0.4392 0.9622 0.7007
Dash [5] Multiscale 0.9496 —— —— 0.7314 0.9891 0.8602
Shukla [31] Match filter 0.9476 —— —— 0.7015 0.9836 0.8426
Soares [32] Multiscale 0.9461 —— —— 0.7332 0.9782 ——
Melinscak [11] CNN 0.9466 0.7276 0.0215 —— —— ——
Shin [12] CNN 0.9271 —— —— 0.9382 0.9255 0.9802
Proposed algorithm Active contour 0.9430 0.7333 0.0259 0.7336 0.9741 0.8539
STARE
Fraz [27] morphology 0.9423 —— —— 0.7318 0.9660 0.8489
Nguyen [4] Multiscale 0.9324 —— —— —— —— ——
Zhang [10] Match filter 0.9484 0.7177 0.247 —— —— ——
Khan [28] Morphology 0.94585 —— —— 0.75805 0.9627 0.8604
Singh [29] Match filter 0.9270 0.7939 0.0624 —— —— ——
Roy [30] Match filter 0.9488 —— —— 0.4317 0.9718 0.7018
Gao [6] Multiscale 0.9401 —— —— 0.7581 0.9550 08566
Shukla [31] Match filter 0.9573 —— —— 0.7023 0.9863 0.8443
Soares [32] Multiscale 0.9479 —— —— 0.7202 0.9747 ——
Shin [12] CNN 0.9378 —— —— 0.9598 0.9352 0.9877
Proposed algorithm Active contour 0.9372 0.7829 0.0447 0.7831 0.9553 0.8692
HRF

Method Accuracy TPR FPR Sensitivity Specificity AUC
Shin [12] CNN 0.9349 —— —— 0.9546 0.9329 0.9838
Proposed algorithm Active Contour 0.9432 —— —— 0.7882 0.9596 0.8738
CHASEDB1

Method Accuracy TPR FPR Sensitivity Specificity AUC
Shin [12] CNN 0.9373 —— —— 0.9463 0.9329 0.983
Proposed algorithm Active Contour 0.9239 —— —— 0.8 0.9365 0.8683
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with a lot of difference. The active contour based on intensity inhomogeneities [16] has the lowest value of the
informedness index by 0.0191.

Table 8. Performance of vessel segmentation methods on the DRIVE database in the absence of wide vessels.

ACC TPR FPR Informedness
Frangi [24] 0.9514 0.3271 0.0215 0.3062
Henghen [20] 0.9712 0.0877 0.0027 0.085
Intensity inhomogeneities [16] 0.9105 0.0647 0.0457 0.0191
Zolfagharnasab [8] 0.9005 0.3556 0.0757 0.2805
Chan-Vese [19] 0.9610 0.3319 0.0070 0.3253
Proposed algorithm 0.9616 0.4544 0.0164 0.4387

4. Conclusion
In this paper, a blood vessel segmentation based on a modified active contour of the retinal images is presented.
In this work, firstly, a preprocessing phase to improve the contrast between vessels and background was
performed. Then vessel enhancement filter with morphologies operators and second derivation Gaussian is
used to increase the contrast and decrease intensity inhomogeneities and noises. In the next step, we increased
the performance of the active contour with changing energy formula. We proposed an improved energy function
using discrete wavelet transform to solve the problem of the false detection rate. In addition, we introduced
the optimization process phase that improved the performance of the proposed algorithm. The result of the
proposed algorithm is better than other works. To more demonstrate the performance of our approach, we
compute evaluation metrics in the absence of main vessels. The results demonstrated our approach is comparable
to the state-of-the-art approaches.
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