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Abstract: Wireless sensor networks (WSNs) have become popular for sensing areas-of-interest and performing assigned
tasks based on information on the location of sensor devices. Localization in WSNs is aimed at designating distinct
geographical information to the inordinate nodes within a search area. Biologically inspired algorithms are being applied
extensively in WSN localization to determine inordinate nodes more precisely while consuming minimal computation
time. An optimization algorithm belonging to the metaheuristic class and named penguin search optimization (PeSOA)
is presented in this paper. It utilizes the hunting approaches in a collaborative manner to determine the inordinate nodes
within an area of interest. Subsequently, the proposed algorithm is compared with four popular algorithms, namely
particle swarm optimization (PSO), binary particle swarm optimization (BPSO), bat algorithm (BA), and cuckoo search
algorithm (CS). The comparison is based on two performance metrics: localization accuracy and computation time to
determine inordinate nodes. The results obtained from the simulation illustrate that PeSOA outperforms the other
algorithms, achieving an accuracy higher than 30%. In terms of computation time to determine inordinate nodes, the

proposed algorithm requires 28% less time (on average) than the other algorithms do.
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1. Introduction

The rapid advancement in the field of embedded devices and radio communication systems has enabled the
development of wireless sensor networks (WSNs). A WSN is a network of spatially distributed sensors that
function independently and sense the surrounding area-of-interest centrally. WSNs can be used in various
smart application scenarios, such as exploration of hazardous environments, tracking of specific objects for
surveillance systems, continuous monitoring of patients in hospitals, and tracking of assets. In these scenarios,
where network coverage or routing plays an essential role, determination of the appropriate positions of the
sensor nodes or localization of nodes is of paramount importance. Therefore, localization of WSN nodes is
considered a fundamental challenge in any WSN-based application [1].

Conventionally, a large number of WSN sensors are deployed in an altruistic manner to determine the
location information of inordinate nodes in an environment. Data collected by these sensors for use in diverse
applications would be ineffective and labor-intensive without information on the appropriate location of these
sensors [2]. These challenges intensify the priority of localization in WSNs. In conventional methods, any
device can identify its position with the help of a global positioning system (GPS) and numerous localization

techniques. Due to high installation cost of GPS and relatively low performance in terms of accuracy in indoor
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environments, GPS is not considered to be a cost-effective solution to deploy WSNs on a large scale. This
specific challenge inspires researchers to develop a reasonable solution in the area of WSN localization for real-
life scenarios wherein non-GPS-equipped devices and sensors use positioning techniques in conjunction with few
GPS-enabled devices [3].

Diverse techniques that apply nature-inspired and geometric algorithms have been implemented to solve
localization issues. Herein, the primary objective of implementing bio-inspired techniques was to minimize the
localization error or reduce computation time. Biologically inspired algorithms that are categorized as meta-
heuristic algorithms are computational intelligence paradigms, where problems are modeled as multimodal
and multidimensional and solutions are provided by population-based stochastic techniques. However, in the
area of WSN localization, the implementation of these bio-inspired algorithms to achieve higher accuracy with
faster convergence is still under research [4]. Considering the challenges mentioned above, a newly developed
meta-heuristic algorithm based on the collaborative hunting strategy of penguins, named the Penguin Search
Optimization Algorithm (PeSOA), is proposed in this paper to solve the localization problems of distributed
WSNs.  Important metrics to measure the performance in the area of localization (such as accuracy and
computation time) are analyzed subsequently with four nature-inspired algorithms: particle swarm optimization
(PSO), binary particle swarm optimization (BPSO), bat algorithm (BA), and cuckoo search algorithm (CS). The
remainder of this research article includes a detailed literature survey on WSN localization. This is followed by a
description of the PeSOA algorithm and its implementation for WSN localization. Subsequently, the simulation
results are illustrated and investigated, and feasible areas of future progress are discussed with concluding

remarks.

2. Literature survey

Numerous localization schemes have been analyzed and discussed in [5]. Considering the requirements of
localization schemes, algorithms that are recommended in the literature can be categorized into range-based
and range-free localization schemes. The balance between localized and anchor nodes is crucial for range-
free schemes. In [6], [7] and [8], categories of range-free localization is detailed. In contrast to range-free
localization schemes, both radio signal strength (RSS) and estimated distance between the anchor and localized
nodes are essential for performing range-based localization schemes [5]. Most of the approaches in the literature
considered localization as a multidimensional problem and addressed numerous techniques whose precision rates
are relatively high. In [9], highly effective localization schemes were introduced to WSN through an accurate
positioning system (APS). Here, the capability of identifying unknown nodes with the help of GPS is enhanced
to non-GPS equipped nodes. A system that attained high accuracy by flooding the location of the anchor
or GPS-equipped nodes to the area of interest and utilizing a triangulation approach was proposed in [10].
Refinement techniques to enhance this further were proposed in [11].

As localization accuracy remains prime metrics in WSN localization scenario, a Kalman filter was
developed based on the least squares method and implemented successfully to achieve higher accuracy in the
area of WSN localization [12]. Through consideration of the localization problem in WSNs in the field of
multidimensional problems, this approach enabled the authors to apply gradient search techniques to analyze
unknown data and calculate minimal path distances. Subsequently, the information related to the shortest path
distances was fed to the algorithm to identify the unknown nodes more accurately. In [13], authors introduced
a convex optimization algorithm for WSN localization. The dependency on the distance calculation to achieve

higher localization accuracy is omitted here. Convex programming assists the localization algorithm to achieve
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higher accuracy with a trade-off between the computational time and power consumption of the nodes. Apart
from that, in [14] and [15], authors illustrated the convex programming in WSN localization having energy
consumption as a trade-off factor. The GF (Genetic Fuzzy) algorithm in WSN localization is mentioned in
[16]. Tt mimics the features of the DV-HOP algorithm and utilizes hop counting techniques for calculating
the distance between anchor nodes and unknown nodes. The algorithm relies on faultless measurements and
dense deployment of WSNs to achieve high precision. Authors of [17] proposed a micro-genetic algorithm to
perform localization tasks for an APS as a post optimizer. In recent years, approaches based on the use of
biological models and generic population-based techniques, commonly known as bio-inspired algorithms, have
been applied in the area of localization to solve localization challenges. This is due to the high accuracy and

faster convergence of such approaches [17].

In [18], unknown nodes were localized using a simulated annealing algorithm and densely deployed anchor
nodes within the area of interest. A genetic algorithm (GA) was used in [19] to determine the ideal position of
unknown nodes. A multi-phased localization approach that combines GA and simulated annealing was proposed
in [20] to resolve the flip ambiguity issues between neighboring nodes. PSO- and iterative-PSO-based schemes
were proposed in [21] and [22], respectively, to localize inordinate nodes and achieve higher accuracy with the
help of three or more surrounding nodes. An objective function was developed and implemented in [23]; however,
the fitness value of the particles remains a significant concern. In [24], a system to achieve high precision by
calculating fuzzy logic system (FLS) weights was introduced. It utilizes RSS from nodes equipped with GPS
information and integrates it with the edge weights of these nodes. Nonetheless, it is a noteworthy research area
for gaining advantages in terms of computational time and localization accuracy simultaneously. Accordingly,
in this study, a new bio-inspired algorithm, called penguin search optimization algorithm (PeSOA) [25], was
implemented to address the localization issue in WSNs. PeSOA is based on the collaborative hunting strategy
of penguins. The proposed scheme performs better than other related approaches in terms of computation time

and accuracy of locating inordinate nodes.

3. Penguin search optimization algorithm

A beneficial search activity of an animal is defined as a search activity where the energy gain is relatively
substantial compared with the energy consumed. Penguins, a group of aquatic flightless birds, utilize this
specific characteristic to extract information such as search times, cost of food, and energy content in the prey.
Resource availability and distance between nesting areas become prime factors in hunting behavior within the
area-of-interest of penguins. Penguins, commonly known as sea birds, adapted their activities for swimming
by utilizing wings. For penguins, the breathing capacity remains a base factor while diving because the dive is
dependent on the reserve oxygen. The more speed and depth they gain, the more they consume oxygen, and the
trip time starts to reduce [25]. Food required by large numbers of groups varies by species, age, and availability
of food within the area of interest. An optimization has been developed straightforwardly by utilizing the

hunting technique of penguins. This is outlined below:

e The total number of penguins is divided into several groups based on the food availability within the area

of interest. Furthermore, their reserve oxygen before diving into the water is assessed.

e The entire area of interest is divided into several depths to search for the necessary food. In any specific

group, each penguin searches for food in an arbitrary manner within the specified boundary of the group.
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Penguins return to the surface after performing several dives and share their information regarding food

availability and the location of food sources, through unique vocalizations.

o Based on the availability and food quantity, penguins reorder their groups to attain equilibrium. Finally,

the group that locates the largest food source shares the location information among the penguins.

bRy

To develop the algorithm, the position of penguins within the area of interest is denoted as ”:”. The group
distribution is completed based on the presence of food sources within the area of interest. Elementary steps

are developed by applying these rules and summarized as a pseudo-code, which is illustrated in algorithm 1 [25].

Algorithm 1 Penguin search optimization algorithm (PeSOA)

1: Generate a random population of P penguins in groups
2: Initialize the probability of presence of fish in the holes and levels
3: For i=1 to number of generations
4:  For each individual i € P, do
While oxygen reserves are not depleted
Take a random step
Improve the penguin positions using the position update equation
Update the quantities of fish eaten by this penguin
EndWhile
10:  End For
11:  Update the quantities of eaten fish in the holes, levels, and best groups
12:  Redistribute the probabilities of penguins in the holes and levels
13:  Update best solution
14: End For

By considering the search area as a multidimensional search space, the best solution is developed using
the food dispersal probability to achieve an optimal value and obtain the maximum amount of food. All the
members of a group utilize an identical solution within the search space. In general, each group performs several
dives based on the amount of reserve oxygen and the probability of food expediency within the search area.

Penguins update their search positions after each cycle using the following solution:

Dnew - DLastLast + Tand()|XLocalBest - XLocalLast| (1)

where D, represents the updated position of penguin and rand() is a random number for the distribution.
Drastiast, XLocaiBest and XpocaiLast represent the final and local best solutions that are used to update the
positions of the penguins within a group. Penguins tend to swap necessary information to determine an optimal
solution and rearrange the group after performing several dives within the area of interest. The attainment of
the global optima without falling into the local optima after several iterations enables the PeSOA to perform

better than conventional population-based approaches.

4. Proposed localization technique using PeSOA

The main objective of performing WSN localization is to determine the maximum inordinate nodes with the
help of anchor nodes. In the conventional approach, the total number of inordinate nodes (N) is deployed
randomly within the search. In the proposed approach, a minimal number (M) of nodes are deployed with a
GPS facility (anchor nodes). With M anchor nodes and a transmission capability over the range R, the number

of localizable nodes within the area of interest is N — M. The location information of GPS-equipped devices
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needs to be transmitted in each iteration during the localization scheme. In each iteration, localized nodes are
considered as nodes of reference for the subsequent iteration. If a non-GPS-equipped node has at least three
nodes within its surroundings, the node will be considered as a localizable node. The environment plays an
important role in the calculation and affects the accuracy in any WSN scenario. This is because all the nodes

are part of the wireless system. This effect is considered to be a Gaussian noise and is denoted as Nygise - It is

used in 2, where the localizable nodes are considered for calculating the distance d;:

di = dz + Npoise (2)

Here, d; denotes the actual distance and is obtained as follows [23]:

di = /(x = 21)2 + (y — 11)? 3)

In the above equation, the positions of the destination node and *" anchor node are denoted as (z,y) and (z;,
¥i ), respectively. Owing to the considerable impact on the RSS measurement in the calculation of distance,
the log-normal shadowing effect is considered as noise. The central objective of an optimization problem is
to minimize the objective function. The determination of the minimal localization error is regarded as the
objective function of the optimization algorithm in WSN localization schemes. Herein, this issue is formulated
as a multimodal problem. Considering this, each node that needs to be localized would apply the PeSOA
algorithm to determine the desired location (z,y). Nodes that utilize the optimization algorithm use the

following objective function:

Flay) = 27 (i~ i) (4)

i=1

\Mg

In this equation, M denotes the number of GPS-equipped nodes positioned in the transmission area of the
localizable nodes. If a node that is likely to be localized is located in between the transmission range of three
or more GPS-equipped nodes (anchor nodes), that specific node would be identified first. It, then, performs
localization by functioning as a reference node for others [23]. Because this algorithm is based on iterative
behavior, the above-mentioned process is repeated until all the inordinate nodes within the area of interest are
located. The most favorable location of the nodes (z,y) that would be localized is provided by the optimization
algorithm by minimizing the localization error. After the performance of successive iterations and determination
of each inordinate node, the error in the determination of the inordinate nodes needs to be calculated using
the mean of the squares of distances between the actual node position (X;, Y;) and computed node position
(x;, y;). Here, i ranges from 1 to Ni. N denotes the number of nodes that must be localized. The following

equation is preferred for calculating the localization error of the inordinate nodes:

N
Ep = Zi:M—H \/(xl N-z(i)z + (yi — Yi)? (5)

where Ep, is the localization error of the PeSOA algorithm. The aforementioned process is repeated until each
node within the area of interest is identified. Thus, the number of identified nodes increases. In addition, the
amount of calculation for determining the error progressively increases as the number of iterations increase. The
number of reference nodes in each iteration may vary from three to a number larger than that in the previous
iteration. By applying PeSOA algorithm, parameters such as localization accuracy and computational time are

improved compared to other algorithms.
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5. Results and discussion

A simulated environment was developed to explore the effect of the PeSOA algorithm within the area of interest.
The experiment was carried out using MATLAB, and the results are illustrated using a graph. The parameters
used to develop the simulated environment are depicted in table 1. Ten GPS-equipped nodes (anchor nodes)
and 40 inordinate or unknown nodes are positioned randomly within the area of interest (100 x 100 m). The
nodes that remain constant in all the iterations of the experiment are assigned a transmission range of 25 m.
To conduct this experiment, the total number of iterations in this experiment is fixed at 150 [26] to its highest
level. Considering the above parameters, the intended positions of the inordinate nodes are calculated using
PeSOA, as illustrated in figure 1. The localization error calculated using equation 5 is presented in Figure 2.
The simulated environment is considered to be 2D. Furthermore, the geometric dilution of precision (GDOP)

that is used in satellite navigation is not calculated, because the nodes are stationary.

Table 1. Parameters that used in the experiment.

Parameters of the system | Value

Processor Intel(R) Core (TM)i3-4005U CPU @ 1.70 GHz
Type of System 64-bit operating system

Memory 4GB

Matlab Version R2018a

WSN Localization using Particle Swarm Optimization
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90 x Unknown Nodes Location i
# PeSOA based location

80 - o 03 .
E 0 ** * x X x * * * **_
2 eof I * * X * Ok |
g 50+ +* * ¢ .
E wf ok * ** * ]
Eopr X w s |
20 - . $* & .
10 F >* o J

0 °| 1 1 ° L 1 1 6 1 1 L

0 10 20 30 40 50 60 70 80 90 100

Experimental Area (m)

Figure 1. Localization of WSN using PeSOA

In PeSOA, penguins form several groups and search for food. An increment in the number results in
more profitable searches within the area of interest. This is because penguins subsequently exchange information
among the groups and redistribute the group to search for more food sources. The more the groups of penguins,
the higher is the accuracy achieved by the collaborative searching technique. The effect of the number of groups
on the localization of the inordinate nodes is illustrated in Figure 3.

The range of transmission is considered to be one of the important parameters (apart from localization

accuracy and computation time) in WSN localization. As a trade-off, the computation time increases when the
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Localization error of unknown nodes using PeSOA
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Figure 2. Calculated localization Error of WSN nodes using PeSOA.
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Figure 3. Effect of group numbers on WSN localization using PeSOA.

error in determining the locations of nodes decreases. Simulations are performed using PeSOA to analyze the
effect of the range of transmission over the area of interest. Here, the percentage of noise (generally denoted
as P,) is considered to be 2 [27], and 150 iterations are performed. The effect of the range of transmission
is illustrated in Figure 4. Furthermore, an analysis is presented in Table 2 in terms of minimization of the
localization error and computation time. Figure 4 clearly indicates that the error decreases when the range
increases. In addition, Table 2 shows the increase in the computation time to localize all the inordinate nodes
as a trade-off factor.

If calculations cannot be performed by measuring distances from the anchor nodes, then the chance of
localizing any inordinate node within the area of interest becomes shallow. The chance of localizing inordinate
nodes could be soared through the increment of anchor nodes within the search area. Based on mentioned
considerations, for analyzing the effect of the density of anchor nodes within the area of interest, simulations are
performed, and results are illustrated in Figure 5. In addition, by considering time of computation and error

in localization as performance metrics, an analysis is presented in 3 to demonstrate the effect of the number of
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anchor nodes in search area. Figure 5 clearly depicts that the accuracy and to find out the inordinate increases

when the number of anchor node increases. On other hand, Table 3 illustrates the increase of total time to find

out the inordinate nodes within the area of interest as a trade-off factor.
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Figure 4. Effect of transmission range on WSN localization using PeSOA.

Table 2. Analysis of transmission range.

Range of Transmission (m) Mean Localization Error (m) | Time of Computation (s)
25 0.141 381.0753
30 0.136 395.0452
35 0.125 403.0184
40 0.120 410.7421
45 0.110 410.9615
50 0.08 413.9361
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Anchor node analysis for PeSOA in WSN localization

0 10 11 12 13

Number of anchor nodes

Figure 5. Effect of anchor nodes number on WSN localization using PeSOA.
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Table 3. Analysis of the density of anchor nodes deployment within the area of interest.

Number of Anchor Nodes | Mean Localization Error (m) | Time of Computation (s)
10 0.151 382.0775
11 0.123 393.0432
12 0.104 403.0197
13 0.070 408.9433

The total percentage of noise is considered as an important metric in WSN localization because it affects
the calculation of the RSS value that is used in distance calculation. Simulations were performed to assess the
impact, and the results are presented in Figure 6. The figure shows that the error in determining the inordinate
nodes increases with the increase in the amount of noise within the area of interest. This is owing to the
shadowing effect that impacts the calculation of the distance in RSS-based localization schemes. An accurate
determination of the number of localized nodes within the search area after each cycle is considered to be critical
in real-time applications of the proposed scheme. To reveal the number of nodes that are localized after each
iteration, an analysis was performed by applying two popular algorithms in conjunction with PeSOA in the
area of WSN localization. The results are presented in Figure 7. As shown in the Figure 7, PeSOA localizes
all the inordinate nodes faster than the other four algorithms because of the collaborative searching strategy in
an organized manner.To determine the overall performance, PeSOA is compared with the other four algorithms
based on the accuracy of locating nodes, density of anchor nodes, range of transmission, and amount of noise

present within the area of interest. The results are presented in Figures 8, 9, 10, and 11, respectively.

Noise effect on WSN localization using PeSOA
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Figure 6. Effect of noise amount on WSN localization using PeSOA.

A comprehensive analysis of the computation time to identify all the nodes based on the mentioned
algorithms is presented in Table 4. The figures clearly depict better performance for PeSOA over the other
algorithms in each case owing to the collaborative search strategy. The ability of PeSOA to locate an object
through division into several groups enables it to outperform the other algorithms. Because penguins search in
different groups, the velocities of the groups are continuously updated simultaneously with that of the group that

enables faster search within the search area and the determination of the locations of the inordinate nodes.To
achieve the desired solution, 150 iterations were performed in this experiment. Energy efficiency is considered
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Number of iterations vs localizable nodes using PSO, BPSO, BA, CS and PeSOA
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Figure 7. Number of localized nodes after each iteration by using PSO, BPSO, BA, CS, and PeSOA.
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Figure 8. Analysis of localization error using PSO, BPSO, BA, CS, and PeSOA.
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Figure 9. Analysis of transmission range effect using PSO, BPSO, BA, CS and PeSOA
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08 Anchor node numbers vs Localization error between PSO, BPSO, BA, CS and PeSOA
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Figure 10. Analysis of the number of anchor nodes effect for PSO,BPSO,BA,CS, and PeSOA.
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Figure 11. Analysis of noise percentage for PSO,BPSO,BA,CS, and PeSOA.

to be one of the significant concerns in the WSN scenario owing to the constraints of sensor size. It is apparent
that the energy utilized by sensors increases with an increase in computation time. The results illustrated
in Table 4 indicate that the minimal computation time obtained by PeSOA helps the nodes to maximize the
network lifetime. All the results clearly indicate the higher performance of PeSOA compared with those of the
other four bio-inspired algorithms (PSO, BPSO, BA, and CS) in terms of two important parameters of WSN

localization.

6. Conclusion

Localization remains a significant challenge in WSNs. This study formulated the localization challenge as
a multimodal problem and applied the hunting strategy of penguins through the PeSOA algorithm to solve
the challenge where nodes are deployed in a distributed manner. The simulated results reveal that PeSOA
performs better than other algorithms in terms of both the important metrics of WSNs, i.e. localization

accuracy and computation time for locating inordinate nodes. PeSOA demonstrated an average of 30% higher
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Table 4. Analysis of mean localization error and time of computation to find out the inordinate nodes.

Algorithms | Mean Localization Error (m) | Time of Computation for 150 iterations(s) | Time Complexity
PSO 0.2891 846.6145 O (m*n)

BPSO 0.3755 653.4910 O (m*n)

BA 0.2533 569.6523 t* (O (P*N/2))
CS 0.1912 505.4653 O (n?Ngq)
PeSOA 0.1134 407.5721 O (m)*n

localization accuracy and a 28% faster convergence time compared to the other mentioned algorithms suh as
PSO, BPSO, Bat Algorithm, etc. PeSOA more effectively locates inordinate nodes with minimal error by
utilizing a collaborative approach for determining the objectives. As energy consumption, network life time,
and mobility becoming major concern in the future wireless sensor networks scenario, future research studies
will be carried out by considering these parameters. Also, migration strategies of penguins especially emperor
penguin’s migration strategy can be applied to WSN localization to achieve better results in terms of accuracy
with minimal convergence time where emperor penguins strategy will tend to find out the best possible food

sources in harsh environment within the limited resources by synchronizing their dives and saving more energies.
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