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Abstract: ECC is a popular cryptographic algorithm for key distribution in wireless sensor networks where power
efficiency is desirable. A power efficient implementation of ECC without using hardware multiplier support was proposed
earlier for wireless sensor nodes. The proposed implementation utilized the number theoretic transform to carry operands
to the frequency domain, and conducted Montgomery multiplication, in addition to other finite field operations, in that
domain. With this work, we perform in the frequency domain only polynomial multiplication and use the fast Fourier
transform to carry operands between the time and frequency domains. Our ECC implementation over GF ((213 − 1)13)

on the MSP430 microcontroller implements multiplications without using a hardware multiplier. It achieves scalar
multiplication with fixed and random points in only 0.89 s and 1.74 s, respectively. Our implementation achieves ECC
point multiplication of fixed and random points 10% and 13% faster, and consuming 12% and 15% less energy, in
comparison to the existing work.

Key words: Elliptic curve cryptography, public-key cryptography, Internet of things, wireless sensor networks, Edwards
curve, fast Fourier transform

1. Introduction
Wireless sensor networks (WSNs) find applications in various areas, e.g., healthcare monitoring [1], environ-
mental monitoring [2, 3], smart grids [4] and defence applications [5]. Securing sensitive data transmitted by
WSN nodes is essential. On the other hand, a WSN node typically contains only a constrained low-power
microcontroller, with limited compute power and memory size, which makes it difficult to efficiently implement
complex cryptographic algorithms [6–8]. While symmetric key cryptography is simpler and can be implemented
efficiently on WSN nodes, public key cryptography (PKC) is significantly more complex and yet still needed for
the distribution of the symmetric keys [9].

Elliptic curve cryptography (ECC) [10, 11] is a commonly used public-key cryptosystem and considered
a viable remedy for distributing the secret keys in WSNs [12–16]. The efficiency of ECC depends on the speed
of the performed arithmetic. While projective coordinates are typically used to avoid expensive inversion, mul-
tiplication still needs to be performed. A word multiplication instruction typically takes much longer to execute
than a word addition instruction on constrained microcontrollers. On some microcontrollers, for power efficiency
and cost reasons, a multiplication circuitry does not even exist and word multiplications are implemented with
shift and add instructions. For instance, the MSP430F1232, MSP430F2274 and MSP430G2955 versions of the
MSP430 microcontroller are some of the several available microcontrollers which do not have a hardware mul-
tiplier [17–19]. Note that, among these microcontrollers, the MSP430G2955 microcontroller is used in WiSense
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sensor nodes, namely the sensor nodes WSN1120L, WSN1120CL, WSN1101ANL and WSN1101ACL [20–23].
Moreover, Texas Instruments’ (TI) development tool for wireless sensor applications, named as the TI eZ430-
RF2500 wireless module, is also equipped with MSP430F2274 [24]. Using a simple power efficient microcontroller
is particularly important for wireless sensor network nodes which are spread around in the field and harvest
their energy from the environment [25]. For energy-harvesting wireless sensor nodes, it is a concern whether the
sensor node is able to perform a power-hungry cryptographic algorithm within the limitations of the harnessed
power obtained through solar energy, mechanical vibration, electromagnetic radiation, etc. In [16], a compe-
tent ECC implementation on the constrained MSP430 microcontroller is proposed over the optimal extension
field (OEF) GF ((213−1)13) [26]. The implementation uses the number theoretic transform and Edwards curve
point arithmetic. For power efficiency, no hardware multiplier is used and arithmetic operations are carried
out in the frequency domain. In their implementation, the number theoretic transform is utilized to initially
carry elliptic curve point coordinates to the frequency domain. All arithmetic operations required in ECC point
multiplication are then conducted in the frequency domain. Montgomery multiplication is used for performing
multiplication in the frequency domain [27–29].

In our study, we improve upon the work in [16] by performing only the squaring and multiplication
operations in the frequency domain and all other arithmetic in the usual time domain. While the previous work
conducted in the frequency domain an adaptation of Montgomery multiplication, we carry out only polynomial
multiplication. We conduct reduction in the time domain and utilize the fast Fourier transform (FFT) [30] to
accelerate conversions between the two domains.

Main contribution:
We utilize the FFT over a finite field to implement ECC on a constrained microcontroller without using hardware
multiplier support for the first time in the literature. Over GF ((213−1)13) , we achieve ECC point multiplication
of random points in 1.74 s which is 13% faster than the existing work in [16]. Furthermore, we achieve ECC
point multiplication of fixed points in 0.89 s which is 10% faster than the existing work. Our proposed
implementation with the FFT achieves ECC random and fixed point multiplication consuming 29.81 mWs
and 15.27 mWs which are 15% and 12% less than the energy consumed by the existing implementation. We
show that, in terms of both timing performance and energy consumption, FFT based multiplication would
result in better performance for ECC than frequency domain Montgomery multiplication. With our proof-
of-concept implementation, we show that on an extremely constrained platform that does not use a hardware
multiplier, ECC can be performed efficiently when the FFT is used. Power savings gained through our proposed
implementation would be significant for battery powered WSN nodes whose lifetime is limited by their stored
energy, and more particularly for energy harvesting WSN nodes which harness energy from the environment
and may have more strict power constraints.

2. Background
ECC is performed over a finite field. Hence, picking an efficient finite field representation and using efficient
arithmetic algorithms over the selected finite field significantly effects the performance of ECC. We implement
ECC over an optimal extension field (OEF). The OEF representation is an efficient finite field representation
that is proposed for implementing ECC on constrained devices [26]. The OEF representation constructs the
finite field GF (pm) by choosing p as a pseudo-Mersenne prime, such that GF (p) elements fit in a single
processor register, and by using an irreducible binomial of the form xm − w where w is a small integer. The
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special forms of p and w facilitate efficient coefficient arithmetic and modular reduction. By fitting GF (p)

elements in a single register word, only a single instruction cycle is spent to execute microcontroller instructions
over GF (p) elements. When the extension degree m is selected as a prime number, ECC over GF (pm) is
considered secure [31]. In this work, we implement ECC over GF (pm) where m = 13 is prime and p = 213 − 1

is a Mersenne prime. Selecting p as a Mersenne prime allows for very efficient reduction modulo p which is an
operation commonly performed in GF (pm) arithmetic. The finite field GF ((213 − 1)13) is used in [28, 32] for
constrained hardware implementations of ECC and proved efficient.

On an elliptic curve defined over GF (pm) , the coordinates of a curve point are GF (pm) elements and
represented as degree m − 1 polynomials whose coefficients are in GF (p) [33, 34]. In ECC a large number of
divisions, multiplications, subtractions and additions are carried out. The subtraction/addition of a(x) with
b(x) in GF (pm) is achieved easily through pairwise modular word additions/subtractions of their polynomial
coefficients, as given below:

a(x)± b(x) =

m−1∑
j=0

(aj ± bj)x
j mod p .

Whereas, multiplication of GF (pm) elements is significantly more complex and necessitates a quadratic
number of coefficient multiplications modulo p and a final modular reduction with the field polynomial, given
as follows:

r′(x) = a(x) · b(x) =
2m−2∑
j=0

r′jx
j ,

r(x) = r′(x) mod p(x) ,

where p(x) can be selected as xm − 2 to make modular reduction simple. In this work, we use
p(x) = xm − 2 to construct the finite field GF ((213 − 1)13) . Polynomial multiplication requires computing
a quadratic number of expensive modular coefficient multiplications. The convolution theorem states that
time domain polynomial multiplication produces the same result as frequency domain pairwise coefficient
multiplications. Hence, the number of performed coefficient multiplications is reduced dramatically if frequency
domain is used for polynomial multiplication. The discrete Fourier transform (DFT), or its optimized form
the fast Fourier transform (FFT), can be used for carrying GF (pm) elements into frequency domain. In this
work, we implement ECC by utilizing the FFT [35] to speed up multiplication and squaring operations over
GF (pm) . Our selection of the finite field GF (pm) with p = 213−1 allows for efficient forward and inverse FFT
computations, as described in Sections 2.2.1 and 2.2.3.

2.1. Discrete Fourier transform based Montgomery multiplication

Algorithm 1 was proposed for achieving GF (pm) multiplication using discrete Fourier transform based Mont-
gomery multiplication [27, 36, 37]. The algorithm was utilized in ECC implementations for constrained wire-
less sensor nodes [16, 28]. The algorithm takes as inputs (Ā) and (B̄) , which are the frequency domain
series for ā(x) = a(x)xm−1, b̄(x) = b(x)xm−1 ∈ GF (pm) , and produces their Montgomery product. Note
that ā(x) and b̄(x) are the Montgomery forms of a(x) and b(x) . The output of the algorithm is denoted
with R̄ and represents the Montgomery product of ā(x) and b̄(x) , i.e. ā(x)b̄(x)x−(m−1) mod p(x) . Note that

96



GÜLEN and BAKTIR/Turk J Elec Eng & Comp Sci

R̄ = ā(x)b̄(x)x−(m−1) mod p(x) is equal to a(x)b(x)xm−1 mod p(x) which is the Montgomery form of the
product of a(x) and b(x) in GF (pm) . Using p = 2m − 1 , a Mersenne prime, results in more efficient DFT
computations [38]. In Algorithm 1, a linear number of word products are computed. Whereas, the number of
performed bitwise rotations, subtractions and additions are quadratic. Since multiplication is more complex
compared to other arithmetic operations on a constrained microcontroller, Algorithm 1 is desirable.

Algorithm 1: Discrete Fourier transform based Montgomery multiplication over GF (pm) , with
p = 2m − 1 and p(x) = xm − 2 [16]

Input: (Ā) and (B̄) are the frequency domain series for ā(x) = a(x)xm−1 and b̄(x) = b(x)xm−1 in
GF (pm)

Output: R̄ = ā(x)b̄(x)x−(m−1) mod xm − 2
1 for j ← 0 to 2m− 1 do
2 R̄j ← ĀjB̄j mod p

3 end
4 for i← 0 to m− 2 do
5 T ← R̄0

6 for k ← 1 to 2m− 1 do
7 T ← T + R̄k mod p

8 end
9 T ← −T/2m mod p

10 Te ← T/2 mod p

11 To ← T + Te mod p

12 for j ← 0 to m− 1 do
13 R̄2j ← (R̄2j + Te)/2

2j mod p

14 R̄2j+1 ← −(R̄2j+1 + To)/2
2j+1 mod p

15 end
16 end
17 Return R̄

2.2. Fast Fourier transform based multiplication

In a recent work, ECC is implemented using a different DFT based approach to realize GF (pm) multiplications
and squarings [39]. In [39], the FFT [30, 35, 36] is used to transform GF (pm) elements into the frequency domain.
Once the frequency domain representations for GF (pm) elements are obtained, their polynomial multiplication
is computed simply by pairwise multiplying their frequency domain coefficients. Utilizing the inverse fast Fourier
transform (IFFT) algorithm, the resulting product is carried to the time domain. In Algorithm 2, we present
this approach which is composed of the three stages: FFT, pairwise multiplication (PM) and IFFT. With
this work, similar to [39], we use FFT based multiplication to implement ECC. However, unlike in [39], we
implement FFT based ECC without using hardware multiplier support to show that ECC can be achieved
practically on an extremely constrained microcontroller without even a hardware multiplier. Furthermore, we
obtain the energy consumption profile of our ECC implementation and show that it is more energy efficient
than the existing implementation in [16] which also does not use hardware multiplier support.
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Algorithm 2: Fast Fourier transform based multiplication.
Input: a(x) and b(x) in GF (pm)
Output: r(x) = a(x)b(x) mod p(x)

1 (A)←− FFT (a(x))

2 (B)←− FFT (b(x))

3 (R)←− PM((A), (B))

4 r(x)←− IFFT ((R))

5 Return r(x)

2.2.1. Conversion of operands into the frequency domain:

The finite field elements a(x), b(x) ∈ GF ((213 − 1)13) are carried to the frequency domain with the DFT as

Ai =

25∑
j=0

aje
ji mod p, 0 ≤ i ≤ 25 (1)

and

Bi =

25∑
j=0

bje
ji mod p, 0 ≤ i ≤ 25 , (2)

where e is a 26th primitive root of unity. Algorithm 3 performs the above DFT computations over
GF ((213 − 1)13) efficiently by using the FFT. It is designed such that the seven general purpose registers on
MSP430 are used heavily to store intermediary results so that the least number of time-consuming memory
read/write instructions are executed. The algorithm uses the binomial x13 − 2 as field generating polynomial
and e = −2 as the 26th primitive root of unity. For the selected finite field GF ((213−1)13) , e is chosen as −2 .
This allows us to perform multiplications of GF (p) elements with positive powers of e , as it heavily takes place
in the FFT computation (in lines 7 and 19 of Algorithm 3), with a simple bitwise left rotation, in addition to
a simple negation if the power of e is odd. Note that for p = 213 − 1, e = −2 , a ∈ GF (p) and k a positive
integer, the computation a× ek = a× (−1)k × 2k modulo p is equivalent to the simple bitwise left rotation of
a by (k mod 13) bits followed by a simple negation if k is odd.

2.2.2. Pairwise coefficient multiplication in the frequency domain:

Frequency domain multiplication of GF ((213−1)13) elements is carried out through pairwise coefficient multipli-
cations. For (A) and (B) , the 26 -coefficient frequency domain sequences for a(x) and b(x) in GF ((213−1)13) ,
r′(x) = a(x)b(x) mod 213 − 1 is computed in the frequency domain as

R′
j = AjBj mod 213 − 1 , 0 ≤ j ≤ 25 . (3)

The above 26 coefficient multiplications are the only GF (213−1) multiplications performed for computing
(R′) which is dramatically faster than performing 169 coefficient multiplications as needed in schoolbook
multiplication. However, (R′) needs to be carried back to time domain to complete the GF ((213 − 1)13)

multiplication and find r(x) = r′(x) mod p(x) . Modular reduction with p(x) becomes very simple when p(x)

is selected as x13 − 2 . However, one still needs convert (R′) to the time domain polynomial r′(x) .
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Algorithm 3: FFT computation over GF ((213 − 1)13) on MSP430.
Input: a(x) = a0 + a1x+ a2x

2 · · ·+ a12x
12 ∈ GF (p13) where p = 213 − 1 . R0, R1...R6 denote used

registers. E0, E1...E12 and O0, O1...O12 denote used temporary variables.
Output: (A) = (A0, A1, A2...A25) , frequency domain coefficients of a(x) .

1 for j ← 0 to 6 do
2 Rj ←− a2j
3 end
4 E0 ←− R0 +R1 + ...+R6 mod p

5 for j ← 1 to 12 do
6 for i← 1 to 6 do
7 Ri ←− Ri2

2i mod p

8 end
9 Ej ←− R0 +R1 + ...+R6 mod p

10 end
11 for j = 0 to 5 do
12 Rj ←− a2j+1

13 end

14 O0 ←− R0 +R1 + ...+R5 mod p

15 A0 ←− E0 +O0 mod p

16 A13 ←− E0 −O0 mod p

17 for j = 1 to 12 do
18 for i = 0 to 5 do
19 Ri ← Ri2

2i+1 mod p

20 end
21 Oj ← R0 +R1 + ...+R5 mod p

22 Aj ← Ej + (−1)jOj mod p

23 Aj+13 ←− Ej − (−1)jOj mod p

24 end
25 Return (A0, A1, A2...A25)

2.2.3. Conversion of the polynomial product back to the time domain:

In order to finalize the finite field multiplication operation in GF ((213−1)13) , the 26 -element sequence (R′) for
r′(x) = a(x)b(x) needs to be carried into time domain to realize modular reduction, i.e. r(x) = r′(x) mod x13−2 ,
efficiently. The conversion can be done using the inverse DFT as follows:

r′i =
1

26

25∑
j=0

R′
je

−ji mod p, 0 ≤ i ≤ 25 . (4)

Algorithm 4 performs the above inverse DFT computation efficiently to convert (R′) in the frequency
domain to r(x) = a(x)b(x) mod x13−2 in the time domain. The algorithm optimizes (4) by utilizing the inverse
FFT and by interleaving it with the reduction operation modulo the field generating polynomial x13 − 2 . For
the selected finite field GF ((213 − 1)13) , the 26th primitive root of unity e for the inverse FFT computation
is chosen as −2 . This allows us to perform multiplications of GF (p) elements with negative powers of e , as it
heavily takes place in the inverse FFT computation (in lines 7, 17, 27 and 38 of Algorithm 4), with a simple
bitwise right rotation, in addition to a simple negation if the power of e is odd. Note that for p = 213−1, e = −2 ,
a ∈ GF (p) and a positive integer k , the computation a× e−k = a× (−1)k × 2−k modulo p is equivalent to the
simple bitwise right rotation of a by (k mod 13) bits followed by a simple negation if k is odd.

2.3. ECC over GF ((213 − 1)13) using Edwards curves

Edwards curves, described by x2 + y2 = c2(1+ dx2y2) , are proposed for ECC [40]. Given below is the Edwards
curve point addition formula for the operation P3(x3, y3) = P1(x1, y1) + P2(x2, y2) :

x3 =
x1y2 + y1x2

c(1 + dx1x2y1y2)
and y3 =

y1y2 − x1x2

c(1− dx1x2y1y2)
.
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Algorithm 4: Inverse FFT over GF ((213 − 1)13) on MSP430.
Input: (R′) = (R′

0, R
′
1, R

′
2...R

′
25) , the frequency domain coefficients for r′(x) = a(x)b(x) , where a(x) and

b(x) are in GF (p13) and p = 213 − 1 . R0, R1...R6 denote used registers. E0, E1...E12 and
O0, O1...O12 denote used temporary variables.

Output: r(x) = r′(x) mod p(x) where p(x) = x13 − 2 .
1 for j ← 0 to 6 do
2 Rj ←− R′

2j

3 end
4 E0 ← R0 +R1 + ...+R6 mod p

5 for j ← 1 to 12 do
6 for i← 1 to 6 do
7 Ri ←− Ri/2

2i mod p

8 end
9 Ej ← R0 +R1 + ...+R6 mod p

10 end
11 for j ← 7 to 12 do
12 Rj−7 ←− R′

2j+1

13 end
14 E0 ← E0 +R0 +R1 + ...+R5 mod p

15 for j ← 1 to 12 do
16 for i← 7 to 12 do
17 Ri−7 ←− Ri−7/2

2i mod p

18 end
19 Ej ← Ej +R0 +R1 + ...+R5 mod p

20 end
21 for j ← 0 to 6 do
22 Rj ←− R′

2j+1

23 end

24 O0 ← R0 +R1 + ...+R6 mod p

25 for j ← 1 to 12 do
26 for i← 0 to 6 do
27 Ri ←− Ri/2

2i+1 mod p

28 end
29 Oj ← R0 +R1 + ...+R6 mod p

30 end
31 for j ← 7 to 12 do
32 Rj−7 ←− R′

2j+1

33 end
34 O0 ← O0 +R0 +R1 + ...+R5 mod p

35 r0 ←− (3E0 −O0)7876 mod p

36 for j ← 1 to 12 do
37 for i← 7 to 12 do
38 Ri−7 ←− Ri−7/2

2i+1 mod p

39 end
40 Oj ← Oj +R0 +R1 + ...+R5 mod p

41 rj ←− (3Ej +Oj(−1)j−1)7876 mod p

42 end
43 Return r0 + r1x+ r2x

2 + ....r12x
12

The ECC point doubling operation P2(x2, y2) = 2P1(x1, y1) on the Edwards curve is computed as

x2 =
2x1y1c

x2
1 + y21

and y2 =
(y21 − x2

1)c

2c2 − (x2
1 + y21)

.

For x2 + y2 = c2(1 + dx2y2) , where dc4 ̸= 1 , c = 1 , in [41] efficient formulae (Algorithms 5 and 6) are
given for Edwards curve point doubling/addition in projective coordinates. For our ECC implementation, we
use the improved forms of Algorithms 5 and 6, given as Algorithms 7 and 8, respectively.

Algorithm 5: Edwards curve point doubling formula for projective coordinates.
Input: P1(x1, y1, z1)
Output: P2(x2, y2, z2) = 2× P1

1 t1 ← x1 , t2 ← y1 , t3 ← z1
2 t4 ← t1 + t2
3 t1 ← t21
4 t2 ← t22
5 t3 ← t23
6 t4 ← t24
7 t3 ← 2t3
8 t5 ← t1 + t2

9 t2 ← t1 − t2
10 t4 ← t4 − t5
11 t3 ← t5 − t3
12 t1 ← t3t4
13 t3 ← t3t5
14 t2 ← t2st5
15 x2 ← t1 , y2 ← t2 , z2 ← t3
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Algorithm 6: ECC point addition in projective coordinates over Edwards curves.
Input: P1(x1, y1, z1) and P2(x2, y2, z2)
Output: P3(x3, y3, z3) = P1 + P2

1 t1 ← x1 , t2 ← y1 , t3 ← z1 , t4 ← x2 , t5 ← y2 , t6 ← z2
2 t3 ← t3t6
3 t7 ← t1 + t2
4 t8 ← t4 + t5
5 t1 ← t1t4
6 t2 ← t2t5
7 t7 ← t7t8
8 t7 ← t7 − t1
9 t7 ← t7 − t2

10 t7 ← t7t3
11 t8 ← t1t2

12 t8 ← t8d

13 t2 ← t2 − t1
14 t2 ← t2t3
15 t3 ← t23
16 t1 ← t3 − t8
17 t3 ← t3 + t8
18 t2 ← t2t3
19 t3 ← t3t1
20 t1 ← t1t7
21 x3 ← t1 , y3 ← t2 , z3 ← t3

Algorithm 7: Edwards curve point doubling formula using the FFT.
Input: P = (x1, y1, z1)
Output: 2P = (x2, y2, z2)

1 (T1)←− FFT (x1) + FFT (y1) // Store (X1) and (Y1)

2 t1 ←− t21 // Use (T1)

3 x1 ←− x2
1 // Use (X1)

4 y1 ←− y21 // Use (Y1)

5 z1 ←− 2z1
2

6 t2 ←− x1 + y1
7 y1 ←− x1 − y1
8 t1 ←− t1 − t2
9 z1 ←− t2 − z1

10 x2 ←− z1t1 // Store (Z1)

11 z2 ←− z1t2 // Use (Z1) , Store (T2)

12 y2 ←− y1t2 // Use (T2)

3. Implementation and performance results
In this work, without using hardware multiplier support, we implement ECC on Edwards curves, projective
coordinates and the FFT. For efficient multiplication in GF ((213 − 1)13) , we facilitate FFT based finite field
multiplication. We develop our code using the IAR Embedded Workbench1 development tool and use its
debugger for timing measurements. We use the C and the assembly languages.

We pick the 1 -series basic MSP430 microcontroller, MSP430F1611, to realize our ECC implementa-
tion [42]. MSP430F1611 is a low-power and low-cost microcontroller which is the control unit of widely used
sensor nodes such as TelosB/Tmote Sky, Shimmer3, MTM-CM3300-MSP and MTM-CM5000-MSP. It has
48 kB flash memory and 10 kB RAM and runs at 8 MHz maximum clock frequency. It draws a current of
less than 1 µA in idle mode. Its low cost and low power consumption makes it a preferred microcontroller for
constrained ubiquitous sensor nodes.

An efficient implementation of ECC on Edwards curves in projective coordinates over GF ((213 − 1)13)

is presented in [16] where Algorithm 1 (DFT Montgomery multiplication) is utilized for performing modular
1https://www.iar.com/iar-embedded-workbench/ [accessed 22.12.2020]
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Algorithm 8: Edwards curve point addition formula using the FFT.
Input: P1 = (x1, y1, z1) , P2 = (x2, y2, z2)
Output: P1 + P2 = (x3, y3, z3)

1 z1 ←− z1z2
2 (T1)←− FFT (x1) + FFT (y1) // Store (X1), (Y1) and (T1)

3 (T2)←− FFT (x2) + FFT (y2) // Store (X2), (Y2) and (T2)

4 t1 ←− t1t2 // Use (T1) and (T2)

5 x1 ←− x1x2 // Use (X1) and (X2)

6 y1 ←− y1y2 // Use (Y1) and (Y2)

7 t1 ←− t1 − x1

8 t1 ←− t1 − y1
9 t1 ←− t1z1 // Store (Z1)

10 t2 ←− dx1y1 // Store (X1) and (Y1)

11 y1 ←− y1 − x1 // Use (X1) and (Y1) , store (Y1)

12 y1 ←− y1z1 // Use (Y1) and (Z1)

13 z1 ←− z21 // Use (Z1)

14 x1 ←− z1 − t2
15 z1 ←− z1 + t2
16 y3 ←− y1z1 // Store (Z1)

17 z3 ←− z1x1 // Use (Z1) , store (X1)

18 x3 ←− x1t1 // Use (X1)

squaring and multiplication operations. In that work, ECC is implemented without using a hardware multiplier
to show that, when frequency domain arithmetic is utilized, it is feasible to run ECC on extremely constrained
microcontrollers without utilizing a hardware multiplier.

With this work, as an alternative to DFT Montgomery multiplication, we utilize an FFT based multi-
plication algorithm (Algorithm 2) for our ECC implementation. Similar to the previous work, in this work we
implement ECC on Edwards curves in projective coordinates over GF ((213− 1)13) on the constrained MSP430
microcontroller, namely on MSP430F1611@8MHz, without using the hardware multiplier. For the forward and
inverse FFT computations in Algorithm 2, we use Algorithm 3 and Algorithm 4, respectively.

When Algorithm 2 is used for GF ((213−1)13) multiplication, only 26 word multiplications are performed
for the pairwise multiplications on line 3 of the algorithm, as explained in Equation (3) , in addition to the
13 constant word multiplications with 7876 on lines 35 and 41 of Algorithm 4. We compute these 13 -bit
multiplications in GF (213 − 1) to generate the 26 -bit result with a series of 12 shift and 12 add operations.
The 26 -bit intermediary result is then reduced modulo GF (213−1) . Our GF (213−1) multiplication operation
is implemented to run in constant time as a side-channel attack countermeasure.

Squaring in GF ((213−1)13) is simpler than GF ((213−1)13) multiplication when Algorithm 2 is utilized.
This is due to the fact that in squaring only one FFT computation (Algorithm 3) is performed for the single
operand whereas for multiplication two FFT computations are performed.

We give in Table 1 the timings for our FFT based multiplication and squaring operations in GF ((213 −
1)13) as well as the timings in [16] for DFT Montgomery multiplication. While DFT based Montgomery
multiplication in GF ((213 − 1)13) takes 1.18 ms, our FFT based multiplication implementation takes 1.3 ms
which is 10.2% slower. However, our FFT based squaring implementation takes only 1.06 ms while the squaring
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operation using DFT based Montgomery multiplication takes the same time as multiplication, i.e. 1.18 ms.
Hence, FFT based squaring is shown to be 11.3% faster than squaring using DFT Montgomery multiplication.

We implement ECC over GF ((213 − 1)13) using Edwards curves and projective coordinates. We use
the ECC point doubling and addition formulae given with Algorithms 7 and 8, respectively. These are our
adaptations and the improved versions of Algorithms 5 and 6 for frequency domain arithmetic. We utilize
FFT based finite field multiplication and squaring. We take advantage of FFT based arithmetic to eliminate
redundant computations. For instance, if the FFT of an operand is already computed earlier, we just store
it the first time it is computed and use the precomputed value in later computations. Furthermore, if the
FFTs of two operands are already available and if we are interested in finding the FFT of the sum, we find
the sum in the frequency domain, eliminating the need for additional inverse and forward FFT computations.
The relationship between the algorithms used in this work are given with the dependency graph in Figure. In
Table 1 are our timings for ECC point arithmetic using FFT based multiplication/squaring and comparisons
against the timings of [16] which uses DFT based Montgomery multiplication under the same setting.

Figure. Dependency graph for the algorithms used in the proposed ECC implementation.

We implement ECC scalar point multiplication, the main operation for encryption/decryption in ECC,
using the NAF4 method for multiplication of random points and the Comb method for multiplication of fixed
points. We achieve ECC scalar point multiplication in 1.74 s for random points and 0.88 s for fixed points.
In [16], the same operation, in the same setting but by using DFT Montgomery multiplication, was achieved in
1.97 s and 0.98 s for random and fixed points. As given with Table 1, this work achieves 11% and 10% better
timings for random and fixed point multiplication operations, respectively.

A summary of our timing results for ECC point multiplication and the underlying elliptic curve point
operations and arithmetic operations, as well as the timing results of [16], are given in Table 1. Our ECC
implementation utilizes FFT based multiplication (Algorithms 2, 3 and 4) for squaring and multiplication,
whereas [16] uses DFT based Montgomery multiplication (Algorithm 1). Note that while DFT based Mont-
gomery multiplication is faster than FFT based multiplication, FFT based squaring is even faster. In our ECC
random point multiplication implementation over GF ((213 − 1)13) with NAF4 , significantly more point dou-
blings than point additions are performed. On average around 37 point additions and 170 point doublings are
performed [31]. Hence, the performance of ECC point doubling is the determining factor in the performance of
ECC random point multiplication. In our ECC point doubling implementation (Algortihm 5), four squarings
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Table 1. Timings for ECC on MSP430F1611@8MHz over GF ((213 − 1)13) using Edwards curves and projective
coordinates, with DFT based Montgomery multiplication vs. FFT based multiplication.

Operations Timings
ECC with DFT Montgomery multiplication [16]
DFT based Montgomery multiplication 1.18 ms
Edwards curve point doubling 8.52 ms
Edwards curve point addition 14.49 ms
Edwards curve random point multiplication with NAF4 1.97 s
Edwards curve fixed point multiplication with Comb4 0.98 s
ECC with FFT based multiplication/squaring (this work)
FFT based multiplication/squaring (Algorithm 2) 1.3 ms / 1.06 ms
Improved Edwards curve point doubling (Algorithm 7) 7.55 ms
Improved Edwards curve point addition (Algorithm 8) 12.95 ms
Edwards curve random point multiplication with NAF4 1.74 s
Edwards curve fixed point multiplication with Comb4 0.88 s

and three multiplications in GF ((213 − 1)13) are performed. Since squaring with FFT based multiplication
(Algorithms 2, 3 and 4) is faster than squaring with DFT based Montgomery multiplication (Algorithm 1),
ECC random point multiplication is faster when FFT based multiplication is used.

Similarly, in our ECC fixed point multiplication implementation over GF ((213 − 1)13) , around 42 point
doublings and 39 point additions are performed [31]. Hence, the performance of ECC point doubling is
the determining factor in the performance of ECC random point multiplication. Since more squarings than
multiplications are performed in ECC point doubling (Algortihm 5) and squaring with FFT based multiplication
(Algorithms 2, 3 and 4) is faster than squaring with DFT based Montgomery multiplication (Algorithm 1), our
ECC fixed point multiplication implementation with FFT based multiplication is faster than the previous work
which uses DFT Montgomery multiplication.

We investigate the energy efficiency of our implementation and compare it with the previous imple-
mentations. In order to obtain energy measurements, we run our codes on the experimenter board MSP-
EXP430FG4618 which has an MSP430FG4618 microcontroller onboard [43]. Since our ECC implementation
is for the basic 1 -series MSP430F1611, we can run our implementation on the experimenter board without
changing our code. Using the flash emulation tool (MSP-FET) [44] and the Power Log 2 feature of the IAR
Embedded Workbench development tool, we are able to obtain energy measurements.

The average power consumption for our ECC random point multiplication implementation in this work
is 17.3 mW without using the hardware multiplier. The work in [39] uses the hardware multiplier and achieves
the same operation with a power consumption figure of 17.66 mW. The average power consumption for our
ECC fixed point multiplication implementation in this work is 17.5 mW without using the hardware multiplier.
The work in [39] uses the hardware multiplier and achieves the same operation with a power consumption
figure of 17.88 mW. For ECC random and fixed point multiplication operations, we achieve around 2%

improved power efficiency. The previous work in [39], which utilizes the hardware multiplier unit of the
MSP430 microcontroller, has faster timings on the experimental board, i.e. 1.35 s and 0.64 s for random

2https://www.iar.com/iar-embedded-workbench/power-debugging/ [accessed 22.12.2020]
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and fixed point multiplication, respectively. Since these execution times are less than the execution times in
the proposed implementation, the total energy consumptions are also lower. The total energy consumptions
for the implementations in [39] are 23.84 mWs and 11.44 mWs for random and fixed point multiplication,
respectively. While these total energy consumption figures are better than those of the proposed implementation,
the average power consumption figures for the proposed implementation are better. Note that we run our ECC
implementations on the MSP430FG4618 microcontroller without using its hardware multiplier and obtain our
energy/power measurements on it. While this helps us gain power/energy efficiency in terms of dynamic power
usage, the microcontroller still uses static power due to its onboard hardware multiplier. We could only use this
microcontroller for power/energy measurements because it is the microcontroller contained in the experimental
board with the FET emulator which we use to obtain timing and power/energy measurements. We believe
that better energy/power efficiency could be achieved on another version of MSP430, such as MSP430F2274
or MSP430G2955, which does not have a hardware multiplier. We would like to note that low-cost, low-power
MPS430 microcontroller versions do not have a hardware multiplier unit. For instance, from the low-power
1-series MSP430 versions, only the microcontrollers with the device names MSP430x14x and MSP430x16x
have a hardware multiplier unit. Whereas, other low-power 1-series MSP430 versions, such as MSP430F1122,
MSP430F1232, MSP430F135 and MSP430F155, do not have an onboard hardware multiplier [42]. Among other
series of MSP430 microcontrollers, there are also models without a hardware multiplier unit. One such example
is MSP430F2274 which is equipped in the Texas Instrument ez430-RF2500 wireless module that is designed
to be deployed in wireless sensor network applications [24]. Unlike the ECC implementation in [39], our ECC
implementation, which does not require a hardware multiplier, has the additional advantage of being able to
run efficiently also on these extremely constrained microcontrollers without a hardware multiplier. The main
motivation for using a processor without a hardware multiplier would be to increase the battery lifetime or
for applications where sensor nodes harvest their own energy and need to operate under extremely low power
constraints.

We also compare our work against the previous work in [16] in terms of power efficiency. Note that both
works implement ECC without using the hardware multiplier. This work uses the FFT (Algorithm 2), whereas
the work in [16] uses DFT Montgomery multiplication (Algorithm 1) for finite field multiplication. Our work
achieves ECC scalar point multiplication with a power consumption figure of 17.3 mW for random points and
17.5 mW for fixed points. In [16], the same operation, in the same setting but by using DFT Montgomery
multiplication, was achieved with a power consumption figure of 18.2 mW for both random and fixed points.
Hence, this work achieves 5% and 4% better power efficiency for random and fixed point multiplication,
respectively. Furthermore, our work achieves ECC scalar point multiplication with an energy consumption of
29.81 mWs for random points and 15.27 mWs for fixed points. In [16], the same operation, in the same setting
but by using DFT Montgomery multiplication, was achieved with the energy consumption of 34.97 mWs and
17.36 mWs for random and fixed points. Hence, this work achieves 15% and 12% better energy efficiency for
random and fixed point multiplication, respectively. A summary of all the energy/power measurements for our
implementations of ECC point multiplication and the underlying elliptic curve point operations and arithmetic
operations, as well as the energy/power measurements for the ECC implementation in [16], are given in Table 2.

4. Conclusion
We implemented ECC on the MSP430 microcontroller without using hardware multiplier support and using
FFT based finite field arithmetic. We showed that ECC can be run efficiently on extremely constrained devices
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Table 2. Power measurements taken on MSP-EXP430FG4618@8MHz for hardware multiplierless ECC implementations
over GF ((213 − 1)13) using DFT based Montgomery multiplication vs. FFT based multiplication.

Operations Total energy Average power
ECC with DFT Montgomery multiplication [16]
DFT based Montgomery multiplication 0.021 mWs 18.2 mW
Edwards curve point doubling 0.15 mWs 18.2 mW
Edwards curve point addition 0.25 mWs 18.2 mW
Edwards curve random point multiplication with NAF4 34.97 mWs 18.2 mW
Edwards curve fixed point multiplication with Comb4 17.36 mWs 18.2 mW
ECC with FFT based multiplication/squaring (this work)
FFT based multiplication/squaring (Algorithm 2) 0.022/0.018 mWs 17.1/17.2 mW
Improved Edwards curve point doubling (Algorithm 7) 0.13 mWs 17.2 mW
Improved Edwards curve point addition (Algorithm 8) 0.22 mWs 17.2 mW
Edwards Curve random point multiplication with NAF4 29.81 mWs 17.3 mW
Edwards Curve fixed point multiplication with Comb4 15.27 mWs 17.5 mW

when FFT based squaring and multiplication operations are used. Since FFT based squaring and multiplication
require dramatically fewer word multiplications, we discarded the hardware multiplier supported by MSP430
microcontrollers. Instead of utilizing the hardware multiplier, we realized a fixed-time word multiplication
subroutine with addition and shift operations. Thus our ECC implementation is also suitable for power-critical
applications. We realized ECC point multiplication in 0.89 s and 1.74 s for fixed and random points, which
are 10% and 13% faster, respectively, in comparison with the previous work in [16]. Moreover, the total
energy consumption of our ECC implementation for fixed and random point multiplication is 12% and 15%

less than the previous implementation. In our proof-of-concept implementation, we realized ECC without using
the hardware multiplier on the MSP430FG4618 microcontroller and obtained energy/power measurements on
it. We achieved power/energy savings by not using the available onboard hardware multiplier and thus by
eliminating dynamic power consumption due to the use of the hardware multiplier. We used this microcontroller
because it is the microcontroller contained in the FET emulator which we use to obtain our timing and
energy/power measurements. Bu using the MSP430 versions MSP430F2274, MSP430G2955, MSP430F1122,
MSP430F1232, MSP430F135 or MSP430F155, which do not contain an onboard hardware multiplier, static
power/energy consumption due to the hardware multiplier can also be eliminated, and thus better power/energy
efficiency could be achieved by using our proposed algorithms and implementations. We identify power/energy
efficient hardware-multiplier free implementations of ECC on hardware-multiplierless microcontrollers such as
MSP430F2274 or MSP430G2955, which are utilized in WiSense nodes [20–23] and the TI eZ430-RF2500 wireless
module [24], as directions for future research.
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