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Abstract: In this paper, a periodic-MoM-based code with high accuracy performance is developed to calculate
electromagnetic scattering from a periodic conductive surface in two dimensions with any degree of roughness. Firstly,
the existing separate methods in the literature are reviewed step by step to compose a periodic-MoM solution for 2-D
periodic surfaces. Then, the dynamic selection of optimal formulation of the periodic-MoM solutions created using
these existing methods is evaluated to reduce solution time and obtain high accuracy. In this study, the performance
parameters of the existing methods are investigated in solving a real 3-D scattering problem by a periodic-MoM for
the first time in the literature. Eventually, a commercial EM solver with a similar numerical approach is employed
for comparison, validation, and accuracy achievements of these different periodic-MoM formulations. Furthermore, an
analytical solution named Floquet mode-matching method (FMMM) is developed based on the Rayleigh hypothesis for
slightly rough surfaces, and the accuracy of the code is tested using this analytical solution. This study is entirely
compatible with analytical solutions and gives better results than this commercial EM solver in terms of accuracy. Also,
the FMMM formulation derived for comparison provides a more straightforward solution than the small perturbation
method (SPM), a classical solution method, and it is adapted to two-dimensional surface roughness for the first time in
this paper. However, this full-wave solution has no restriction on surface roughness, unlike the analytical solutions.
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1. Introduction
For optics and remote sensing applications, modeling a surface of a medium such as a sea and ground, and
calculating electromagnetic scattering from these surfaces has been an essential subject for researchers from
past to present. The majority of analytic and numerical solutions for this forward bi-static scattering problem
have been focused on random or arbitrary rough conductive or dielectric surfaces with single- or multilayer to
model artificial and natural rough surfaces [1–14]. One of the well-known classical solutions of a rough surface is
the small perturbation method (SPM), initially derived by Rice in the 1950s [1]. Rice reported that the sinusoidal
and random slightly rough surfaces could be solved analytically with first- and second-order SPM. This method
is based on Lord Rayleigh’s assumption that the scattered fields consist of the sum of up-and-down-going plane
waves, and it is proved that the roughness of surfaces has restrictions in the Rayleigh hypothesis [2]. Besides,
when the order of the solution increases, the scattering coefficients turn out to be highly complicated in the
SPM [3]. In order to increase the convergence of the related series in the SPM theory, especially for multilayer
interfaces, an iterative method should be employed to determine higher-order coefficients [4, 5]. Moreover, an
∗Correspondence: yeyamac@yildiz.edu.tr
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alternative solution approach called Rayleigh–Fourier or Floquet mode-matching method (FMMM) based on
the Rayleigh hypothesis without perturbation theory is also reported [6, 7]. In this method, the scattering from
one-dimensional sinusoidal surfaces can be easily calculated with Bessel functions [6].

Integral equations (IEs), in conjunction with the method of moments (MoM) solution, are among the most
commonly used methods treating rough surface scattering problems. However, there are several IE approaches
to deal with these types of problems. The physical constraints are taken into account in determining the
approaches, and the solution domain is bounded due to real antenna radiation. A tapered beam is exercised
as the first approach to avoid edge singularity [8]. The approach’s main drawbacks are increasing the solution
domain and loss of accuracy at large incidence angles. Since the wavefront of the wave radiating from the antenna
is assumed to turn into a plane wave, a far-reaching effect on the rough surface arises at very low grazing angles.
Unwanted radiations can still occur by the edges of the solution domain that has to be physically truncated for
near-grazing angle problems in the tapered beam approach. The solution domain is bounded with a cancellation
method of edge effects as the second approach. For this purpose, the resistive strips can be added to boundaries
to overcome this problem [9]. The rough surfaces can also be modeled as a bounded perturbation with a new
formulation [10]. The scattered fields are conceded as perturbations from local roughness. The incident wave
can be assumed as a plane wave rather than a tapered beam in this near grazing illumination approach. The
third approach is the periodic-surface moment method [11] or named electric field integral equation-method of
moments (EFIE-MoM) method in [7]. This method is an alternative solution in order to obtain the scattering
from rough surfaces. Compared to artificial illumination with a tapered beam as the solution domain grows at
small grazing angles, the periodic surface moment method reduces the computational burden for these types
of problems and avoids singularity at the surface edges [11]. In this approach, the random surface partition is
selected, and the remaining part is considered periodic [12]. Besides, there are also different approaches in the
literature in order to solve IEs. A closed-form of classical PGF via using complex image technique has been
obtained for arbitrary rough surfaces [13], as well as a numerical method based on the calculation of the Green’s
function (GF) of a locally rough interface with and without any periodicity as perturbation series of internal
and external roughness is also reported for direct and inverse scattering problems [14].

An EFIE-based periodic-MoM solution is obtained after a detailed review process of available formulations
in this paper. The periodic-MoM code is generated for perfectly conducting surfaces simulating a sea or wet
soil, then the resulting EFIE is solved to calculate scattering from the surfaces with arbitrary roughness. The
infinite surface is considered periodic to prevent edge effects, and free space-periodic Green’s function (FS-
PGF) is chosen to be the IE’s kernel. The convergence problem of the FS-PGF is addressed by the acceleration
techniques suggested in [15–22], and the acceleration techniques are compared for frequency, dimensions of the
unit cell, and surface height. Additionally, the modified Rao-Wilton-Glisson (RWG) basis and testing functions
can model the non-zero component of the current on the boundaries as in [23, 24]. Consequently, the methods
employed in the periodic-MoM formulations consist of the discretization of the periodic surface currents by
special basis and testing functions for inner and boundary edges to provide the continuity of surface current and
the acceleration of the PGF’s double series sum by Kummer’s and Ewald’s transformations. These two major
acceleration techniques are compared within a MoM code in detail to handle realistic 3-D scattering problems.
Besides, singularities that will arise in these methods are discussed, and the extraction of near- and far-field
equations is also given in this study.

Moreover, the verification and accuracy of the EFIE-MoM solution are benchmarked with Rayleigh-based
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solutions and commercial software. For this purpose, a commercial software package (FEKO) is employed for
comparison, validation, and accuracy achievements. The MoM solution is analytically compared to Rayleigh-
based methods for slightly rough 2-D surfaces. Therefore, the proposed full-wave solution agrees well with
Rayleigh-based methods and yields higher accuracy than FEKO. Besides, the EFIE-MoM has no restrictions
on the surface’s roughness, and even highly rough surfaces can be solved by this method, unlike the analytical
solutions. Also, the formulation of the FMMM that can produce a more comfortable solution than SPM is
obtained and utilized for comparison. In the paper’s organization, the formulations of the EFIE-MoM solution
are given in detail in Section 2. The validations and performance tests of the periodic-MoM formulations for
several cases are carried out with FMMM, conventional arbitrary-order SPM, and FEKO software in Section
3. Furthermore, a helpful general semianalytical and a specific analytical solution of the FMMM for arbitrary
and sinusoidal periodic surfaces are also derived and given in Appendices 1 and 2, respectively. Here, these 2-D
FMMM formulations are derived for the first time in this paper.

2. Formulation
Assume that a plane wave is an incident on a periodic conductive rough surface {z = f(x, y)} with the incidence
angles of θi and ϕi as represented in Figure 1. As shown in Figure 1, the PEC surface is located on the x–y
plane, and the upper region of this surface is the vacuum. a1 and a2 are the primitive lattice vectors, and Lx
and Ly are the dimensions of the unit cell. The rough surface is periodic with Lx and Ly , and the surface
function satisfies the condition of the periodicity {z = f(x, y) = f(x + Lx, y + Ly)} . The polarization of the
incident plane wave can be determined according to the transverse to the z-direction of electric and magnetic
fields. Therefore, under the assumption of ejωt time dependence, the incident electric field is expressed as
follows

Ei = êiE0e
−jki·r = (θ̂ cosα+ ϕ̂ sinα)E0e

−jβ0k̂i·r = (v̂i + ĥi)E0e
−jβ0k̂i·r (1)

where α is the polarization angle and ki = β0k̂i is the incident vector of the wave. α = 0◦ is θ -polarization
(vertical v̂i or TM polarization), and α = 90◦ is ϕ -polarization (horizontal ĥi or TE polarization). In
(1), the incident wave vector is ki = βxx̂ + βy ŷ − qẑ , and the wave number is k = β0 = ω

√
µ0ϵ0 , where

βx = β0 sin θi cosϕi , βy = β0 sin θi sinϕi , and q = β0 cos θi .
The general expression of the scattered field from a periodic surface seen in Figure 1 by combining with

Floquet’s theorem can be written as

Es(x, y, z) = ês

∞∑
m=−∞

∞∑
n=−∞

e−jβmxe−jβnyfmn (z) (2)

Under the assumption of the Rayleigh hypothesis and subjecting the fields in (1) and (2) to the homo-
geneous Helmholtz equation, fmn(z) and its coefficients for each Floquet mode can be found as in Appendix
1. However, the Rayleigh assumption, as mentioned in earlier studies, will not be valid on the boundary of the
surface as the result of the singularity [25]. Hence, the surface gradient should be smaller than 0.448, and the
assumption is only valid for a slightly rough shallow surface [2]. It should be noted that the field expression
given (2) is not a regular function in all domains, i.e. it cannot differentiate in a classical sense on the boundary.
Using boundary condition on the periodic PEC surface in Figure 1, the IE of the scattered electric field Es(JSp)
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Figure 1. Configuration of a scattering problem from a unit cell of conducting periodic surfaces.

can be written in dyadic representation

E
s (
JSp

)
= −jωµ0

∫
S′
p

[
I +

1

β2
0

∇∇
]
·Gp (r|r′) JSp (r′) dS′

p (3)

Here, JSp denotes periodic current density on the periodic surface, Gp is doubly periodic free-space Green’s

function, and S′
p implies the unit cell’s surface domain. I = x̂x̂+ ŷŷ+ ẑẑ is the unit dyad. The surface currents

on the other unit cell may be written in terms of the current on the center unit cell as follows:

JSp (x
′ +mLx, y

′ + nLy, z
′) = e−jβxLxe−jβyLyJSp (x

′, y′, z′) (4)

According to (4), the currents outside the center unit cell can be found by adding a phase difference
to the current in a unit cell, and the added phase is in proportion to the size of the lattice, the number m

and n represent the (m,n) -th cell. Using this current source approach combined with Floquet’s theorem, the
PGF is derived from periodically spreading point charges in the x -y plane in a lattice. However, the PGF can
alternatively be obtained from free-space Green’s function (spatial form) [19];

Gspatialp (r|r′) = 1

4π

∞∑
m=−∞

∞∑
n=−∞

e−jβxmLxe−jβynLy
e−jβ0Rmn

Rmn
(5)

and Poisson’s transform is applied to find the spectral form of (5) reported as [18];

Gspectralp (r|r′) = − j

2LxLy

∞∑
m=−∞

∞∑
n=−∞

e−jβm(x−x
′)e−jβn(y−y

′)e−jqmn|z−z
′|

qmn
(6)

where βm = βx + 2mπ/Lx , βn = βy + 2nπ/Ly , and Rmn = ∥r − r′mn∥ . Here r is the observation point, r′mn
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is the source point in the (m,n) -th cell, and

qmn =


√
β2
0 + ∥βmn∥2, β0 ≥ ∥βmn∥2

−j
√
∥βmn∥2 − β2

0 , β0 < ∥βmn∥2
(7)

where βmn = βmx̂+ βnŷ . Also, the scattering wave propagation vector ks = kmn = x̂βm + ŷβn + ẑqmn , which
is depicted in Figure 1, can be written by using Floquet’s theorem. The total field consists of the reflected field
(coherent field) as a specular reflection on a smooth surface in case of m = n = 0 , and the scattered field as an
incoherent field from the surface roughness of any other m and n . The coherent field will decrease due to the
roughness leading to the scattered field’s distribution in all directions.

2.1. MoM implementation
In combination with the MoM, the IE method is a rigorous and effective treatment for scattering problems from
rough surfaces. By using (1) and (3) with the boundary condition, the resulting EFIE can be converted into a

linear system of the equation after employing the MoM as Z(ξψ)I(ψ) = V (ξ) . Here,

Z(ξψ) = jβ0η0

[∫
T±
ξ

∫
T±
ψ

(
fξ (r) · fψ (r′)Gp (r|r′)−

1

β2
0

[
∇

′

s · fξ (r)
] [

∇
′

s · fψ (r′)
]
Gp (r|r′)

)
dST±

ψ
dST±

ξ

]
(8)

and

V(ξ) =

∫
T±
ξ

fξ (r) · E
i
dST±

ξ
(9)

fξ (r) and fψ (r′) are testing and basis functions, respectively. The induced current density JSp =
∑N
ψ=1 Iψfψ (r′)

has expanded a set of basis functions, and triangular elements are used to discretize the PEC surface. A special
basis and testing functions are utilized to ensure continuity of the current between unit cells’ boundaries, as
suggested in [24]. Three different types of basis and testing functions are needed to calculate the surface current
accurately. For inner edges, well-known RWG basis functions are used [26]. Also, RWG basis and testing
functions are modified to be added phase shifts with the lattice’s lengths for each boundary edge. The top view
of the sample basis functions is given in Figure 2 to determine proper edges and triangular element pairs for
boundaries and inner edges. The first type of basis and testing functions are based on a conventional RWG
basis for the inner edges. The testing function is equal to the basis function for these inner edges. The second
type basis and testing functions are defined for the vertical boundary edges, and similarly, the third type basis
and testing functions are defined for the horizontal boundary edges. Thus, both testing and basis functions for
second and third types are given by common formulas as follows:

f
(2,3)

ψ (r′) =


ρ+ψ (r

′)
lψ

2A+
ψ

e−jki·a(1,2) , r′ ∈ T+
ψ

ρ−ψ (r
′)

lψ

2A−
ψ

, r′ ∈ T−
ψ

0, otherwise.

, f
(2,3)

ξ (r) =


ρ+ξ (r)

lξ
2A+

ξ

ejki·a(1,2) , r ∈ T+
ξ

ρ−ξ (r)
lξ

2A−
ξ

, r ∈ T−
ξ

0, otherwise.

(10)

where a(1,2) are the lattice’s translation vectors for the second and third type basis and testing functions,
respectively. The basis and testing functions are defined separately on the plus and minus triangles of the
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shared edge. Thus, lψ is the length of the ψ -th edge and ρ+ψ = v+ψ − r′ , ρ−ψ = r′ − v−ψ . T+
ψ and T−

ψ are the

triangles of this common edge. v±ψ are the vectors that indicate free-vertices of the triangles. These expressions
can be written similarly for the testing function. By substituting the findings above in (8), the resulting integrals
can be solved by numerical quadrature [27]. The unknown current constants are found for each edge. The edges
on boundaries are also periodic; hence, it is sufficient to find related unknowns only side of boundaries. However,
the derivation of (8) will not give in this article so that it has been discussed in detail in [24].

Figure 2. Top view of a unit cell for three different edge samples.

2.2. Scattering near- and far-field equations
After finding the surface current density on the periodic conductive surface, the scattered field in a near- or
far-field region may be needed to evaluate it concerning the position of the observation point. Consequently,
for upper half-space, i.e. (z > (f)max ); thus, |z − z′| → (z − z′) and the scattering E-field:

E
s (
JSp

)
= −jβ0η0

N∑
ψ=1

Iψ

[∫
T±
ψ

fψ (r′)Gp (r|r′) dST±
ψ
+

1

β2
0

∫
T±
ψ

fψ (r′) · ∇∇Gp (r|r′) dST±
ψ

]
(11)

In order to calculate near-fields, the double gradient of the PGF shall be derived. If the spectral form of the
PGF is employed

∇∇Gspectralp (r|r′) = −Gspectralp (r|r′) kmnkmn = −Gspectralp (r|r′) kmn ⊗ kmn (12)

where ⊗ sign denotes tensor product. Although the spectral form PGF allows eliminating the complexity of
the solution, the slowing convergence will begin a small problem at points very close to the surface. However,
the convergence will not be a constraint in the far-field region (see Appendix 3 for near-field expression for
observation points just above the surface (z ≤ (f)max ).

2.3. Acceleration techniques

The periodicity is embedded in the kernel of the EFIE in (3) with a linear progressive phase shift as a result
of Floquet’s theorem. The rough surface is modeled by dividing with periodic lattices, thereby reducing the
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infinite surface to a single unit cell. However, the solution of the EFIE suffers from the numerical computation
of the FS-PGF due to the relevant series converging very slowly. It is vital to accelerate the doubly periodic
series in obtaining numerical calculations effectively. The convergence problem arises when the surface height
is low so that the observation point will be somewhat close to the surface, especially for the spectral form of
PGF. The spectral PGF will converge rapidly as the observation point moves away from the surface since the
spectral representation is the Fourier transform of its spatial form. In order to speed up the convergence, some
decomposition techniques are fortunately reported at several studies for 1-D and 2-D periodicity of the surface
[15–22].

2.3.1. Kummer’s decomposition

The PGF with Kummer’s transformation [19] is given as

Gp (r|r′) = Gspectralp (r|r′)−Gspectral,asymptoticp (r|r′) +Gspatial,asymptoticp (r|r′) (13)

Gp (r|r′) =
+∞∑

m,n=−∞

e−jβm(x−x′)e−jβn(y−y
′)

2LxLy

[
e−jqmn|z−z

′|

jqmn
− e−umn|z−z

′|

umn

]
+ e−jβxmLxe−jβymLy

e−uRmn

4πRmn
(14)

where u is the smoothing parameter, and umn =

√
∥βmn∥2 + u2 . The choice of the smoothing parameter u

affects the convergence of spatial and spectral sums, so a reasonable choice of u is recommended as half size of
the maximum reciprocal lattice vector [19]. For an orthogonal 2-D lattice seen in Figure 1, these vectors are
k1 = (2π/Lx)x̂ and k2 = (2π/Ly)ŷ . Thus, the smoothing parameter is u = π/min (Lx, Ly) .

2.3.2. Ewald’s method
One of the most effective ways to speed up the FS-PGF computation is Ewald’s method. The PGF is decomposed
into spatial and spectral forms as Gp (r|r′) = Gspectral1 (r|r′)+Gspatial2 (r|r′) again. These decomposed functions
are obtained as given in [21]:

Gspectral1 (r|r′) =
1

4LxLy

∞∑
m,n=−∞

e−jβm(x−x′)e−jβn(y−y
′)

jqmn
×

∑
±
e±j(z−z

′)qmnerfc
(
jqmn
2E

± (z − z′)E

)
(15)

Gspatial2 (r|r′) = 1

8π

∞∑
m,n=−∞

e−jβxLxe−jβyLy

Rmn
×

∑
±
e±jβ0Rmnerfc

(
RmnE ± j

β0
2E

)
(16)

In (15) and (16),
∑

± denotes the sum of the related terms with + and – signs. The derivation of the equations
above will not be given in detail in this paper. In addition, the choice of the optimal value of E is essential to
minimize the number of terms required to reach the desired error value for convergence. Therefore, the optimum
value of E has been discussed in [21], but, in this paper, the optimum E parameter is chosen as follows:

Eopt = π/
√

2LxLy (17)

This choice results in better convergence time over a more comprehensive frequency range. For high frequencies
or large periodic spacings, a complete condition on E must be determined to avoid loss of accuracy as [20],
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where E = max (Eopt, β0/2H) and H is the maximum number to be permitted exp(H2 ) in order to avoid
cancellation errors.

2.4. Extractions of singular terms

In the MoM matrix calculation in (8), the self-terms should be appropriately handled to overcome 1/R singu-
larities of the spatial GFs in accelerating the evaluations of IEs. The cancellation of potential GFs’ singularity
is conventionally treated by singularity subtraction and regularization approaches [28–31]. In this paper, the
singularity subtraction approach is employed as follows∫

S′
f (r′)Gp (r|r′) dS′ =

∫
S′
f (r′)

[
Gp (r|r′)−Gasymptoticp (r → r′|r′)

]
dS′︸ ︷︷ ︸

Integrated Numerically

+

∫
S′
f (r′)Gasymptoticp (r → r′|r′) dS′︸ ︷︷ ︸

Integrated Analytically

(18)

where f(r) represents the basis function. After applying this subtraction for the central cell (m = n = 0),
the first term of the right-hand side of (18) becomes regular. The second term of the equation is singular and
analytically evaluated for linear basis functions. It should be noted that all other terms except the central cell
have a finite value, and numerical quadrature methods can directly evaluate the regular terms. If (18) is applied
to Kummer’s transform in the central cell, the decomposition for the spatial term can be written as

G
spatial(0,0)
Kummer =

1

4π

[
e−uR − 1

R

]
+

1

4πR
(19)

Furthermore, the spatial term of Ewald’s transformation is found similarly

G
spatial(0,0)
Ewald =

1

8π

[∑
±

e±jβ0R

R
erfc (RE ± jβ0/2E)− 2

R

]
+

1

4πR
(20)

Here, the first terms are integrated numerically, or the limit values of them are obtained for electrically very
small triangles reported as [32]—the second term of Eqs. (19) and (20) are integrated analytically [31]. Although
a more general approach based on purely numerical quadrature schemes is reported in [33, 34], the singularity
subtraction method has given above still works well for this paper’s problems.

3. Numerical results and discussions
Many researchers have only focused on the acceleration techniques to speed up the convergence. We will discuss
whether fast convergence is the main factor in determining the performance of the numerical code in a complete
MoM solution for realistic scattering problems. In combination with two major acceleration techniques, the
height of the surface, mesh sizes, unit cell dimension and frequency, and quality of the numerical integration
are discussed in detail to assess the performance of periodic-MoM formulations. For this purpose, the MoM
formulations are compared for periodic flat, 1-D and 2-D sinusoidal, and arbitrary rough surfaces in this section.
Herein, the performance analyses of numerical techniques in previous sections are performed, and the most
appropriate solution approach for different scattering cases is explored.
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However, before numerical calculations are carried out, it can be useful to mention the cutoff phenomena
for scattering fields from an infinite periodic structure. Condition to propagate Floquet modes is ∥βmn∥ < k ,
otherwise evanescent waves will occur (∥βmn∥ > k ). Hence, cutoff frequencies for each Floquet mode can
be estimated as given in (22), and this formula will be employed in finding analytical values for scattering
fields from various periodic surface samples. Besides, all numerical calculations are conducted by Ryzen 3900x
processor and MATLAB software in this paper.

3.1. Performance analyses of periodic-MoM formulations

In this subsection, the performance analyses of the periodic-MoM formulations alluded to in the previous sections
start with a flat surface case since a flat surface can be considered a periodic surface. Also, one can easily find the
analytical solution to this problem, and the flat surfaces in the z-axis complicate the achievement of acceleration
techniques. For these reasons, Table 1 is first prepared for the numerical approaches’ performance test in the
periodic-MoM formulations. For this purpose, dimensions and types of surfaces, singularity extraction, and
acceleration technique are changed, and relative errors of solutions and solution times are evaluated. Here, the
definition of the relative error is given in (21). In the numerical simulations used in the preparation of Table 1,
the incident angle of the plane wave is selected as θi = 60◦ and ϕi = 0◦ , the polarization is horizontal, and the
flat surface is discretized by triangles with an edge length of about 0.1 λ . The results are analytically compared
in the far-field region (r = ẑ101 m) for the total scattered E-field that is the sum of all Floquet modes. Also,
henceforth, the amplitude of the incident plane wave is determined as a unit in all simulations, i.e. E0 = 1

V/m.
A commercial software having a similar periodic-MoM approach with linear basis functions is also

employed for a better comparison of the periodic-MoM formulations [35]. For this purpose, FEKO software was
used for comparison for various scattering cases in Table 1. Thus, as seen from Table 1, the solution time is
worse than FEKO while the accuracy of our formulations is much better. However, this shortcoming can be
remedied as to be discussed in the following sections. In this paper, the exact value of PGF was calculated for
each point in the triangle facets. Also, the quality of the numerical quadrature used in this paper is very high to
achieve desired accuracy levels in comparison with analytical solutions. This high-quality numerical integration
increases numerical quadrature points and improves the overall computation time in calculating the PGF values
for all source and observation triangles. Besides, precalculated PGF values for several sample points can even be
utilized to create a look-up table [22], and an interpolation algorithm estimates any other points outside these
sample points. The accuracy and solution speed will depend on the efficiency and ability of this interpolation
algorithm. FEKO may use a look-table and an interpolation algorithm to reduce the solution time. Since our
interpolation algorithm is not fast and efficient enough for large matrices, this technique is not added to the
table.

Moreover, one can easily see it from Table 1, the solution’s accuracy does not change significantly with the
choice of the acceleration technique. Regardless of the acceleration technique, the convergence error of the PGF
may have little effect on the accuracy of the solution. On the other hand, the solution time is highly dependent
on the chosen acceleration technique, frequency, size of the unit cell, and the total number of unknowns. As
can be seen from Table 1, Kummer’s transform can yield faster results at lower frequencies. Still, it should be
noted that Ewald’s transform becomes faster than Kummer’s decomposition for large unit cell sizes. Similarly,
if the convergence error of PGF is reduced than 10−3 , Kummer’s transform gives prolonged results compared
to Ewald’s decomposition.
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Table 1. Comparison of periodic MoM-formulations on flat surfaces.

Frequency
(MHz)

Lx

(λ)
Ly

(λ)

This work FEKO
Singular
integration

PGF
error

Acceleration
technique

Relative
error

Solution
time (s)

Relative
error

Solution
time (s)

3

0.1 0.1

Khayat [33]

10−3

Ewald 8.22× 10−7 3.50
5.31× 10−4 0.012

Kummer 7.33× 10−7 2.00

300
Ewald 8.16× 10−7 3.60

8.8× 10−3 0.176
Kummer 7.27× 10−7 2.38

300,000
Ewald 8.16× 10−7 3.51

8.8× 10−3 0.175
Kummer 7.27× 10−7 1.95

300 0.5 0.5

10−1

Ewald
8.21× 10−7 262

9.9× 10−3 0.443

10−3 8.20× 10−7 328
10−4 8.21× 10−7 348
10−1

Kummer
1.30× 10−4 124

10−3 7.38× 10−7 277
10−4 8.23× 10−7 908

Singularity
Subtraction

10−1

Ewald
8.62× 10−7 257

10−3 8.61× 10−7 319
10−4 8.62× 10−7 343

1500

1.5 1.5 Khayat [33] 10−3

Ewald 1.29× 10−5 3085
8.9× 10−3 5.636

Kummer 5.82× 10−6 3271

3000
Ewald 1.48× 10−5 2811

8.7× 10−3 5.646
Kummer 7.52× 10−6 2809

30,000
Ewald 3.90× 10−5 899

8.8× 10−3 5.646
Kummer 3.86× 10−5 997

Relative Error =

∣∣∣∥∥∥Esanalytical(r)∥∥∥−
∥∥∥Esnumerical(r)∥∥∥∣∣∣∥∥∥Esanalytical(r)∥∥∥ (21)

3.1.1. Effect of mesh size and cutoff phenomena for periodic surfaces

Comparing the effect of mesh size is also performed in Table 2 to assess the solution’s accuracy. The
incident angle is staying the same as the previous calculations. A sinusoidal surface whose function is
f(x) = −h cos (2πx/Lx) is employed, where h = 0.1 m and Lx = Ly = 0.5 m. The solution frequency is
determined as 300 MHz to stay outside the cutoff frequency range as reported in [7]. Thus, the cutoff frequen-
cies will be emerged for each Floquet modes, and if ∥βmn∥ = k , the minimum cutoff frequency can be obtained.
If this equation is rearranged in order to obtain the minimum cutoff frequency (fc ) as follows

∣∣∣∣∣sin 2θi + 2 sin θi

[
mc

fcLx
cosϕi +

nc

fcLy
sinϕi

]
+

(
mc

fcLx

)2

+

(
nc

fcLy

)2
∣∣∣∣∣ = 1 (22)
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where c is the velocity of light in free space. For θi = 60◦ , ϕi = 0◦ , Lx = Ly = 0.5 m and m = −1 , n = 0 , the
cutoff frequency (fc ) is found as 321.5 MHz from (22). Thus, the scattered E-field aroused from this sinusoidal
surface will behave like a flat surface for 300 MHz. It should be noted that the cutoff frequency is dependent
on the incident angles and the dimensions of the unit cell, not the surface height. As seen from Table 2, the
solution’s accuracy increases depending on the mesh size. Here, PGF’s convergence error is constant, and the
acceleration technique is Kummer’s transform while Khayat’s formulation is used for singularity extraction. The
definition of the relative error is as given in (21). Besides, the same surface is also solved by FEKO software with
the RWG (linear and first-order) basis functions for different mesh lengths to obtain a reasonable comparison.
As seen from Table 2, although FEKO is faster when comparing our formulations, the relative error results do
not converge as desired, even using a fairly dense mesh in contrast to our study. As a result, the formulations
used in FEKO do not achieve high accuracy, and the solution time is also longer when it uses dense mesh in
order to improve accuracy.

Table 2. Comparison of periodic-MoM formulations for several mesh sizes.

This work FEKO
Mesh
length

PGF
error

Acceleration
technique

Relative
error

Solution
time (s)

Mesh
length

Relative
error

Solution
time (s)

λ/10

10−3 Kummer

3.07× 10−5 249
λ/10 0.0223 0.355
λ/20 0.0143 0.549

λ/20 6.63× 10−7 2442.9
λ/30 0.0115 1.148
λ/50 0.0088 10.68

λ/30 4.40× 10−7 10832.9
λ/100 0.0063 242.9
λ/200 0.0048 9465.7

3.1.2. Effect of surface height

In order to compare the effects of acceleration techniques on the surface height, a 1-D sinusoidal surface is
defined with a function f(x) = −h cos (2πx/Lx) . Here, the lengths of unit cell are Lx = Ly = 0.5 m, and
h parameter is changed with h = 0.001 m, h = 0.01 m, h = 0.1 m, and h = 0.2 m. The performance
results of the Kummer’s and Ewald’s transformations with 10−1 and 10−3 convergence errors are given in
Figures 3a, 3b, respectively. The incident angle of the plane wave is selected as θi = 30◦ and ϕi = 0◦ , the
polarization is horizontal, and the flat surface is discretized by triangles with an edge length of about 0.1λ . The
solution frequency is selected as 300 MHz, and the minimum cutoff frequency (fc ) is found as 400 MHz from
(22). As seen from Figure 3a, Kummer’s transformation is always faster than Ewald’s decomposition for high
convergence error 10−1 , and, on the other hand, the accuracy for Ewald’s transform is always better. However,
when |z − z′| → 0 , Ewald’s transform may converge faster than Kummer’s for convergence errors less than
10−3 .

3.1.3. Effect of unit cell size
The size of a unit cell of a periodic surface can affect the performance of the acceleration techniques. For
this analysis, a 1-D sinusoidal surface is utilized with a function f(x) = −h cos (2πx/Lx) , where h = 0.01 m,
Lx = Ly = 0.0852 m. The incident angle of the plane wave is chosen as θi = 10◦ , ϕi = 0◦ , and for the
mesh average length is about 0.00852 m. Therefore, the minimum cutoff frequency is adjusted as 3000 MHz
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for easier relative error comparison. The solution frequency is altered between 300 and 2900 MHz with 200
MHz intervals. This provides that the unit cell dimensions are electrically changing between about 0.0852λ and
0.8λ . For 300–2900 MHz range, the relative errors and solution times are demonstrated in Figure 4. Herein,
Kummer’s and Ewald’s transformations with 10−1 and 10−3 convergence errors are compared in Figures 4a
and 4b, respectively. For high convergence errors, Kummer’s transformation is always faster than Ewald’s one
with similar accuracy values. Besides, as seen from previous and present results, lower convergence errors are
not really necessary to achieve the desired accuracy. When comparing solution times, Kummer’s transform with
10−1 convergence error is always shorter. However, for larger unit cell dimensions, Ewald’s transform can be
faster for lower convergence errors than 10−3 .

PGF error 10−1 PGF error 10−3

Figure 3. Relative error and solution time results for a sinusoidal surface with various h values at 300 MHz.

PGF error 10−1 PGF error 10−3

Figure 4. Relative error and solution time results of a sinusoidal surface with Lx = Ly = 0.0852 m and h = 0.01 m for
various operating frequencies.

3.1.4. Effect of numerical integration

The quality of numerical integration is also vitally important. In order to achieve high accuracy, the points
used in numerical quadrature were initially used in high numbers. In addition, the number of these points
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changes dynamically according to the distance between the observation and source triangle facets. Hence, the
total number of points in numerical integration in this study changes between 36, 169, 361, 729, and 3318 for
near and far triangles facets. These values are considered a reference to assure high accuracy. In Figure 5, these
point numbers are reduced as a percentage, and the results are analyzed in terms of accuracy and solution time.
The surface function is selected again f(x) = −h cos (2πx/Lx) , where h = 0.01 m, Lx = Ly = 0.0852 m. The
solution frequency is selected as 1500 MHz, the incident angle of the plane wave is θi = 10◦ , ϕi = 0◦ , and for
the mesh size, the length of one side of the triangles is about 0.00852 m. Kummer’s and Ewald’s transformations
with 10−1 and 10−3 convergence errors are also depicted in Figures 5a and 5b, respectively. As seen from this
figure, the solution time can be increased excessively by decreasing the quality of numerical integration if one
desires high accuracy. However, if high accuracy is really entailed, adjusting PGF convergence error, reducing
points of numerical quadrature, and determining an intelligent choice of the acceleration technique for some
instances make the speed of the numerical code faster while maintaining considerable accuracy.

PGF error 10−1 PGF error 10−3

Figure 5. Relative error and solution time results for a sinusoidal surface with various numerical quadrature points as
percentages.

3.2. Comparison of periodic-MoM solution with analytical results for various rough surfaces
In this subsection, the accuracy test of the periodic-MoM solution is conducted for various periodic rough
surface problems. To perform this validation, the rough surface height is chosen to be small compared to the
wavelength. In this way, the solution region where Rayleigh’s assumption is valid is preserved, and the analytical
and semianalytical equations can be obtained as seen in Appendices 1 and 2.

3.2.1. Comparative results for a 2-D sinusoidal surface
The periodic rough surface is assumed as a simple well-known sinusoidal that avoids the complexity of the
IE method’s validation with the Rayleigh-based methods. Selecting sinusoidal functions as a surface model
facilitates calculating Rayleigh-based methods’ coefficients analytically (see Appendices 1 and 2). Thus, the
surface function is considered z = f(x, y) = −h [cos (2πx/Lx) + cos (2πy/Ly)] , where h = 0.0016 m, Lx =

Ly = 0.1016 m. The incident wave is horizontal polarization and is about at a low-grazing angle of 85◦ . As
seen in Figure 6, the surface current densities are evaluated with the FMMM, the periodic-MoM, and FEKO,
respectively. The numerical surface current in this work agrees well with the analytic one.
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FMMM EFIE MoM

FEKO

Figure 6. Induced surface current densities on one period of infinite, conductive sinusoidal surface at 1.5 GHz.

The total scattered fields are also calculated for several frequencies in Figure 7, where the observation point
is at x = y = 0 m, and z = 100 m. In this figure, the EFIE-MoM solution’s validation is ensured in a proper
frequency region for the SPM and FMMM. The derivation of the FMMM is given to calculate the unknown
coefficients of (23) using numerical integration for any surface function in Appendix 1. An analytical formulation
is also derived for this sinusoidal surface with Bessel identity in Appendix 2. The arbitrary-order SPM solution
is acquired by an iterative solution [4]. Consequently, FMMM offers a more straightforward formulation than
higher-order SPM, and the solution time is slower in the SPM. These two Rayleigh-based methods are also
compared within themselves for this surface (see Figure 7). Furthermore, for several observation points at
x- and z-directions, the scattered fields are also compared with the analytical solution given in Appendix 2.
The magnitudes of scattered E-fields are compared for observation points at z-direction by starting from the
locations where they are very close to the surface in Figure 8a. The scattered E-fields are also evaluated for
x-direction in Figure 8b. Here, FEKO results are also given in the figures for comparison. In Figure 7, the
averaged edge lengths of triangles in the meshed structure are about 0.01 m in the EFIE-MoM solution and

743



YAMAÇ and KIZILAY/Turk J Elec Eng & Comp Sci

0.0025 m in the FEKO simulation to obtain the expected accuracy. On the other hand, for the solutions of
several observation points at 1500 MHz, the mesh structure used in the EFIE-MoM and FEKO solutions is the
same as that depicted in Figure 8b, where the averaged triangle edge length corresponds to about λ/20 . As a
result, as seen from the figures, all the numerical results of the EFIE-MoM formulation are very satisfactory.

Figure 7. Magnitude of total scattered E-field from infinite, conducting sinusoidal surface as a function of frequency
for TE polarization.

Along z-axis Along x-axis in unit cell

Figure 8. Total scattered E-field with respect to several observation points for a sinusoidal surface.

3.2.2. Comparative results for an arbitrarily rough periodic surface

A random surface is also generated by a Gaussian correlation function with an RMS height of h = 0.0032 m and
a correlation length of l = 0.09 m to compare the semianalytical formulation in Appendix 1 with the periodic-
MoM solution. The lengths of unit cell are Lx = Ly = 0.1016 m, and computed scattering E-fields are shown
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in Figure 9. Here, the incident wave is horizontally polarized and at a low grazing angle of approximately 85◦ .
The results agree well with EFIE-MoM solutions. A numerical quadrature with 25 points is used in calculating
integrals of in (37)–(42), and the total solution time of the FMMM takes 8.6 s. The numerical derivative is
also employed in this semianalytical solution. Compared to the EFIE-MoM solution in terms of solution time,
the full-wave solution takes about 8523 s. The results are shown that the full-wave periodic-MoM solution
provides enough accuracy. In contrast, the solution time of this full-wave method can be reduced, as well as
the semianalytical solution can be employed for any rough surface having a small height and slope. Besides,
the results from FEKO are also given in Figure 9 for a mesh size with an average triangle edge length of λ/20 ,
where the RWG basis function is also employed in obtaining numerical results. The unit cell with its mesh
structure utilized in the EFIE-MoM and FEKO solutions is depicted in Figure 9b.

Along z-axis Along x-axis in unit cell

Figure 9. Total scattered E-field with respect to several observation points for a random surface.

3.3. Comparison of our periodic-MoM solution with FEKO results for highly rough surfaces

In this subsection, the degree of roughness of the periodic surface is increased to a level where the Rayleigh
hypothesis is not valid. As shown in Figure 10, a pyramidal surface Lx = Ly = 0.499 m is chosen in this
context. Here, this rough surface is singular, and its height is 0.499 m. The observation points and the
incident angle of the plane wave are similar to the previous simulations, and the solution frequency is 600
MHz. Figures 10a and 10b show the total scattered E-fields in the z-direction and the x-direction, respectively.
In the first EFIE-MoM solution, the number of points used in the numerical integration is reduced by 50% ,
and Kummer’s transform is employed with a convergence error of 10−1 . Secondly, the convergence error is
reduced to 10−3 without decreasing numerical integration points. In addition, to compare the EFIE-MoM
results, FEKO software is used with several mesh types and sizes. The first comparison is performed using the
RWG basis functions with the same mesh structure as the EFIE-MoM solution. Then, a higher-order basis
function (HOBF) with the same mesh size and a very dense mesh (λ/80) with the RWG basis functions are
employed respectively to provide higher accuracy. The unit cell, the mesh structure, and the elapsed times for
the computations are also demonstrated in Figure 10a. It should be noted that for the same mesh type and
size, the accuracy of the present work for this example is better than the FEKO simulation results, as can be
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seen from Figure 10 (the red-colored dotted line). On the other hand, as discussed in detail in Section 3.1, the
solution time is considerably shorter for Kummer’s transform with a 10−1 high error level.

Along z-axis Along x-axis in unit cell

Figure 10. Total scattered E-field with respect to several observation points for a pyramidal rough surface.

4. Conclusion
In this paper, a numerical method based on a 3-D MoM solution that addressed scattering problems from
arbitrarily rough, periodic 2-D conductive surfaces that simulate sea or ground surfaces under plane wave
illumination has been developed. The special basis and testing functions have been employed for handling edge
discontinuities in the unit cell boundaries. The importance and necessities of used methods in the periodic-
MoM formulations have been precisely discussed, part by part. The convergence speed of Kummer’s and Ewald’s
transformations for several scattering scenarios was discussed in detail. Furthermore, the singularities in these
methods were examined, and no significant difference was observed in terms of solution time and accuracy. The
extraction of near- and far-field equations was also derived in this study. Besides, this study answers whether
acceleration techniques with low and high convergence errors are necessary to obtain the desired accuracy and
solution time in running the numerical code for various scattering problems. According to the obtained results,
Kummer’s transform with 10−1 convergence error improves the solution speed without changing the accuracy
significantly. The combinations of the acceleration techniques with the height of the surface, mesh size, unit
cell dimensions, frequency, and quality of the numerical integration are also vital for achieving the desired
performance in numerical codes. Consequently, the acceleration techniques can be selected according to the size
and height of the periodic surface. Also, the developed MoM code is more successful than commercial software
that uses the same periodic-MoM approach in terms of accuracy, and on the other hand, the solution time can
be shorter utilizing a faster programming language. Moreover, a semianalytical solution called FMMM has been
proposed for 2-D periodic arbitrary rough surfaces for the first time in this paper to validate periodic-MoM
formulations as an alternative to the SPM solution. This analytical approach is already employed for 1-D
sinusoidal surfaces in the literature. However, the present study has extended it to any arbitrary 2-D rough
periodic surfaces. The FMMM solution is more straightforward than the SPM while it gives fully consistent
results with the SPM and our periodic-MoM formulations.
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Appendices

Appendix 1. Arbitrary surface solution of FMMM
After invoking Rayleigh hypothesis, a general representation of the scattered field can be expressed with

vertical and horizontal fields

E
s
(r) =

∞∑
m=−∞

∞∑
n=−∞

(
ĥmnAmn + v̂mnBmn

)
e−jks·r (23)

where ĥmn and v̂mn is the horizontal and vertical unit vectors for each Floquet mode. The magnetic field
intensity and the current density on the surface

H
s
(r) = k̂s×E

s
(r)

η0
and J

s
(r) = n̂×

[
H
i
(r) +H

s
(r)

]
(24)

Definitions of the units vectors are as follows:

ĥi =
ki×ẑ
∥k⃗i×ẑ∥ , v̂i = ĥi × k̂i, ĥmn = ks×ẑ

∥k⃗s×ẑ∥ , v̂mn = ĥmn × k̂s (25)

Here,

ĥmn = 1
βmn

(x̂βn − ŷβm) , v̂mn = −x̂βmqmnβmnβ0
− ŷ βnqmnβmnβ0

+ ẑ βmnβ0
(26)

and the unit normal vector of the surface:

n̂ =
∇ [z − f (x, y)]

∥∇ [z − f (x, y)]∥
=

ẑ − x̂∂f(x,y)∂x − ŷ ∂f(x,y)∂y√
1 + ∂2f(x,y)

∂x2 + ∂2f(x,y)
∂y2

=
ẑ − x̂fx − ŷfy√
1 + f2x + f2y

(27)

By subjecting boundary conditions to (1) and (23) on the surface

[
(ẑ − x̂fx − ŷfy)×

(
E
i
+ E

s
)]∣∣∣

z=f(x,y)
= 0 (28)

[
(ẑ −∇tf)×

(
êiE0e

−jki·r
)
= − (ẑ −∇tf)×

∑∞
m,n=−∞

(
ĥmnAmn + v̂mnBmn

)
e−jks·r

]∣∣∣
z=f(x,y)

(29)

By the simplifications

(ẑ −∇tf)×
(
êiE0e

jqf
)
= − (ẑ −∇tf)×

∞∑
m,n=−∞

(
ĥmnAmn + v̂mnBmn

)
e−jqmnfej2π(mx/Lx+ny/Ly) (30)

where f = f(x, y) and êiE0 = Exx̂+ Ey ŷ + Ez ẑ . Derivation of the vector products:

(ẑ −∇tf)× êiE0 = −x̂ (fyEz + Ey) + ŷ (Ex + fxEz) + ẑ (fyEx − fxEy) (31)

(ẑ −∇tf)× ĥmn = x̂
βm
βmn

+ ŷ
βn
βmn

+ ẑ

(
fx

βm
βmn

+ fy
βn
βmn

)
(32)

1
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(ẑ −∇tf)× v̂mn = −x̂
(
fy
βmn
β0

− βnqmn
βmnβ0

)
− ŷ

(
βmqmn
βmnβ0

− fx
βmn
β0

)
+ ẑ

(
fx
βnqmn
βmnβ0

− fy
βmqmn
βmnβ0

)
(33)

Using the finding above linear equation system can be obtained by the Galerkin method for x and y unit vector
components, so the x-component of the equation system can be derived as[
Amn

βm
βmn

+Bmn

(
βnqmn
βmnβ0

− fy
βmn
β0

)]
e−jqmnfej2π[(u−m)x/Lx+(v−n)y/Ly ] = (fyEz + Ey) e

jqfej2π[ux/Lx+vy/Ly]

(34)
and y-component of the system[

Amn
βn
βmn

+Bmn

(
fx
βmn
β0

− βmqmn
βmnβ0

)]
e−jqmnfej2π[(u−m)x/Lx+(v−n)y/Ly ]

= − (fxEz + Ex) e
jqfej2π[ux/Lx+vy/Ly ]

(35)

can also be obtained. As a result, the solution of (34) and (35) is in the form of:

KX = L (36)

Here, K ∈ Cu×v×m×n×2×2 , X ∈ Cm×n×2×1 , and L ∈ Cu×v×2×1 are tensors, and they can be turned into a

matrix form. Thus, K matrices can be given as

K11 =
1

LxLy

∫ Lx

0

∫ Ly

0

βm
βmn

e−jqmnfej2π[(u−m)x/Lx+(v−n)y/Ly ]dxdy (37)

K12 =
1

LxLy

∫ Lx

0

∫ Ly

0

(
βnqmn
βmnβ0

− fy
βmn
β0

)
e−jqmnfej2π[(u−m)x/Lx+(v−n)y/Ly ]dxdy (38)

K21 =
1

LxLy

∫ Lx

0

∫ Ly

0

βn
βmn

e−jqmnfej2π[(u−m)x/Lx+(v−n)y/Ly ]dxdy (39)

K22 =
1

LxLy

∫ Lx

0

∫ Ly

0

(
fx
βmn
β0

− βmqmn
βmnβ0

)
e−jqmnfej2π[(u−m)x/Lx+(v−n)y/Ly ]dxdy (40)

and L matrices

L11 =
1

LxLy

∫ Lx

0

∫ Ly

0

(fyEz + Ey) e
jqfej2π[ux/Lx+vy/Ly ]dxdy (41)

L21 = − 1

LxLy

∫ Lx

0

∫ Ly

0

(fxEz + Ex) e
jqfej2π[ux/Lx+vy/Ly ]dxdy (42)

are obtained. Consequently, after finding the solution of each integral numerically, these matrices are written
in the form below. Amn and Bmn unknowns are found after solving this linear equation system:[

K11 K12

K21 K22

][
Amn

Bmn

]
=

[
L11

L21

]
(43)
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Appendix 2. Sinusoidal surface solution of FMMM
If the rough surface is chosen as a simple sinusoidal function as z = f(x, y) = −h [cos (2πx/Lx) + cos (2πy/Ly)] ,

the FMMM solution can be obtained by Bessel functions for such a type of sinusoidal surface function, so K

matrices above can form as follows

K11 =
βm
βmn

(j)
|u−m|

(j)
|v−n|

J|u−m| (qmnh) J|v−n| (qmnh) (44)

K12 = −βmn
β0

hπ

Ly
(j)

|u−m|
J|u−m| (qmnh)

[
(j)

|v−n|
J|v−n+1| (qmnh) + (j)

|v−n|
J|v−n−1| (qmnh)

]
+
βnqmn
βmnβ0

(j)
|u−m|

(j)
|v−n|

J|u−m| (qmnh) J|v−n| (qmnh)

(45)

K21 =
βn
βmn

(j)
|u−m|

(j)
|v−n|

J|u−m| (qmnh) J|v−n| (qmnh) (46)

K22 =
βmn
β0

hπ

LX
(j)

|v−n|
J|v−n| (qmnh)

[
(j)

|u−m|
J|u−m+1| (qmnh) + (j)

|u−m|
J|u−m−1| (qmnh)

]
− βmqmn
βmnβ0

(j)
|u−m|

(j)
|v−n|

J|u−m| (qmnh) J|v−n| (qmnh)

(47)

and L matrices

L11 = −Ezh
Ly

(−j)|u| J|u| (qh)
[
(−j)|v| J|v+1| (qh) + (−j)|v| J|v−1| (qh)

]
+ Ey (−j)|u|+|v|

J|u| (qh) J|v| (qh) (48)

L21 =
Ezh

Lx
(−j)|v| J|v| (qh)

[
(−j)|u| J|u+1| (qh) + (−j)|u| J|u−1| (qh)

]
− Ex (−j)|u|+|v|

J|u| (qh) J|v| (qh) (49)

Thus, these matrices are written in the form in Equation (43), and the solution is obtained.

Appendix 3. General near-field equation of MoM for observation points just above the surface
The double gradient of (6):

∇∇Gp (r|r′) = −Gp (r|r′)


β2
m βmβn βmqmn

(z−z′)
|z−z′|

βnβm β2
n βnqmn

(z−z′)
|z−z′|

qmnβm
(z−z′)
|z−z′| qmnβn

(z−z′)
|z−z′| q2mn

[
|z−z′|2−(z−z′)2

(−jqmn)|z−z′|(z−z′)2 + (z−z′)2
|z−z′|2

]
 (50)
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