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Abstract: In this paper, a robust controller is developed for a mobile manipulator (MM) to track reference position/force
trajectories. Nonholonomic and holonomic constraints are considered for the mobile platform and manipulator, respec-
tively. Additionally, the control design considers the uncertainties in parameters of the dynamics of the mobile manipu-
lator with a bounded time varying additive disturbance (unmodelled effects, external disturbances). A Lyapunov-based
stability analysis is used to prove semiglobal uniform ultimate boundedness of the tracking error signals and the posi-
tion/force of the system track to an arbitrarily small neighborhood of the reference trajectories. Numerical results for
a mobile manipulator, which is formed from a differential drive mobile platform and 2 DOF Revolute-Revolute (RR)
manipulator, show that the position of the end-effector and the applied force track the desired position and the force
trajectories, respectively.
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1. Introduction
The literature on designing controllers of the position/force control for the robot manipulators (RMs) and
position control for the mobile robots (MRs) have been presented with various approaches. The control design
for the RM is challenging since its dynamics include some complexities such as nonlinear terms [1], friction forces
[2], uncertainties [2, 3]. In order to provide position/force tracking for the RMs, feedback linearization based
controllers [4, 5], adaptive controllers [6–9], neural network (NN) based controllers [1, 2] and robust controller
[3] are proposed. The techniques used in [4, 5] require exactly/partially known RM dynamics and the works
in [6–9] assumed that the dynamic model of RMs is linearly parameterizable. However, the obligations of the
proposed controllers in [4–9] might not be fulfilled in practice. Furthermore, the position tracking for MRs
is problematic due to included nonholonomic constraints [10–14]. A backstepping-like feedback linearization
approach [10], an adaptive controller with the velocity/acceleration limiter [11], a NN based controller [13], a
sliding mode robust controller [14], a differentiable kinematic controller [12] and a robust kinematic controller
[15], were designed for position tracking of the MRs.

Mobile manipulators (MM) are robotic systems composed of mounted RMs onto mobile platforms (MPs).
For many tasks, the end-effector contacts surfaces of objects, and a force arises between the end-effector and
surface; therefore, many robotic operations require force tracking together with position tracking. Industrial
∗Correspondence: gelibol@ogu.edu.tr
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mobile manipulators, which are formed of industrial manipulators and mobile platforms, such as ABBY, Little
Helper, OMNIVIL, etc., perform many tasks in industrial environments semiautonomously or autonomously
[16–20]. The position/force control is needed during pick-place [18], object handling [21], sealant [22] tasks for
applications of industrial mobile manipulation. The position and force control of MMs is challenging due to the
dynamic of the MM is nonlinear [23] and includes structural and nonstructural uncertainties [24]. Furthermore,
the RM and the MP have a coupled structure. Designing a controller for both systems concurrently is a
challenging problem due to the coupled structure. Another difficulty for designing a controller for MMs arises
from holonomic constraints (e.g., as the task constraints and the structure of the RM) and nonholonomic
constraints restricting the motion of the MR [25]. Few studies have focused on designing a controller for MMs
to simultaneously provide position and force tracking [24, 26–29]. In [24], a controller is developed to track
the reference position/force trajectories for a MM with both nonholonomic and holonomic constraints. In [30],
an NN-based extension attached to a model-based controller is designed to track the reference position and
force of an MM in the presence of uncertainties and disturbances. The control designs in [24, 30] require the
exact model of the dynamics of the MM. In [29], an adaptive controller is designed for MM with holonomic
and nonholonomic constraints to ensure force/position tracking despite the uncertainties and disturbances in
its dynamic. In [27], the holonomic constraint for the nonholonomic MM is assumed to be uncertain and the
proposed adaptive controller provides position/force tracking despite uncertain parameters and disturbances in
the dynamic. In [28], an output-feedback control is realized for the holonomic constrained nonholonomic MMs to
provide position/force tracking. In [31] a backstepping-based adaptive controller is utilized for the constrained
MM for tracking reference position/force trajectories. The aforementioned works in [27, 29, 31, 32] ensure
position/force control tracking for MM assuming that the dynamics of the MMs are linearly parameterized with
uncertainties. However, the dynamics of the MMs might be nonlinearly parameterized with uncertainties in
some applications, especially the dynamic of friction may not hold this condition all the time [32]. To overcome
the requirement of the linearly parameterizable condition in the dynamic, very few controllers were designed in
relevant literature [33]. However, the stability result for the presented controller in [33] is local. Realizing the
gap in the extant literature, more research is needed for designing a robust controller to ensure the position and
force tracking despite the holonomic/nonholonomic constraints, uncertainties, and disturbances in the dynamic
of MMs.

In this paper, a novel robust position/force controller is developed for a mobile manipulator that has
coupled structure, uncertainties in the dynamic and an unknown time varying disturbance. Moreover, the mobile
manipulator has both holonomic and nonholonomic constraints. It is assumed that the force measurement
of the end-effector of MM on task space is available as in [34]. The designed controller does not require
any linearization technique or the linearly parameterizable assumption for the MMs dynamic, unlike proposed
controllers in [24, 27, 29–31]. Furthermore, the controller in [24, 30] needs the exact knowledge of the dynamic
model of MM, however, in this paper, the robust controller is designed to track the position/force of MM
without the requirements of an exact model of the mobile manipulator. The controller in [24] does not
consider the disturbances in the dynamic; however, for real-time applications, most of the dynamics are
subject to disturbances. The designed controller is robust to additive unknown time varying disturbances
in the dynamics. The designed controller is applicable for the constrained/unconstrained motion, unlike the
controllers in [24, 27, 29]. A PID-based (proportional-integral-derivative based) continuous robust controller
is developed to increase the robustness of the controller under the uncertainties and disturbances and to
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improve the position/force tracking performance. The simulations on MATLAB-Simulink and ROS-Gazebo
are performed under realistic constraints to show the performance of the controller. The designed robust
controller ensures semiglobal uniformly ultimately bounded tracking error signals for the position and force
trajectories. A Lyapunov-based stability analysis is used to verify that the position/force of the system track
to an arbitrarily small neighborhood of the reference trajectories. Numerical results show that the position of
the end-effector and the applied force track the reference position and the force trajectories. Explanations of
all abbreviations are given in Table 1 in Appendix A.

2. Dynamics of the mobile manipulator
The dynamic model of the constrained MM, which includes nonholonomic constraints in the MP and holonomic
constraints in the RM, is expressed in the generalized coordinates as [35]

M (q) q̈+C (q, q̇) q̇+N (q, q̇)+d (t)=B (q) τ (t)+f (t) , (1)

where q≜ [ qTv qTa ]
T ∈Rn symbolizes the position vector of the MM, q̇, q̈∈Rn are the velocity and accel-

eration vectors of the MM, respectively. The generalized coordinates of the position of the MP and the
RM are denoted by qv∈Rm and qa∈Rk , respectively. The inertia matrix of the MM is symbolized as

M(q)≜
[

Mv Mva

Mav Ma

]
∈Rn×n . The centripetal and Coriolis forces of the MM are denoted as C(q, q̇)≜

[
Cv Cva

Cav Ca

]
∈Rn×n . The vector N(q, q̇)≜

[
NT

v NT
a

]T ∈Rn includes the dynamics of the gravity G(q)∈Rn , static/dynamic

friction F (q̇)∈Rn of the MM. The unknown time varying bounded additive disturbance is denoted as d(t)≜ [dTv

dTa ]
T ∈Rn and the transformation matrix of the MM’s input is denoted as B(q)≜

[
Bv 0m×k

0k×w Ba

]
∈Rn×(w+k)

where w∈R is the number of driven wheels of the MP. The torque of the MM is defined as τ(t)≜
[
τTv τTa

]T ∈R(w+k)

and the constraint force vector is denoted as f(t)≜ [ fT
n fT

h ]
T ∈Rn . Furthermore, the detailed explanations of

the matrices of the dynamic model are given in Table 2 and the control input and the subsequent developments
depend on the following assumptions and properties.

Assumption 1 The mobile platform is assumed to be nonslippage [25].

Assumption 2 The unknown time varying additive disturbance d (t) is assumed to have an upper bound, which
is constant and known [36, 37].

Remark 1 The additive disturbance d(t) includes both parametric uncertainties and unmodeled effects (d∆unc
(t)

∈ Rn) , and external disturbances (dext(t) ∈ Rn ).

d (t) = dext (t) + d∆unc
(t) ,

It should be noted that the designed control signal in this paper does not in need of the exact knowledge of M(q) ,
C(q, q̇) , G(q) , and F (q̇) . The aforementioned matrices and vectors in (1) may include some uncertainties,
which are denoted as Munc ∈Rn×n, Cunc ∈Rn×n, Gunc ∈Rn and Func ∈Rn , and are used in the simulation to
show the robustness of the controller under the added parametric uncertainties, unmodelled effects, and external
disturbances.
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Property 1 The inertia matrix M(q) is a positive definite, symmetric matrix and satisfies the following
property [38].

m||x||2 ≤ xTM(q)x ≤ m||x||2, ∀x ∈ Rn,

where m,m ∈ R>0 are known constants.

Property 2 The inertia matrix M(q) and the centripetal and Coriolis forces C(q, q̇) satisfy the skew symmetry
property [38].

Assumption 3 The matrices M (q) , C (q, q̇) , N (q, q̇) and B(q) , along with their first order partial derivatives,
are assumed to have bounds provided that the functions q, q̇, q̈ are bounded [39].

Using (1), the dynamics of the mobile platform and manipulator is written as

Mv q̈v+Mvaq̈a+Cv q̇v+Cvaq̇a+Nv+dv (t)=Bvτv+fn, (2)

Mav q̈v+Maq̈a+Cav q̇v+Caq̇a+Na+da (t)=Baτa+fh. (3)

The nonholonomic constraint exists due to the mechanical structure of the MP and causes restrictions on
velocities. Such velocity constraints restrict the motion of the platform. Therefore, the velocity constraints
must be satisfied during the motion of the MP. In order to fulfill nonholonomic constraint conditions and
eliminate the nonholonomic constraint forces, the MM is needed to be written in terms of the generalized
combined joint-space coordinates.

2.1. Combined joint-space dynamic model of mobile manipulator

The MP has cn ∈ R>0 nonholonomic constraints which exist due to wheels of the platform and restrict MP
to move along the lateral direction [25, 40]. The constraints restrict the motion of the MP by limiting the
sets of state trajectories and are always fulfilled via nonholonomic constraint forces [41]. The nonholonomic
constraints of the MP can be defined in Pfaffian form as Av(qv) q̇v = 0cn where Av : Rm → Rcn×m is the
kinematic constraint matrix. The nonholonomic constraints forces can be defined as fn = AT

v (qv)λn , where
λn ∈ Rcn is the Lagrangian multiplier of the nonholonomic constraints. There exists a set of smooth and
linearly independent vector fields, Sv(qv)∈Rm×w , spanning the null space of A (qv) and is defined as

ST
v (qv)A

T
v (qv) = 0w×cn . (4)

An auxiliary velocity vector θ̇v ≜ [θ̇L θ̇R] ∈ Rw , where θ̇R, θ̇L ∈ R are the angular velocities of right and left
wheels of the MP, satisfies the following property:

q̇v = Sv (qv) θ̇v. (5)

Multiplying both sides of (2) by ST
v (qv) then substituting (5) and the time derivative of (5) into (2) and (3),

the dynamics given in (1) can be transformed into the combined joint-space of the MM as

Mj θ̈j + Cj θ̇j +Nj + dj = Bjτ + fj , (6)
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where θj ≜
[
θTv qTa

]T ∈ Rw+k is the position vector, θ̇j , θ̈j ∈ Rw+k are the velocity and acceleration of the

MM in combined joint-space, respectively, Mj ≜
[

ST
v MvSv ST

v Mva

MavSv Ma

]
∈R(w+k)×(w+k) , Nj≜

[
ST
v Nv

Na

]
∈R(w+k) ,

Cj ≜
[

ST
v

(
CvSv +MvṠv

)
ST
v Cva

MavṠv + CavSv Ca

]
∈R(w+k)×(w+k) , dj≜

[
ST
v dv
da

]
∈R(w+k) , Bj≜

[
ST
v Bv 0w×k

0k×w Ba

]
∈R(w+k)×(w+k) ,

fj≜
[

0
fh

]
∈R(w+k) . Consequently, the nonholonomic constraint force is eliminated and the motion of the MP is

restricted. The force between the surface and the end-effector is measured in task space; therefore, the dynamic
model in combined joint-space coordinates needs to be transformed to the task space of the MM.

2.2. Task space dynamic model of mobile manipulator
The relationship between the velocity of the end-effector according to the combined joint-space and the task
space is defined as:

ẊT = Jjtθ̇j , (7)

where XT , ẊT ∈ Rct are the position and the velocity of the end-effector in task space, respectively and
Jjt ∈ Rct×(w+k) is the Jacobian matrix, where ct ∈ R>0 is the number of variables in the task space. Using
(7), the velocity and acceleration of the MM in combined joint-space can be defined in the task space as

θ̇j = J†
jtẊT , θ̈j = −J†

jtJ̇jtJ
†
jtẊT + J†

jtẌT , (8)

where J†
jt ∈ R(w+k)×ct is the pseudo-inverse of the Jjt , ẌT ∈ Rct is the acceleration of the end-effector in

the task space. Using (8), the combined joint-space dynamics in (6) is transformed to the task space and the
nonholonomic constraints are eliminated as

MT ẌT + CT ẊT +NT + dT = BT τ + fT , (9)

where MT ≜
(
J†
jt

)T

MjJ
†
jt∈Rct×ct , CT ≜

(
J†
jt

)T(
Cj−MjJ

†
jtJ̇jt

)
J†
jt∈Rct×ct , NT ≜

(
J†
jt

)T

Nj∈Rct , dT ≜
(
J†
jt

)T

dj∈Rct ,

BT ≜
(
J†
jt

)T

Bj∈Rct×(w+k) and fT ≜
(
J†
jt

)T

fj∈Rct . Designing control signal to provide tracking for position

and force simultaneously is challenging since the control input signals for both position and force are coupled
in the task space model. To overcome the difficulty of the control design, it may be advantageous to use the
reduced order dynamic model given in [42].

2.3. Reduced order dynamic model of the mobile manipulator
The holonomic constraint, which is existed due to the desired task, for the end-effector of the MM can be defined
as a restriction of the dynamics on the constraint manifold as

Ωh ≜ {(XT , ẊT )|Θ(XT ) = 0ch , Aa (XT ) ẊT = 0ch}, (10)

where Θ : Rct → Rch and its null space defines the holonomic constraint of MM such that Θ(XT )= 0ch and
ch ∈ R>0 is the number of holonomic constraints. There exists a holonomic constraint matrix, Aa ∈ Rch×ct ,
that is defined as

Aa (XT ) ≜
∂Θ(XT )

∂XT
. (11)
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Assumption 4 The holonomic constraints of the end-effector are assumed to be known exactly and frictionless
[9].

Assumption 5 The matrix Aa(XT ) can be separated as Aa =
[
∂Θ(XT )

∂x1
∈Rch×ct−ch ∂Θ(XT )

∂x2
∈Rch×ch

]
and the

x2 ∈ Rch should be selected to ensure that ∂Θ(XT )
∂x2

is full rank [9].

The task space variables can be partitioned as XT =
[
xT
1 xT

2

]T , where x1 ∈ Rct−ch denotes the unconstrained
task space variables and x2 ∈ Rch is a function of the holonomic constraints of the MM in the task space. Using
Assumption 5 and the Implicit Function Theorem, there exists a unique function Ω : Rct−ch → Rch on the
constraint surface such that x2 = Ω(x1) . The constraint function can be rewritten as Θ(XT ) ≜ Θ(x1, x2) =

Θ (x1,Ω(x1)) = 0ch [9]. To define the reduced order dynamic model, the variables u1 ∈ Rct−ch and u2 ∈ Rch

are defined as

u ≜
[

u1

u2

]
=

[
x1

x2 − Ω(x1)

]
. (12)

where u is defined using the position of the end-effector in the task space and the holonomic constraint. Using
(12), the relation between the states of the task space and the reduced order model becomes:

ẊT = T u̇, ẌT = Ṫ u̇+ T ü, (13)

where T ∈ Rct×ct is the transformation matrix. Substituting (13) into (9), multiplying both sides by TT

and using fT =
(
J†
jt

)T

fj = AT
a λh , where λh ∈ Rch is the Lagrangian multiplier of holonomic constraints, the

reduced order dynamic model for the constrained MM is obtained as

MST ü+ CST u̇+NST + dST = BST τ + (AaT )
Tλh, (14)

where MST ≜ TTMTT ∈Rct×ct , CST ≜
(
TTMT Ṫ + TTCTT

)
∈Rct×ct , NST ≜ TTNT ∈Rct , dST ≜ TT dT ∈Rct ,

BST ≜ TTBT ∈Rct×(w+k) .

3. Control development

The objective is to design a controller that enables the end-effector of the MM to track the desired position and
force trajectories despite uncertainties in the dynamic model subjected to additive disturbances. To quantify
the control objective, a measurable error signal for position tracking e0 ∈ Rct and an auxiliary tracking error
e1 ∈ Rct are defined as

e0 ≜
∫ t

t0

(ud(ξ)− u(ξ))dξ, (15)

e1 ≜ ė0 + α1e0, (16)

where ud ∈ Rct is the desired position trajectory and α1 ∈ Rct×ct is an adjustable, positive definite, diagonal
(APDD) control gain matrix. The time derivative of (15) defines the error between desired and actual position
of the end-effector.
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Assumption 6 The desired position trajectory ud ∈ Rct and its first and second time derivatives u̇d, üd ∈ Rct ,
and the desired force trajectory λd ∈ Rch are bounded by constants which are known [43].

To facilitate the control development, an auxiliary signal r ∈ Rct is defined as

r ≜ ė1 + α2e1, (17)

where α2 ∈ Rct×ct is an APDD control gain matrix. Multiplying both sides of the time derivative of (17) by
MST , using (14)-(17), the open-loop dynamics for r is obtained as

MST ṙ =Ñ +Nd −BST τ − (AaT )
Tλh − e1, (18)

where Ñ ,Nd ∈ Rct are defined as

Ñ ≜ MST (u) (üd + (α1 + α2)ë0 + (α2α1)ė0) + CST (u, u̇) (u̇d + (α1 + α2)ė0 + (α2α1)e0)

+ dST (t) +NST (u, u̇) + e1 −MST (ud)üd − CST (ud, u̇d) u̇d −NST (ud, u̇d)− dST (t),

Nd≜MST(ud)üd+CST (ud,u̇d) u̇d+NST(ud,u̇d)+dST (t). (19)

Remark 2 Based on Assumptions 3 and 6, the Mean-Value Theorem can be utilized to acquire an upper bound
for Ñ as in [34] ∥∥∥Ñ∥∥∥ ≤ ρ (∥z∥) ∥z∥ , (20)

where z ≜ [eT0 eT1 rT ]T ∈ R3ct and ρ : [0,∞)→ [0,∞) is a radially unbounded, positive definite, and strictly
increasing function.

Remark 3 Based on Assumptions 2, 3, and 6 , the following upper bound can be obtained for Nd as

∥Nd∥ ≤ N̄d, (21)

where N̄d ∈ R>0 is a known constant.

According to the stability analysis, the control signal is designed for position and force tracking as

τ ≜ B†
ST (kr + τf ), (22)

where k ∈ Rct×ct is an APDD control gain matrix and the force control input signal τf ∈ Rct is designed as

τf ≜ −(AaT )
Tλc, (23)

where λc ∈ Rch is the force control vector and designed as

λc ≜ λd +Kλeλ, (24)

where Kλ ∈ Rch×ch is an APDD control gain matrix and eλ ∈ Rch denotes the error between the desired and
measured force, eλ is defined as

eλ ≜ λd − λh. (25)

Substituting the control signal (22) and (23) into (18), the closed-loop dynamics for r is obtained as

MST ṙ = Ñ +Nd − (kr−(AaT )
Tλc)−(AaT )

Tλh−e1. (26)
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Remark 4 Using (24) and (25), the following expression is obtained as [43]

eλ =
λc − λh

(1 +Kλ)
. (27)

Using (18)-(22), λc−λh can be defined with a function ζ
(∫ t

0
u(ξ)dξ,

∫ t

0
ud(ξ)dξ, u, ud, u̇, u̇d, üd

)
∈R that depends

the position and velocity of the MM and its desired trajectories. It should be noted that as Kλ is increased, the
error between the desired and actual force will be reduced.

Theorem 1 Given the dynamics in (1), the controller given in (22)-(23) ensures semiglobally, uniformly,
ultimately boundedness of the tracking error signals in sense that

lim sup
t→∞

∥ud − u∥ ≤ ϵ1exp (−ϵ2 (t− t0)) + ϵ3, (28)

where ϵ1, ϵ2, ϵ3 ∈ R>0 are known constants. The control gain k must satisfy the following gain condition

kmin ≥ 2ρ2 (∥z (t0)∥)
min

{(
α1min − 1

2

)
,
(
α2min − 1

2

)
, kmin

2

} . (29)

Proof Let the candidate Lyapunov function V : D → R be defined as

V ≜ 1

2
eT0 e0 +

1

2
eT1 e1 +

1

2
rTMST r, (30)

which satisfies the following property as

λ1 ∥z∥2 ≤ V (z) ≤ λ2 ∥z∥2 . (31)

where λ1, λ2 ∈ R are known positive constants such that λ1 ≜ min{1,mST }
2 and λ2 ≜ max{1,m̄ST }

2 . Using (17),
(20)-(21) and (26), the time derivative of (30) can be upper bounded as

V̇ ≤−
(
α1min − 1

2

)
∥e0∥2−

(
α2min − 1

2

)
∥e1∥2−kmin ∥r∥2+∥r∥ ρ (∥z∥)∥z∥+ ∥r∥ N̄d+rT

(
(AaT )

T (λc−λh)
)
. (32)

Remark 5 When the end-effector does not touch the constraint surface, the force of end-effector is not measured;
in other words, fT = AT

a λh = 0 . Using the definition of Aa in (11), AT
a ̸= 0 for all time; therefore, the Lagrange

multiplier of holonomic constraint is zero, λh = 0ch×1 . Since the desired force trajectory is zero when the end-
effector does not touch the constraint surface, the control input for force tracking is also zero, λc = 0ch×1 . In
summary, the following property is valid when the end-effector does not touch the constraint surface:

rT (AaT )
T (λh − λc) = 0. (33)

While the end-effector is touching the surface, the constrained variable of reduced order model in (14) and its
time derivatives are zero as

u2 = u̇2 = ü2 = 0ch×1. (34)
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Since the expression in (34) holds while the end-effector is touching the surface, its desired position trajectory
and its time derivatives are also zero:

ud2 = u̇d2 = üd2 = 0ch×1. (35)

Using (34) and (35), the following property can be written while the end-effector is touching the surface:

µ1

∫ t

0

(ud2(ξ)− u2(ξ))dξ + µ2(ud2 − u2) + µ3 (u̇d2 − u̇2) = 0ch×1, ∀µ1, µ2, µ3 ∈ R (36)

The auxiliary signal r can be expressed in the form of (36), therefore rT (AaT )
T (λh − λc) = 0 . Using (36), the

expression in (33) also holds while the end-effector is touching the surface. In summary, while the end-effector
whether or not touches the constraint surface; thus, the property in (33) holds, rT (AaT )

T (λh − λc) = 0 .

Using (33), completing square the terms ∥r∥ ρ (∥z∥) ∥z∥ and ∥r∥ N̄d in (32) for r , the following upper
bound can be obtained for (32) as

V̇ ≤ −
(
α1min − 1

2

)
∥e0∥2 −

(
α2min − 1

2

)
∥e1∥2 −

kmin

2
∥r∥2 + ρ2 (∥z∥) ∥z∥2

kmin
+

N̄2
d

kmin
. (37)

Using (29) and (31), the expression in (37) can be upper bounded as

V̇ ≤−
min

{(
α1min − 1

2

)
,
(
α2min − 1

2

)
, kmin

2

}
2λ2

V +
N̄2

d

kmin
. (38)

From (38), e0, e1, r ∈ L∞ ; using (17), ė1 ∈ L∞ that implies ė0 ∈ L∞ . Using (15) and ė0 ∈ L∞ , is concluded
that u, u̇ ∈ L∞ . Using Assumption 3, the matrices MST , CST , NST , BST ∈ L∞ . Using u, u̇ ∈ L∞ and
(27), eλ ∈ L∞ that implies λc, λh ∈ L∞ and τf ∈ L∞ . Since r, τf , BST ∈ L∞ , then τ ∈ L∞ . Since
u, u̇,MST , CST , NST , dST , BST , τ, λh∈L∞ , then ü∈L∞ . Standard signal chasing algorithms can be utilized to
prove that all remaining signals are bounded. 2

Remark 6 The domain, which is arbitrarily large, is defined as SD≜
{
z∈R3ct | ∥z∥ ≤

√
λ1

λ2
inf

{
ρ−1

(√
σkmin

2

)}}
,

where σ ≜ min
{(

α1min − 1
2

)
,
(
α2min − 1

2

)
, kmin

2

}
. The control gains α1, α2 can be chosen large enough,

thereby, the control gain k becomes correspondingly larger to satisfy the gain condition in (29). Moreover,
choosing the control gain k arbitrarily large results in an arbitrary small ultimate bound for the position track-
ing error. As choosing the control gain Kλ of force control input as larger, the force tracking error ϵλ becomes
smaller. In addition to that, increasing the control gains causes rising in the magnitude of the control input;
consequently, much more control effort will be needed.

4. Simulation in Simulink
A numerical simulation is performed to show the performance of the controller in (22)-(24). The mobile
manipulator, as illustrated in Figure 1, consists of an RR manipulator and a differential-drive MP, which
has two driving wheels and a castor wheel. The position and velocity of the right and left driving wheels are
denoted by θR , θ̇R , θL , θ̇L , respectively. The angular position of the first and second joints are symbolized as
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2h X 

Figure 1. The coordinate systems of the end-effector {e}, the RM base {b}, the MP of the MM {p}, the COG of the
MP {COG}, and the world coordinate system {w}.

θ1 and θ2 , respectively. The length of the first and second links are defined as 2l1 and 2l2 , respectively. The

generalized Lagrange coordinates of the MM are given as qv=
[
x y θ

]T∈ R3 and qa=
[
θ1 θ2

]T∈ R2 . The MP
has a nonholonomic constraint due to the structure of its wheels. Considering Assumption 1, the nonholonomic
constraint of the MP, which states that the COG of MP moves along the xp axis and velocity along yp axis is
zero [25], is defined as

−ẋsθ + ẏcθ − dθ̇ = 0, (39)

where sθ and cθ denote the sin(θ) and cos(θ) , respectively. The nonholonomic constraint matrix is written
as Av=[−sθ cθ −d ] . The transformation from the generalized Lagrange coordinates to the combined joint-

space coordinates of the MP is defined as q̇v = Sv θ̇v , where Sv=

[
(rwcθ+drwsθ/l)

2
(rwsθ−drwcθ/l)

2
−rw
2l

(rwcθ−drwsθ/l)
2

(rwsθ+drwcθ/l)
2

rw
2l

]T
∈R3×2,

rw ∈ R is the radius of the wheels of the MP, l ∈ R is the distance between the COG of the MP and a

wheel, θv=[ θL θR ]
T , θ̇v=

[
v−lω
rw

v+lω
rw

]T , v and w are the linear and angular velocities of the MP [44]. The
task space variables of the MM, which are assigned as the position of the end-effector according to the world
frame and selected according to the holonomic constraint considering Assumption 4, are defined as XT and the
velocity of the end-effector in the world frame is denoted as ẊT .

XT =

 wPye
wPze
wPxe

 =

 y + dsθ + 2l2c2sθ1
z + hpl + hwcog+2l1+2l2s2

x+ dcθ + 2l2c2cθ1

 , ẊT =

 ẏ+dθ̇cθ−2l2θ̇2s2sθ1+2l2(θ̇+θ̇1)c2cθ1
2l2θ̇2c2

ẋ−dθ̇sθ−2l2θ̇2s2cθ1−2l2(θ̇+θ̇1)c2sθ1

 , (40)

where sθ1 and cθ1 denote the sin(θ+θ1) and cos(θ+θ1) , respectively. The RM has a holonomic constraint due
to the interaction of the end-effector with a surface. The surface is perpendicular to XwY w -plane (or parallel
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to Y wZw -plane) and is located at the position Xsurface on Xw axis. A force in the direction of the Xw axis
occurs which includes moving along Y w and Zw on this vertical surface. The simulation environment is shown
in Figure 1. For touching to surface and moving on it, the Xw axis component of the end-effector’s position
with respect to {w} should be equal to the position of the surface in Xw axis. In the simulation, we assume
that the RM has one holonomic constraint (ch = 1) and the holonomic constraint function is defined as

Θ(XT ) =
wPxe

−Xsurface = 0, (41)

and the reduced order variables are selected as u=
[
uT
1 uT

2

]T where u1=
[
wPye

wPze

]T and u2=[
wPxe

−Xsurface] .
The transformation matrix T = I3×3 , where I3×3 ∈ R3×3 is the identity matrix. The desired task is defined in
three phases. In the first phase (t ∈ [0, T1)), the end-effector approaches the surface that is located at a prede-
fined position, and the end-effector tracks a given desired position trajectory. In the next phase (t ∈ [T1, T2)),
when the end-effector touches the surface, the end-effector tracks both given a desired position and a force
trajectories and in the latter phase (t ∈ [T2, T3]), the end-effector moves off the surface and the end-effector
tracks only a given desired position trajectory. The desired force and position trajectories, which are used to
show the performance of the designed controller, are given in Table 3. The desired trajectories imply that when
the end-effector is not on the surface, the desired force trajectory equals zero. Thus, only the position of the
end-effector needs to be controlled when the end-effector is not on the surface. When the end-effector contacts
the surface, a force between the surface and the end-effector along Xw exists. To satisfy the holonomic con-
straint, the position of the end-effector along Xw should not change while the end-effector moves along Y w and
Zw axes. Thus, both the force and the position of the end-effector must be controlled during the interaction
with the surface.

The matrices of the dynamic model of the MM in (1) was obtained from [44] and the values of the
parameters in the MM dynamic are given in Table 4. The parametric disturbances are assumed as m1unc=

0.10m1sin(3t) , m2unc=0.10m2sin(2t) , mpunc=0.05mpsin(t) and the disturbances in frictions are defined as
f1unc=f2unc=0.01sin(3t) . The parametric uncertainties (d∆unc

(t)) is constructed with the given parametric
disturbances for the simulation and Munc, Cunc , and Gunc are obtained via substituting the parametric
disturbances mpunc,m1unc , and m2unc into the mp,m1 , and m2 , respectively at the matrices in the dynamic
model. Func is obtained via substituting the parametric disturbances f1unc and f2unc into the f1 and f2 ,
respectively at the vector in the dynamic model. The disturbance and the friction of MM are assumed as

dext(t) = [0.05sin(3t) 0.025sin(3t) 0.04sin(3t) 0.05sin(3t) 0.1sin(2t)]
T and F=

[
0 0 0 0.1θ̇1 0.1θ̇2

]
, respectively.

The initial conditions of the generalized coordinates of the MM, the initial position of the end-effector and the
control gain matrices are given in Table 5. In the simulation, the initial position of the end-effector is selected
as 0.15 m error in all axes expressed in {w} frame, and the applied control flow diagram for the performed
simulation is given in Figure 2. The control strategy of the proposed controller depends on calculating the
tracking errors. The tracking errors for position and force are obtained using the desired trajectories and the
end-effector’s position, velocity, and force. The required measurements (the position, the velocity, and the force
measurements of the end-effector) to calculate the tracking errors can be obtained via various sensors in real-
time experiments. The calculated input transformation matrix and the tracking errors are used to compute the
control input; thereafter, the control input is applied to the actual system for real-time experiments. Although
the designed controller does not need the dynamic model of the MM excepting the input transformation matrix,
the dynamic model in (14) is utilized to obtain the position, the velocity, and the force of the end-effector for
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getting the numerical results.

Figure 2. The flow diagram of the designed controller in Simulink.
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Figure 3. The desired and the actual position of the end-effector along Xw axis in (a), along Y w axis in (b), along
Zw axis in (c), the desired and the actual force of the end-effector in (d).

The desired and the actual position of the end-effector are shown in Figure 3(a, b, c). In the first 3 s,
the end-effector is approaching the surface while it tracks the desired position. Between 3rd and 9th s, the
end-effector is moving on the surface and tracks a sinusoidal wave which is the desired position trajectory on the
surface. While the end-effector is on the surface, the constrained component of the position of the end-effector has
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Figure 4. Constraint values, of (a) the holonomic constraint function in (41), (b) the nonholonomic constraint function
in (39)
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Figure 5. The developed control input, for the left wheel in (a), for the right wheel in (b), for the first joint in (c), for
the second joint in (d).

a constant value due to the surface location; however, the unconstrained components provide the desired motion
on the surface. In the last period of the simulation, the end-effector is leaving the surface while the end-effector
is tracking the desired trajectory. The desired force trajectory is zero while the end-effector is not contacting the
surface; however, when the end-effector contacts the surface, the desired force trajectory is sinusoidal. The de-
sired and the actual force trajectories are shown in Figure 3(d). When the interaction starts between the surface
and the end-effector, the force control is performed and the maximum absolute error of force tracking is less than
0.017. During the force tracking, the Lagrangian multiplier of the holonomic constraint is calculated by using
(14). The value of the holonomic and nonholonomic constraint functions are given in Figure 4. The plot in Figure
4(a) shows that the holonomic constraint function in (41) is satisfied when the end-effector contacts the surface.
The value of the nonholonomic constraint is less than 3× 10−16 for the given desired trajectories as shown in
Figure 4(b). The control input (τ ) of the MM is shown in Figure 5. The input signals, which include the torque
values of the left-right wheels and the joints of the RM, are shown in Figure 5(a, b, c, d). The controller in [24] is
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used for comparing the performance of the designed controller. For comparing the performance of the designed
controller and the controller in [24], the controllers are used in two different test conditions, and the root mean

square errors
(
RMSEp ≜

√∑N=T3/∆t
i=1 (ud−u)2

N for the position, RMSEf ≜
√∑N

i=1(λd−λh)
2

N for the force
)

, the

total variation of control inputs
(
TVτ ≜

∑N−1
i=1 |τ (i+ 1)− τ (i)|

)
and the total energy consumption of MM(

TEC ≜
∑N

i=1

(∑w+k
n=1

∣∣∣τnθ̇jn ∣∣∣)∆t
)

are calculated for both test conditions. The parameters (N) and (∆t) in
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Figure 6. The left wheel’s angular velocity in (a) and control input in (b) according to the used controllers (the designed
controller and the controller in [24]) in the test conditions.

the performance metrics correspond to the number and the size of the time steps, respectively. The variables

(τn) and
(
θ̇jn

)
in TEC are the torque and the angular velocity of the nth joint of MM, respectively. The test

conditions are applied exactly the same to both controllers. In the first and the second conditions, 0.5 and 8
times more additive disturbance was applied to dynamics, respectively. Root mean square of the tracking posi-
tion error along {w} axes and force tracking error are given in Table 6. The controller in [24] underperforms due
to that the control input depends on the dynamics of the MM. However, even though the additive disturbance
increases, the designed controller results in less position and force tracking error than the controller in [24].
Furthermore, the total variation of the torque of the left-right wheels and joints of the manipulator is also given
in Table 6. The same amount of increase in additive disturbance yields less variation in the designed control
input than the controller in [24]. The control input (τ ) and the angular velocities ( θ̇j ) of the joints were used to
calculate energy consumption, and the results are given in Table 6; moreover, the control input and the angular
velocity of the left wheel are shown in Figure 6. As shown in Figure 6(a, b), variations in the control input
and angular velocity are much less for the designed controller than the variations resulted for the controller in
[24]. The remaining joints of MM show similar behavior. As seen in Table 6, the energy consumption of the
proposed method is much less than the energy consumption of the controller in [24]. Additionally, the designed
controller provides better performance than the controller in [24] about the energy consumption respect to the
additive disturbances.
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Figure 7. The flow diagram for Gazebo Simulation

5. Simulation in Gazebo
The MM in [44] is constructed for the Gazebo simulation by creating a URDF. The MM has 2 DOF RM and a
differential-drive MP. Pioneer 2DX, which is a preexisting differential-drive MP in Gazebo, is used without any
change. For the RM, the D-H parameters of the RM in the Simulink simulation are used to prepare the RM’s
URDF, and the RM is mounted at the center of the Pioneer 2DX [44]. The MP in Gazebo has acceleration
limits. The angular acceleration is between [−3.5, 3.5]rad/s2 and the linear acceleration limit is in [−2.5, 2.5]

m/s2 . The joints of the RM also have velocity limits. The upper limit of the velocity of the first and second
joints of the RM is 20rad/s . The transmission interface of each joint selected as “SimpleTransmission” and
“DefaultRobotHWSim” is used as the robot simulation type in Gazebo-ROS Control plugin. The hardware
interface of the MP and the RM is selected as Velocity and Effort Joint Interfaces, respectively.

The flow of the simulation is given in Figure 7. The simulation in Gazebo1 cooperates with Simulink
and ROS2 [45]. The differential-drive and Gazebo-ROS control plugins, and a custom plugin that is coded to
measure the torques of the MM joints are used to perform the simulation. In the controller part, the position
and velocity controllers provided by ROS are used to track the position of the end-effector.

The first stage of the simulation is implementing the position/force controller in Simulink. The imple-
mented controller gives the necessary control inputs (commands) for the Gazebo simulation. These inputs are
linear and angular velocities of the MP and the joint angles of the RM. The obtained control inputs were trans-
ferred to ROS. The outputs of the PID controller, which is embedded in ROS, are used in the related Gazebo
plugins. Finally, the measurements of the position and the heading angle of the MP, the joint positions and
the velocities of the wheels, the joint positions and the velocities of the RM, the position, the linear and the
angular velocities of the end-effector, the torque of the wheels of the MP and the joints of the RM are obtained
from topics of ROS and Gazebo and transferred to MATLAB to compare the Simulink and Gazebo results. In
MATLAB, the measurements from Gazebo are used in the designed controller to calculate the torque of each
joint in the MM. The calculated and measured torques are compared to show that the designed controller works
under the real constraints [46, 47].

The angular velocity of the joints is given in Figure 8. As shown in Figure 8, the measurements from
the Gazebo simulation give similar joint velocities as in Simulink. The MP is driven using the angular and the
linear velocity of the chassis using a differential drive controller plugin. The MP has limits in most applications

1Gazebo (2020). Gazebo Robot Simulator [online]. Website http://gazebosim.org/ [accessed 10 Oct 2020].
2ROS (2020). The Robot Operating System [online]. Website https://www.ros.org/ [accessed 10 Oct 2020].
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unlike the MP in Simulink; therefore, we applied half of the linear velocity command calculated in Simulink as
the linear velocity command in Gazebo. The measurements of the linear and the angular velocities of the MP
are given in Figure 9(a, b). The MP has limits on acceleration. Thus, the initial values of the velocities of the
MP in Gazebo are different from the data obtained in Simulink. However, the rest of the velocities track the
data provided from Simulink. The MP’s heading angle and trajectory are given in Figure 9(c, d), respectively.
The desired and tracked position trajectories of the end-effector along each axis are given in Figure 10(a, b, c).
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Figure 8. The velocity of the joints from Gazebo Simulation, for the right wheel in (a), for the left wheel in (b), for the
first joint in (c), for the second joint in (d)
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Figure 10. The desired and actual position trajecto-ries in Gazebo Simulation along Xw axis in (a), along Y w axis in
(b), along Zw axis in (c).
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Figure 11. The measured torques and the calculated torques via using Gazebo measurements for tracking the desired
trajectory, for the right wheel in (a), for the left wheel in (b), for the first joint in (c), for the second joint in (d).

In Gazebo simulation, the torque of the joints on the MM is measured from a custom Gazebo plugin.
To show the performance of the designed controller, the measurements of the MM from Gazebo are used to
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calculate the torque of the joints on the MM. The calculated and the measured torques are given in Figure 11(a,
b, c, d) for each joint. The torques of the wheels of the MP show a pattern similar to the measured torques.
As given in Figure 11, the calculated torques show similarity with the measurements; however, the magnitudes
of torques are different than the torques magnitudes from Simulink. Due to the operating PID controllers in
ROS are different from the developed controller and the acceleration and velocity limitations on Gazebo, the
measured and calculated torques of joints are not exactly the same. However, the desired position and force
trajectories are tracked accurately by the MM in both Gazebo and Simulink.

6. Conclusion
In this paper, a robust controller is designed to track the position and the force trajectory for a holonomic
constrained nonholonomic mobile manipulator. The uncertainties and disturbances are almost inevitable, and
the exact knowledge of the dynamics can not be obtained for the various real-time robotic applications. The de-
signed controller compensates for the effects of the uncertainties in the dynamics and an unknown time-varying
additive disturbance while guaranteeing the control objective. Furthermore, the exact knowledge of dynamics
and linearly parameterizable assumption are not required for the designed controller. The designed controller
ensures that the position and force of the mobile manipulator track their reference trajectories simultaneously
even the end-effector touches the constraint surface. Semiglobal uniformly ultimately boundedness of tracking
error is proved via Lyapunov-based stability analysis and tracking is achieved to an arbitrarily small neighbor-
hood of the reference trajectories. It might be interesting to consider an unknown time-varying input delay
despite uncertainties in the dynamics with an unknown time-varying additive disturbance in future works.
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Appendices

A List of abbreviations
Table 1. Explanations of all abbreviations.

Abbreviations Explanations
MM Mobile Manipulator
MR Mobile Robot
RM Robot Manipulator
MP Mobile Platform
PID Proportional Integral Derivative
NN Neural Network
APDD matrtix Adjustable, positive definite, diagonal matrix
RR Manipulator A manipulator which has two revolute joints
COG Center of gravity
D-H Parameters Denavit–Hartenberg parameters
URDF Unified Robot Description Format
RMSEp Root mean square of position tracking error
RMSEf Root mean square of force tracking error
TVτ Total variation of control input
TEC Total energy consumption of MM

B Dynamic model in generalized coordinates

Table 2. Submatrices in (1) and explanations.

Submatrices Explanations
Mv ∈ Rm×m Inertia matrices of the MP
Ma ∈ Rk×k Inertia matrices of the RM
Mav ∈ Rk×m the dynamic effect of the MP on the RM
Mva ∈ Rm×k the effect of the RM motion on the MP
Cv ∈ Rm×m The centripetal and Coriolis forces of the MP
Ca ∈ Rk×k The centripetal and Coriolis forces of the RM
Cav ∈ Rk×m The dynamic effect caused by the centripetal and Coriolis forces of the MP on the RM
Cva ∈ Rm×k The effect of the RM motion on the MP
Na ≜ Ga + Fa ∈ Rk The gravity and friction of the RM
Nv ≜ Gv + Fv ∈ Rm The gravity and friction of the MP
dv ∈ Rm The additive disturbances for the MP
da ∈ Rk The additive disturbances for the RM
Bv ∈ Rm×w The input transformation matrices of the MP
Ba ∈ Rk×k The input transformation matrices of the RM

τv ≜
[
τL τR

]T
∈ Rw The torque values of the left and right wheel of MP

τa ≜
[
τ1 τ2 . . . τk

]T
∈ Rk The torque applied to the joints of RM

fn∈Rm The force of nonholonomic constraint
fh∈Rk The force of holonomic constraint
Munc∈Rn×n The inertia matrix of MM due to parametric uncertainties and unmodeled effects
Cunc∈Rn×n The centripetal and Coriolis forces of MM due to parametric uncertainties and unmodeled effects
Gunc∈Rn×n The gravity of MM due to parametric uncertainties and unmodeled effects
Func∈Rn×n The friction of MM due to parametric uncertainties and unmodeled effects
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C Parameters and Matrices

Table 3. Desired Force and Position Trajectories

Desired Trajectory

0≤t < T1

wPxde(m) 2− cos((πt)/(2T1))
2

wPyde(m) −1.5− 0.5cos((πt)/(2T1))
2

wPzde
(m) 1.1− 0.4cos((πt)/(2T1))

2

λd (Nm) 0

T1≤t < T2

wPxde(m) 2
wPyde

(m) 1.5− 3cos((π(t− T1))/(2(T2 − T1)))
2

wPzde
(m) 1.0531 + 0.05sin(2.5t)

λd (Nm) 0.5sin((5π(t− T1))/(T2 − T1))
2

T2≤t < T3

wPxde(m) 1 + cos(−π(t− T2)/(2(T3 − T2)))
2

wPyde
(m) 2− 0.5cos(π(t− T2)/(2(T3 − T2)))

2

wPzde
(m) 0.9287+0.1cos(−π(t−T2)/(2(T3−T2)))

2

λd (Nm) 0

Table 4. Parameters of Dynamic Model of Mobile Manipulator

Parameters Explanation Value
mchassis,mp,mw Weight of MP’s chassis, the platform, driven wheels 5.67, 10.57, 1.5 kg

m1,m2,msensor Weights of RM ’s links and force sensor 1, 0.55, 0.0075 kg

Ipxx, Ipyy,Ipzz Inertia of MP 0.07, 0.08, 0.1 kgm2

Iwxx, Iwyy,Iwzz Inertia of wheels 0.0051, 0.0051, 0.009 kgm2

I1xx, I1yy,I1zz Inertia of RM ’s first link 0.0444, 0.0444, 6.6667e-05 kgm2

I2xx, I2yy,I2zz Inertia of RM ’s second link 0.0076, 0.0076, 3.7167e-05 kgm2

d Dbtw. the COG and midpoint the wheels 0.1 m

l Dbtw. the COG and a wheel 0.17 m

rw Radius of a wheel 0.11 m

hpl Dbtw. the MP’s COG and top of it 0.05 m

hwcog Dbtw. the heights of the’s COG and wheel axis 0.1 m

2l1, 2l2 Length of links 0.73, 0.405 m

MP: Mobile platform,RM : Manipulator,-Dbtw.:-Distance between.
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Table 5. Initial conditions and control gain matrices

Initials Values
x(0) 0.4057 m

y(0) −1.7734 m

z(0) 0.16 m

θ(0) −0.8727 rad

θ1(0) 0.8727 rad

θ2(0) −0.3530 rad
wPxe(0) 0.85 m
wPye(0) −1.85 m
wPze(0) 0.85 m

k diag(48.6, 37.8, 468)

Kλ 12250

α1 diag (0.036, 0.036, 3)

α2 diag (28, 71.68, 0.0056)

∆t 0.001 sec

T1, T2, T3 3 sec, 9 sec, 12 sec

Table 6. RMSEs, TV and TEC of control input with respect to the designed controller and the controller in [24]

RMSEp RMSEf TVτ (Nm)
TEC(J)

Controller Condition along Xw along Y w along Zw Force τL τR τ1 τ2

Designed 1 0.0233 0.0201 0.0109 0.0029 96.633 103.04 46.467 16.16 102.45
in [24] 1 0.4961 0.0751 0.0154 0.1871 2817.3 2540.5 2374.2 67.003 1694.2
Designed 2 0.0294 0.0208 0.0117 0.0036 97.277 104.21 53.871 17.42 104.08
in [24] 2 5.3304 0.0553 0.0172 1.3025 1893 2407.3 1520.6 119.03 2948.2
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