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Abstract: Recommender systems provide their users an efficient way to handle information overload problem by offering
personalized suggestions. Traditional recommender systems are based on two-dimensional user-item preference matrix
constructed depending on the users’ overall evaluations over items. However, they have begun to present their preferences
under various circumstances. Thus, traditional recommendation techniques fail to process multicriteria ratings during the
recommendation process. Multicriteria recommender systems are an extension of traditional recommender systems that
utilize multicriteria-based user preferences. Multicriteria recommender systems provide more personalized and accurate
predictions compared to traditional recommender systems. However, the increased amount of data dimension causes
sparsity to be a major problem of such systems. Especially, the similarity-based multicriteria recommender systems may
fail to find similar neighbors to an active user due to the lack of corated items among users. Therefore, we propose a new
similarity-based multicriteria collaborative filtering approach based on autoencoders. In order to handle sparsity, the
proposed method extracts nonlinear, low-dimensional, dense features from raw and sparse users’/items’ preferences. Our
experimental outcomes show that the proposed work can amortize the negative impacts of sparsity over the accuracy
comparing with the state-of-the-art multicriteria recommendation techniques.
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1. Introduction
Recommender systems (RS) are influential ways of dealing with the information overload problem caused by
intensive use of the Internet. Satisfaction of the customers increases with the help of RS by matching the
customers with related products without losing money and time. Moreover, RS improve usability and continuity
of the systems. Collaborative filtering (CF) is the most popular technique used for producing recommendations.
CF is based on the idea that people with similar behavioral leanings tend to agree in the future.

Users’ overall preferences of products are considered during the recommendation processes of traditional
CF techniques. With the increasing number of CF applications, the perspectives of users’ evaluations over
products have changed over time. In addition to make a general assessment of a product, users have begun to
evaluate it considering various subcriteria. With this way, customers obtain more personalized recommendations.
Additionally, product providers have opportunities to improve their weaknesses with the help of detailed feedback
provided by the users. In order to handle the evaluations over multiple criteria, multicriteria collaborative
filtering (MCCF) techniques as a new continuation of traditional CF are introduced [1]. MCCF allows for
producing predictions using users’ evaluations in multiple directions. Moreover, since the relations among users
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are obtained utilizing ratings in multiple dimensions instead of one general aspect, MCCF provides more accurate
predictions comparing with the traditional CF [1, 2]. Despite the improvements in accuracy, sparsity has become
more noticeable in MCCF systems [3]. In real life, a limited number of users evaluate a service/product for a
single criterion. Since users represent their evaluations over multiple criteria, this ratio decreases further with
the increasing number of criteria. Especially, for similarity-based MCCF systems, sparsity causes the number of
corated items among users to decrease dramatically. As a result, similarity-based approaches fail to find similar
neighbors to an active user [3]. Thus, this sparsity problem causes a negative impact on the accuracy of the
predictions and may even cause an inability to produce predictions.

Researchers have been working to absorb the negative impacts of sparsity on the accuracy of the
predictions in MCCF systems. However, most of these studies are based on linear methods. Nonlinear methods
provide obtaining more complex and unexpected information from data with respect to linear approaches [4].
There are a limited number of studies that utilize nonlinear assumptions; however, they need extra information
about users or items which is not always possible to gather. Even though there are nonlinear approaches based
on deep learning (DL) techniques that are utilized in overall rating-oriented RS, these approaches operate on
single rating dimension. Thus, they cannot be directly applied in MCCF systems. Therefore, there is a need
for producing predictions on a sparse data set utilizing nonlinear approaches without using extra information.
Thus, we proposed a similarity-based MCCF algorithm (AE-simMCCF) based on autoencoders in order to
prevent the adverse effect of sparsity over the accuracy of the produced predictions in this work. AE-simMCCF
utilizes autoencoders to extract nonlinear, hidden, and low-dimensional features from raw, high-dimensional
users’/items’ preferences for each criterion. AE-simMCCF uses these features to compute similarities among
users/items instead of sparse users’/items’ preferences in order to produce overall predictions. With this way,
AE-simMCCF manages to deal with sparsity problem. Contributions provided by the proposed study to the
literature can be recorded as follows:

• A new similarity-based MCCF approach which utilizes autoencoders is proposed.

• Raw, sparse, high-dimensional criterion-based users’/items’ preferences are reduced to low-dimensional,
nonlinear, complex, dense features with autoencoders.

• Extracted dense and low-dimensional features by autoencoders are utilized to find similar neighbors. With
this way, the proposed method prevents the negative impact of sparsity over the accuracy of the produced
overall criterion-based referrals.

The organization for the rest of the study is specified as follows. Existing MCCF techniques especially
focus on handling sparsity are presented in Section 2. Basic MCCF techniques and utilized DL technique
are introduced in Section 3. Section 4 presents the proposed approach. Section 5 presents the experimental
outcomes. Conclusions and future work are given in Section 6.

2. Related work
DL is often utilized in many research areas, including RS due to the developed fast processing units and increased
need in processing big data [4]. DL-based methods are utilized in overall rating-oriented RS in order to enhance
the accuracy of referrals by extracting nonlinear, latent, and complex relations among users and items [5–8] and
extracting nonlinear features from content/review information [9–11]. DL-based methods are also used in RS to
handle the sparsity problem by combining user preferences, and side information in hybrid approaches [12, 13].
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Reducing the dimension of user-item preference matrix with DL-based techniques is also utilized in RS to deal
with sparsity [14, 15]. Despite the abundance of studies based on DL techniques in single rating-oriented RS,
the number of DL-based approaches aiming to deal with sparsity and accuracy issues in MCCF is limited.

Multicriteria-based recommendation techniques are grouped as similarity-based and aggregation function-
based approaches [1]. Several methods are proposed to deal with problems of MCCF systems [16]. Most
of the existing studies are focused on improving accuracy. Several techniques are proposed for computing
similarities such as Euclidean distance [17], Mahalanobis distance [18] grey relational analysis [19, 20] for
enhancing the accuracy of referrals in similarity-based methods. To improve the accuracy of predictions in
aggregation function-based MCCF systems, a part of the researchers try to produce more accurate criterion-
based predictions [21–26]. Criterion-based predictions are generated by matrix factorization [23], fuzzy Bayesian
approach [21], autoencoders [25], multilayer neural networks [26]. Rest of the researchers try to enhance the
accuracy of predictions by integrating more precise aggregation function [27–31]. Support vector regression [28],
feed-forward neural networks [26, 29], autoencoders [30], adaptive genetic algorithm [31], genetic programming
[32], and tensor factorization [33, 34] are utilized for learning aggregation function. All of the mentioned studies
focused solely on improving accuracy without addressing the sparsity problem.

Even though AE-simMCCF is based on autoencoders, it is completely different from our previous work
AE-MCCF presented in [25]. The previous work AE-MCCF is an aggregation function-based method focusing
on improving accuracy of the predictions, whereas AE-simMCCF is a similarity-based MCCF approach which
focuses on handling the sparsity issue. AE-MCCF utilizes autoencoders to produce criterion-based predictions
utilizing the produced data at the outermost decoder layer of the autoencoder. Unlike the previous work, AE-
simMCCF utilizes autoencoders aiming to map raw, sparse, high-dimensional users’/items’ preferences into low-
dimensional, dense, nonlinear, and complex features in order to compute similarities among users/items. Thus,
AE-simMCCF utilizes the produced data at the outermost encoder layer of the autoencoder. Moreover, the
proposed work differs from AE-MCCF by utilizing other mechanisms such as dropout and batch normalization
to prevent overfitting and provide better learning. Since the dropout regularization decreases the coadaptation,
the network tends to learn more robust features [8]. Furthermore, AE-MCCF is limited to several activation
functions at the output layer since the input data is not normalized. However, any activation function can be
utilized in any layer of AE-simMCCF, since the input data is normalized to make the input range to be proper
with the chosen activation function.

Researchers propose some approaches based on integrating semantic and content information to deal with
sparsity problem for MCCF systems. Both users’ content information and ontological semantic filtering are
utilized to solve sparsity problem in [35]. Content features extracted by stacked denoising autoencoders are inte-
grated into tensor factorization in [36]. Even though the work presented in [36] utilizes denoising autoencoders
to extract features from content information, the work is still based on linear assumption during prediction
process. The authors in [37] propose using preference-based similarity instead of computing correlations over
sparse rating profiles to deal with sparsity issue. Additionally, reducing dimensions of users’/items’ sparse
preferences into low-dimensional dense space helps to deal with both sparsity and scalability issues. Principle
component analysis (PCA) and higher-order singular value decomposition are utilized to reduce dimensions of
the multidimensional user-item matrix into low-level space to alleviate sparsity and scalability issues in [38].
PCA is utilized in many studies with the purpose of dimensionality reduction for handling multicollinearity and
scalability issues [39, 40]. The neuro-fuzzy system is utilized to deal with sparsity in [41] since more precise fea-
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tures can be obtained with that system. Even though sparsity is a main problem of MCCF domain, the number
of studies focused on dealing with sparsity is limited. Furthermore, nearly all of these existing studies are based
on linear assumptions. Nonlinear assumptions are only utilized for extracting information from content data in
a limited number of studies; thus, the extracted relations among users’ and items’ interactions are still based
on linear assumptions. Therefore, there is still a need for approaches based on nonlinear assumptions to deal
with the sparsity issue in MCCF systems.

3. Background

3.1. Multicriteria collaborative filtering

In MCCF systems, a user’s preference relation is specified with a rating function as R : UsersXItems

→ R0XR1XR2X ...XRk , where R0 represents overall ratings which are assigned to the items by users. Rc

represents cth criterion ratings of users for items, with c ∈ 1, 2, ..., k . MCCF techniques are classified as
aggregation function-based and similarity-based approaches [1]. In similarity-based methods, MCCF problem
is mapped into a traditional CF problem by aggregating correlations among users/items with regard to criteria
and overall ratings. With this purpose, criteria-based relations among users/items are computed utilizing any
correlation measure. For computing aggregated correlations among users/items, either worst-case or average
similarity methods are utilized. Among the computed discrete similarities, the minimum one is assigned as
aggregated similarity in worst-case similarity technique. The aggregated similarity is computed as the average
of the discrete similarities in the average similarity approach. The aggregated similarity among two users/items
as u and v are computed using average and worst-case similarity methods as in Eq. 1 and Eq. 2, respectively:

simavg(u, v) =

∑c=k
c=0 simc(u, v)

k + 1
(1)

simmin(u, v) = minc=0,...,ksimc(u, v) (2)

where simc is any similarity function such as Pearson and cosine similarities for the cth criterion. In
aggregation function-based approaches, an aggregation function is learned to find out the relations among
criteria ratings and overall evaluations. Aggregation function-based methods consist of two major steps as
predicting criteria-votes and learning the aggregation function [1]. In the former one, predictions are generated
for each criterion using anyone of the recommendation methods. In the second step, aggregation function f is
learned with several methods such as data mining, machine learning, and domain knowledge. Then, the overall
predictions R0 can be obtained using the criterion-based predictions (R1, R2, ..., Rk ) and f as shown in Eq. 3:

R0 = f(R1, R2, ..., Rk) (3)

3.2. Autoencoders
An autoencoder is a kind of artificial neural network. An autoencoder is used for extracting nonlinear features,
dimensionality reduction, and computing deficient values in RS [4]. An autoencoder tries to regenerate its input
at the output layer [42]. A simple autoencoder can be represented with three layers as the input layer, hidden
layer, and output layer. An autoencoder consists of two sections as encoder and decoder parts. The autoencoder
takes its input at the input layer, encodes it at the hidden layer as shown in Eq. 4 and decodes it at the output
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layer as in Eq. 5. The output of the encoder part can be utilized as feature engineering and dimensionality
reduction. The learning process of an autoencoder for a given input set X is shown in Eq. 6

f(x) = θ(W1x+ b1) (4)

where θ represents a nonlinear function, W1 represents the weight matrix between the input and hidden
layers, x is the input of the autoencoder, and b1 represents the biased vector belonging to the hidden layer.

g(f(x)) = δ(W2f(x) + b2) (5)

where δ is a nonlinear function, W2 represents the weight matrix between the hidden and output layers, f(x)

is the encoded data, and b2 represents the biased vector belonging to the output layer.∑
x∈X

∥x− g(f(x))∥22 (6)

4. AE-simMCCF
AE-simMCCF is a similarity-based MCCF method that utilizes autoencoders. AE-simMCCF consists of two
parts as feature extraction/dimensionality reduction part and prediction part. Figure 4 shows a general
representation of the procedure of user-based AE-simMCCF (U-AE-simMCCF). Algorithm 1 presents the
pseudocode of AE-simMCCF procedure.

AE-simMCCF uses autoencoders in feature extraction/dimensionality reduction part to obtain low-
dimensional, dense, nonlinear, hidden features from raw, sparse, and high-dimensional user/item preferences
for handling sparsity in MCCF systems. For the users set U and items set I in a k -dimensional multicriteria
recommender domain, the rating space is k x n x m where the number of users in U is represented with n and
the number of items in I is specified as m . In order to compute similarities among users/items, the rating space
for k -dimensional multicriteria problem is decomposed into k single rating problems where each one has a rating
space as n x m . Each criterion-based n x m user-item matrix contains sparse user/item preferences. Low-
dimensional, dense, and complex features are extracted from these preferences by constructing an autoencoder
for each one of the criterion-based user-item matrices. Each user u and item i are represented with sparse
vectors as ru = ru1, ru2, ..., rum and ri = ri1, ri2, ..., rin , respectively in a criterion-based n x m user-item
matrix. For a user-based autoencoder, each ru in the matrix is considered an input of the autoencoder after
applying several preprocessing operations mentioned in the steps from 4 to 6 of Algorithm 1 to the matrix. For
this purpose, missing ratings are assigned to zero as in [6]. In order to disallow the network to be punished
because of the missing ratings, sign function is applied to the user-item matrix and the result is saved into
another matrix Y . Moreover, to make the input range compatible with the output range of the autoencoders
activation functions, the observed ratings in the user-item matrix is mapped into the corresponding range
depending on the chosen activation function. After feeding the autoencoder with ru , the input is encoded and
converted into a nonlinear, dense, and low-dimensional form using the Eq. 4 with the autoencoder’s encoder
part. Then, the input of the autoencoder is reconstructed at the output layer with its decoder part using the
Eq. 5. The error value is computed for each neuron at the outermost layer and it is multiplied with the related
cell in Y. With the help of Y , it is guaranteed that the network is penalized due to only the loss values of
observed votes. Furthermore, L2 regularization is used and dropout is added to each encoder and decoder
layer of the autoencoder to prevent overfitting. Additionally, batch normalization is used before activation

859



BATMAZ and KALELİ/Turk J Elec Eng & Comp Sci

Dkxnxm

Z1nxm

activation 

dropout 

en
co

d
e

input layer

dense layer

batch normalization 

dense layer

Z'1nxm

d
eco

d
e

Z2nxm

activation 

dropout 

en
co

d
e

input layer

dense layer

batch normalization 

dense layer

Z'2nxm

d
eco

d
e

Zknxm

activation 

dropout 

en
co

d
e

input layer

dense layer

batch normalization 

dense layer

Z'knxm

d
eco

d
e

...

dense, low-dimensional, complex 
features F2nxl for

criterion2 preferences

dense, low-dimensional, complex 
features Fknxl for

criterionk preferences

...
dense, low-dimensional, complex 

features F1nxl for
criterion1 preferences

 compute similarities S1nxn 
among users utilizing  F1nxl

 compute similarities 
S2nxn among users utilizing

F2nxl 

 compute similarities 
Sknxn among users utilizing

Fknxl 

...

aggregate S1nxn, S2nxn, ..., Sknxn to

compute overall similarity Sonxn compute 

overall predictions with memory-

based CF algorithm using Sonxn

Figure. General representation of U-AE-simMCCF.

functions in each dense layer except the outermost layer of the autoencoder aiming to prevent overfitting, to
provide more precise features and better learning [42, 43]. Batch normalization also alleviates faster learning
and better generalization for the network. L2 regularization is utilized. Eq. 7 represents the loss function for
the autoencoder.

∑
uO∈U

∥uO − g(f(uO))∥22 + λ(∥W1∥22 + ∥W2∥22) (7)

where uO is the observed ratings vector for user u , and λ represents the regularization term. After the
training process is completed, the network is fed with ru , and nonlinear and dense features are obtained from
the autoencoders encoder part. Since the number of neurons l in the encoding layer is much smaller than m , it
is guaranteed that obtained features are more low-dimensional than ru . This situation decreases the number of
computations during similarity computation. The extracted criterion-based features fc for all users are utilized
for computing similarities with cosine similarity as given in Eq. 8 for each criterion c where c ∈ 1, 2, ..., k in
the prediction part. The aggregated similarity So is computed either with worst-case or average similarity
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methods. The prediction of item i for user u is produced as given in Eq. 9 using So .

Sc(u, v) =

∑l
i=1 Fc(u, i)Fc(v, i)√∑l

i=1 Fc(u, i)2
√∑l

i=1 Fc(v, i)2
(8)

Fc(u, i) is the ith feature for user u obtained by the autoencoder in terms of criterion c .

P (u, i) =

∑
v∈N(u) So(u, v)R(v, i)∑

v∈N(u) |So(u, v)|
(9)

where N(u) is the set of top-n neighbors of user u , and R(v, i) is the rating of item i given by user v .

Algorithm 1 U-AE-simMCCF algorithm
Input: DkXnXm ▷ Multidimensional user-item matrix for k -criteria
Output: PnXm ▷ overall evaluations-based predictions

1: First section:
2: Separate D into k nXm matrices with regard to criteria
3: for each nXm criterion-based matrix Z do
4: Assign 0 to lost values in Z
5: Compute Y = Sign(Z )
6: Map the ratings in Z into the range [0, 1] or [-1, 1] depending on the chosen activation function
7: Design an autoencoder A for Z
8: Network training part:
9: Feed A with each user preference u in Z

10: Utilize Eq. 4 aiming to encode the user preference
11: Utilize Eq. 5 with the purpose of decoding the encoded data at the decoder layer
12: Compute error values E = |u− g(f(u))|
13: Compute observed error values EO = |uO − g(f(uO))| = E ⊙ Y
14: Use the loss function given in Eq. 7 and preferred optimizer for updating biases and weights for

A
15: Attain the trained autoencoder A′ after finishing the training process for A
16: Feature extraction/dimensionality reduction part:
17: Use each user preference in Z as input of the trained autoencoder A′

18: Utilize Eq. 4 to obtain low-dimensional, dense, complex features at the encoder layer whose
length is l .

19: Obtain the feature matrix Fnxl after feeding A′ with all users preferences in Z
20: end for
21: Second section:
22: for each nXl criterion-based feature matrix F do
23: Compute similarities Snxn among users utilizing the Fnxl with cosine similarity as in Eq. 8
24: end for
25: Use computed criterion-based similarities in order to calculate the aggregated similarity Sonxn either

with worst-case or average similarity method.
26: Compute P utilizing traditional memory-based CF algorithm and Sonxn as given in Eq. 9

5. Experimental work and discussions
Several trials are performed on two real data sets to show how effectively AE-simMCCF handles sparsity
with regard to accuracy and coverage in MCCF systems. In the first part of the experiments, the impacts of
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the changing parameters such as activation functions and hidden layer numbers on the performance of AE-
simMCCF are shown. In the second part, AE-simMCCF is compared with the state-of-the-art similarity-based
and aggregation function-based MCCF algorithms to show using nonlinear, low-dimensional, dense features
in terms of raw, high-dimensional sparse user/item preferences during the prediction process prevents adverse
effects of sparsity over the accuracy of the predictions. Moreover, AE-simMCCF is compared with the baseline
algorithms in terms of their running times in seconds. The utilized baseline MCCF methods for comparison are
below:

• Similarity-based approaches: Minimum similarity method-based traditional MCCF approach (TMCCF-
MinSim) [1] and average similarity method-based traditional MCCF approach (TMCCF-AvgSim) [1]

• Aggregation function-based approaches: Support vector machines-based traditional MCCF approach
(TMCCF-SVM) [28] and AE-MCCF [25]

All the above baseline methods are designed as both user- and item-based. For the baselines TMCCF-
MinSim, TMCCF-AvgSim, and TMCCF-SVM, the number of neighbors is experimentally set to 25 and cosine
correlation is utilized considering our data sets and experimental methodology. Radial basis function is used as
kernel function for TMCCF-SVM. Since AE-MCCF’s experimental methodology is the same as the proposed
work, the parameters which provide the best accuracy results specified in [25] are protected.

5.1. Data sets and evaluation measures
In the trials, two real data sets Yahoo!Movies (YM) and TripAdvisor (TA) which are gathered in [28] and [44],
respectively are benefited. A subset including users and movies which possesses at least five ratings is chosen
from YM data set for the trials. The subset includes 63,027 multicriteria votes of 4377 users for 2565 movies
with a sparsity rate of 99.4386%. YM data set contains evaluations for the criteria as story, acting, direction,
and visuals besides overall evaluations. YM data set’s letter-based 13-level rating scale (A+ to F) is converted
into discrete numeric 13-level rating scale from 1 to 13. A subset consisting of 4798 multicriteria ratings from
1346 users for 1289 hotels with a sparsity rate of 99.7235% is chosen from TA data set for the trials. Each
user in the subset has at least three votes. The users evaluate the hotels under the criteria as value, rooms,
location, cleanliness, check-in, service, and business service besides overall evaluations with a numeric five-star
rating scale. Each user’s ratings in YM data set are split into two sets as training and testing votes in the
ratio of 80% and 20%, respectively for user-based approaches. For TA data set, the whole set is divided into
training and testing votes in the ratio of 80% and 20%, respectively instead of each user’s ratings for user-
based approaches since each user has at least three votes. Five distinct train and test set pairs are attained
by repeating the mentioned procedure five times for each data set. For item-based approaches, we performed
experiments only for YM data set. TA data set has lots of hotels which has only one rating, which prevents
designing item-based approaches. Thus, to perform item-based experiments for YM data set, the whole process
for user-based approaches is repeated to obtain train and test sets pairs but this time each item’s ratings are
divided as training and testing votes in the ratio of 80% and 20%, respectively. Additionally, to provide reliable
results, each analysis is repeated three times for each one of the pairs and the overall outcome is obtained by
averaging all the results.

Sparsity negatively impacts accuracy of the produced predictions. Moreover, it may even disallow to
produce predictions which is measured by coverage. Thus, to measure the performance of AE-simMCCF with
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regard to accuracy and coverage, mean absolute error (MAE), root mean squared error (RMSE), and coverage
metrics are utilized. Coverage is related to the number of available items in the system covered by the produced
predictions [45]. Eq. 10, Eq. 11, and Eq. 12 describe coverage, MAE, and RMSE, respectively. Rt and
|Rt| symbolize the test ratings and the number of test ratings, respectively. |Rp| represents the number of
produced predictions. Moreover, to measure the performances of algorithms in terms of their running times,
several analyses are provided in seconds.

Coverage =
|Rp|
|Rt|

(10)

MAE =
1

|Rp|
∑

(i,j)∈Rp

|Rt,ij −Rp,ij | (11)

RMSE =

√√√√ 1

|Rp|
∑

(i,j)∈Rp

(Rt,ij −Rp,ij)2 (12)

5.2. Experimental outcomes
5.2.1. Impacts of network parameters
In order to construct an autoencoder for each criterion, Keras 2.1.5 with TensorFlow backend is benefited.
Several fixed hyperparameters such as batch size, λ , learning rate, dropout regularization are used during the
training processes of the autoencoders. For both of the data sets, λ is experimentally set to 0.001. Weights
and biases are initialized with He normal distribution. Mean squared error is the used loss function for the
autoencoders. Biases and weights are optimized with Adam optimizer. Adam optimizer’s default parameter
values are protected except learning rate and decay. Both learning rate and decay are experimentally set to
0.0001. Batch size is set to 30. Dropout regularization is set to 0.2 and 0.1 for YM and TA data sets, respectively.

Aiming to show how the performance of AE-simMCCF is affected by changing network parameters such
as activation function and hidden layer number, various experiments are performed. For representing how
changing number of encoder layers impresses the performance of AE-simMCCF, encoder layer numbers are
specified as 1, 2, and 4. 1/5th , 1/8th , and 1/12th of the input size are the neuron numbers in the encoder
layers, respectively. The most known nonlinear activation functions as sigmoid, hyperbolic tangent (Tanh), and
exponential linear unit (ELU) are used in the trials to represent the influences of changing activation functions
over the performance of AE-simMCCF. The input data is scaled to the range [0, 1] or [-1, 1] for sigmoid and
Tanh functions, respectively. Since ELU can deal with negative input values and mean of the network input to
be close to zero provides faster convergence [46], the input data is scaled to the range [-1, 1] for ELU function.

Table 1 shows how varying activation functions and encoder layer numbers affects the performance of
U-AE-simMCCF with regard to accuracy and coverage on YM data set. It is obvious that the best accuracy
results are generally obtained with two encoder layers for all activation functions except ELU. The capacity of
the network is an important factor that causes this situation to occur. When the capacities of machine learning
algorithms are enough in terms of the complexity of the corresponding function and the quantity of input data,
they will commonly perform their best [42]. Coverage results generally improve with increasing encoder layer
numbers. Moreover, it is seen that tanh function provides more accurate recommendations than sigmoid and
ELU functions. The reason for this situation may be that tanh function provides faster convergence and better
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generalization compared with sigmoid function since tanh produces outputs having average close to zero [47].
Considering both coverage and accuracy metrics, the best performance results for U-AE-simMCCF is obtained
with tanh function for 4 encoder layers.

Table 1. Effects of changing activation functions and encoder layer numbers over the performance of U-AE-simMCCF
with regard to accuracy and coverage on YM data set.

Number of encoder layers Activation function Aggregation type MAE RMSE Coverage

1 encoder layer

Sigmoid worst-case 2.4919 2.6540 0.2822
avg 2.5021 2.6626 0.2809

Tanh worst-case 2.1324 2.2730 0.3322
avg 2.1421 2.2812 0.3238

ELU worst-case 2.2037 2.3311 0.2803
avg 2.2267 2.3568 0.2871

2 encoder layers

Sigmoid worst-case 2.3510 2.4912 0.2461
avg 2.3455 2.4912 0.2580

Tanh worst-case 2.0897 2.2497 0.4655
avg 2.0946 2.2291 0.4609

ELU worst-case 2.1695 2.3141 0.4153
avg 2.1732 2.3214 0.4179

4 encoder layers

Sigmoid worst-case 2.4029 2.5548 0.2738
avg 2.4111 2.5683 0.2816

Tanh worst-case 2.0926 2.2680 0.5188
avg 2.0696 2.2411 0.5192

ELU worst-case 2.1643 2.3501 0.4821
avg 2.1624 2.3330 0.4552

Table 2 shows impacts of varying activation functions and encoder layer numbers on the performance
of U-AE-simMCCF with regard to accuracy and coverage on TA data set. As it is obvious, the best accuracy
results are obtained with two encoder layers for all activation functions. As it is said, this situation is related
with the capacity of the network. Compared to YM results, it is seen that the structure of the data set
such as the number of samples for training the network and sparsity ratio affects the capacity of the network.
Coverage results generally improve with increasing encoder layer numbers like the coverage results of YM data
set. Moreover, for TA data set, it is obvious that the best performance results for U-AE-simMCCF in terms of
accuracy and coverage are obtained with tanh function for 2 encoder layers.

Table 3 shows how different activation functions and encoder layer numbers impress the performance of
I-AE-simMCCF in the way of accuracy and coverage on YM data set. The best accuracy and coverage results
are obtained with tanh activation function for four encoder layers. Comparing I-AE-simMCCF with U-AE-
simMCCF, it is observed that coverage and accuracy results for I-AE-simMCCF are better than the ones for
U-AE-simMCCF. This situation may be caused by sparsity ratios of input samples. Since the number of movies
in YM dataset is smaller than the number of users, movie preferences are denser than the user preferences. On
the other hand, since the number of input samples in training data for I-AE-MCCF is smaller than the ones
for U-AE-simMCCF, increasing encoder layer numbers may not improve accuracy for some of the activation
functions. The number of input samples is not enough to attain more accurate predictions with increasing
encoder layers for ELU. As it is said before, the capacity of the network specifies its performance. This capacity
is related to the amount of input data and utilized hyperparameters such as layer numbers.
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Table 2. Impacts of changing activation functions and encoder layer numbers over the performance of U-AE-simMCCF
with regard to accuracy and coverage on TA data set.

Number of encoder layers Activation function Aggregation type MAE RMSE Coverage

1 encoder layer

Sigmoid worst-case 1.0385 1.0422 0.0639
avg 1.0875 1.0928 0.0661

Tanh worst-case 0.8822 0.8860 0.0976
avg 0.8944 0.8970 0.0983

ELU worst-case 0.9099 0.9148 0.0958
avg 0.9166 0.9193 0.0953

2 encoder layers

Sigmoid worst-case 0.9694 0.9760 0.0543
avg 0.9795 0.9841 0.0581

Tanh worst-case 0.9461 0.9502 0.1025
avg 0.8485 0.8525 0.1034

ELU worst-case 0.9262 0.9313 0.1024
avg 0.8728 0.8773 0.1028

4 encoder layers

Sigmoid worst-case 0.9641 0.9698 0.0523
avg 0.9106 0.9155 0.0603

Tanh worst-case 1.1321 1.2159 0.1026
avg 0.8602 0.9287 0.1022

ELU worst-case 1.1332 1.1476 0.1000
avg 0.8982 0.9025 0.0972

Table 3. Effects of changing activation functions and encoder layer numbers over the performance of I-AE-simMCCF
with regard to accuracy and coverage on YM data set.

Number of encoder layers Activation function Aggregation type MAE RMSE Coverage

1 encoder layer

Sigmoid worst-case 2.3496 2.6425 0.3818
avg 2.4023 2.6954 0.3837

Tanh worst-case 2.0143 2.2940 0.4792
avg 2.0077 2.2857 0.4790

ELU worst-case 2.0125 2.2785 0.4431
avg 2.0434 2.3104 0.4435

2 encoder layers

Sigmoid worst-case 2.2590 2.5148 0.3146
avg 2.2516 2.5116 0.3319

Tanh worst-case 1.9999 2.2785 0.5269
avg 1.9865 2.2592 0.5275

ELU worst-case 2.0574 2.3278 0.4979
avg 2.0610 2.3324 0.5033

4 encoder layers

Sigmoid worst-case 2.2708 2.5255 0.3407
avg 2.2725 2.5349 0.3529

Tanh worst-case 1.9933 2.2886 0.5554
avg 1.9832 2.2794 0.5613

ELU worst-case 2.0739 2.3748 0.5394
avg 2.0395 2.3375 0.5470
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5.2.2. Comparison with state-of-the-art algorithms
To show the effectiveness of AE-simMCCF with regards to accuracy and coverage of the predictions, it is
compared with state-of-the-art algorithms on YM and TA data sets. Table 4 and Table 5 represents the
attained outcomes for YM and TA data sets, respectively. As it is seen in the tables, AE-simMCCF can better
absorb the negative impacts of sparsity issue over the accuracy of the produced predictions in terms of accuracy
comparing with the baseline algorithms for both data sets. The reason for this situation is that AE-simMCCF
utilizes nonlinear, dense, complex, and low-dimensional features extracted from high-dimensional, raw, sparse
users’/items’ preferences by autoencoders during the prediction process.

Table 4. Comparison of AE-simMCCF with state-of-the-art algorithms on YM data set.

Method Aggregation Type MAE RMSE Coverage
U-AE-simMCCF worst-case 2.0926 2.2680 0.5188
U-AE-simMCCF avg 2.0696 2.2411 0.5192
U-TMCCF-MinSim worst-case 2.5766 2.7373 0.5002
U-TMCCF-AvgSim avg 2.5573 2.7382 0.5003
U-TMCCF_SVM - 2.3599 2.4899 0.4259
U-AE-MCCF - 2.2553 2.4450 1.0000
I-AE-simMCCF worst-case 1.9933 2.2886 0.5554
I-AE-simMCCF avg 1.9832 2.2794 0.5613
I-TMCCF-MinSim worst-case 2.6061 2.8395 0.2865
I-TMCCF-AvgSim avg 2.6088 2.8425 0.2867
I-TMCCF_SVM - 2.5164 2.6974 0.2510
I-AE-MCCF - 2.4430 2.6602 1.0000

Table 5. Comparison of AE-simMCCF with state-of-the-art algorithms on TA data set.

Method Aggregation Type MAE RMSE Coverage
U-AE-simMCCF worst-case 0.9461 0.9502 0.1025
U-AE-simMCCF avg 0.8485 0.8525 0.1034
U-TMCCF-MinSim worst-case 0.9382 0.9435 0.0894
U-TMCCF-AvgSim avg 0.9360 0.9412 0.0894
U-TMCCF_SVM - 0.9348 0.9401 0.0894
U-AE-MCCF - 0.8946 0.9318 1.0000

Neighborhood-based methods suffer from coverage values due to the lack of neighbors’ ratings. Except
AE-MCCF, the other baseline methods and AE-simMCCF are based on neighborhood-based method which
uses similarities among neighboring users/items and ratings of neighbors during the prediction process. Since
AE-MCCF is not a neighborhood-based approach, it does not directly use neighbors’ ratings. AE-MCCF
utilizes autoencoders to directly compute lost values in users’/items’ preferences. As it is shown in Tables 4
and 5, AE-simMCCF provides better coverage results comparing with the other neighborhood-based baseline
methods. AE-simMCCF utilizes autoencoders to map the users’/items’ preferences into a low-dimensional,
latent, and dense space instead of directly computing lost values. Thus, AE-simMCCF computes similarities
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among users/items utilizing dense features instead of sparse ratings. This is why coverage values provided by
AE-simMCCF is better than the ones obtained by the other neighborhood-based baselines. Since the second
part of AE-simMCCF based on producing predictions utilizing the computed similarities among users/items
over extracted features and the ratings given to the targets by the neighboring users/items, coverage value for
AE-simMCCF is lower than the ones for AE-MCCF. Even though AE-MCCF has higher coverage values, it
provides less accurate predictions comparing with AE-simMCCF.

In Tables 6 and 7, the running times of algorithms are presented in seconds for YM and TA data sets,
respectively. Training parts of the algorithms are performed by using the hyperparameter values that provide
the best accuracy and coverage results on a GPU with 4GB RAM and 640 NVIDIA CUDA cores. All other
computations are performed on a machine with 32 GB RAM and Intel Xeon E5-1630 CPU (3.70 GHz). AE-
simMCCF is a similarity-based MCCF algorithm which consists of off-line and on-line parts. AE-simMCCF
creates a model by extracting low dimensional, complex, dense features from high-dimensional, sparse, raw
users’/items’ preferences with autoencoders in its off-line part. In the on-line part, it computes correlations
among users/items utilizing the hidden features obtained by the generated model in the off-line part aiming to
produce predictions. The off-line part of a model-based approach is only run once at the beginning in order to
generate models to use them in the on-line parts. Then using this model, predictions can be produced when a
request occurs for a real-time multicriteria recommender system. Thus, AE-simMCCF provides an acceptable
and fast enough prediction runtime as well as better accuracy and coverage results comparing with other baseline
algorithms.

Table 6. Running times of algorithms in seconds for YM data set.

Method Off-line part On-line part
U-AE-simMCCF 5394.7543 372.1016
U-TMCCF-Sim - 1671.8210
U-TMCCF_SVM 183.7234 1682.7444
U-AE-MCCF 3334.4855 90.7223
I-AE-simMCCF 4217.7150 149.5060
I-TMCCF-Sim - 890.9988
I-TMCCF_SVM 134.7366 895.0468
I-AE-MCCF 2409.0059 81.0620

Table 7. Running times of algorithms in seconds for TA data set.

Method Off-line part On-line part
U-AE-simMCCF 2550.9133 37.3408
U-TMCCF-Sim - 98.0602
U-TMCCF_SVM 102.6172 99.0788
U-AE-MCCF 1789.7764 21.6494
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6. Conclusions and future work
The increasing amount of criteria causes sparsity to be a main problem of MCCF systems. Especially, similarity-
based MCCF approaches suffer from sparsity while finding similar neighbors due to the lack of corated items. In
order to prevent the damaging impressions of sparsity on the accuracy of the produced predictions, we proposed
a novel similarity-based MCCF approach, AE-simMCCF based on autoencoders. One of the major contributions
of AE-simMCCF is dealing with sparsity by extracting nonlinear, latent, dense, and low-dimensional features
from raw, high-dimensional, and sparse users’/items’ preferences with autoencoders while producing predictions.
Similarities among users/items are computed utilizing these features instead of high-dimensional and sparse
users’/items’ preferences. Several experimental analyses are performed on two real data sets for presenting
the efficiency of AE-simMCCF with regard to accuracy and coverage. Experimental outcomes show that AE-
simMCCF can better absorb the negative impacts of sparsity issue over the accuracy of the generated referrals
compared with baseline methods. Additionally, AE-simMCCF improves coverage values compared to other
neighborhood-based MCCF techniques.

Extracting nonlinear features from content information of items and reviews of users by deep learning
techniques and integrating those extracted features into the multicriteria prediction process can be considered
for our future work.
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