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Abstract: Recently, a precise and stable machine learning algorithm, i.e. eigenvalue classification method (EigenClass),
has been developed by using the concept of generalised eigenvalues in contrast to common approaches, such as k-nearest
neighbours, support vector machines, and decision trees. In this paper, we offer a new classification algorithm called fuzzy
parameterized fuzzy soft aggregation classifier (FPFS-AC) to combine the modelling ability of soft decision-making (SDM)
and classification success of generalised eigenvalues. FPFS-AC constructs a decision matrix by employing the similarity
measures of fuzzy parameterized fuzzy soft matrices (fpfs-matrices) and a generalised eigenvalue-based similarity measure.
Then, it applies an SDM method based on the aggregation operator of fpfs-matrices to a decision matrix and classifies
the given test sample. Afterwards, we perform an experimental study using 15 UCI datasets to manifest the success
of our approach and compare FPFS-AC with the well-known and state-of-the-art classifiers (kNN, SVM, fuzzy kNN,
EigenClass, and BM-fuzzy kNN) in terms of accuracy, precision, recall, macro F-score, micro F-score, and running time.
Moreover, we statistically analyse the experimentally obtained data. Experimental and statistical results show that
FPFS-AC outperforms the state-of-the-art classifiers in all the datasets concerning the five performance metrics.

Key words: Fuzzy sets, soft sets, soft decision-making (SDM), fpfs-matrices, supervised learning, data classification

1. Introduction
An excess of data and many uncertainties are encountered in a great number of fields, including space sciences,
meteorology, defence industry, medicine, psychology, and finance. Therefore, some data-processing technologies,
such as machine learning, are needed to handle the data in the aforesaid fields more effectively. Supervised
learning is a widely-employed subfield of machine learning for this purpose [1]. One of the most popular
supervised learning techniques is classification, in which the main goal of the classifier is to predict the class
of unlabelled data (testing set) using the information of the labelled data (training set). To this end, in the
literature, various classification algorithms have been introduced. The well-known classification algorithms are
k-nearest neighbour (kNN) [2, 3] and support vector machines (SVM) [4]. These two classifiers have been
applied to many areas from medical diagnostics to finance and are still in use. To enhance the classification
performance of these well-known classifiers, the concept of fuzzy sets [5] has been availed of, listed among the
widespread mathematical tools defined to deal with uncertainty. For example, fuzzy k-nearest neighbour (fuzzy
∗Correspondence: samettmemis@gmail.com
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kNN) [6] utilises a fuzzy membership degree concerning the distance of each neighbour to the test instance to
weight each k-nearest neighbour.

Unlike the aforementioned approaches, eigenvalue classification method (EigenClass) [7] based on gener-
alised eigenvalues has been proposed in recent times. EigenClass is a precise and stable classifier thanks to the
employed generalised eigenvalue-based quasi-distance. One of the other state-of-the-art classifiers is fuzzy kNN
classifier based on the Bonferroni mean (BM-fuzzy kNN) [8]. BM-fuzzy kNN computes the Bonferroni mean
vectors of kNNs splitting them into subsamples in terms of their classes. It then calculates the membership
degree of the query instance by means of Euclidean distances between the Bonferroni mean vectors and the
query instance. Finally, the label of the highest membership degree is assigned to the query instance.

Besides the fuzzy sets successfully applied in machine learning as mentioned above, the concept of soft
sets [9] has been propounded by Molodtsov to overcome various uncertainties as a new mathematical tool and
applied to assorted fields from algebra to medical diagnostics over the last two decades [10–17]. Soft sets have
led to the emergence of new fields, including soft algebra [22–24], soft topology [25–27], soft analysis [28], and
soft decision-making (SDM) [29–31], which have given birth to their various applications [18–21]. Moreover,
hybrid versions of fuzzy sets and soft sets, such as fuzzy soft sets [32, 33], fuzzy parameterized soft sets [34],
and fuzzy parameterized fuzzy soft sets (fpfs-sets) [35] have been put forward to model further uncertainties
than fuzzy uncertainty and applied to several decision-making problems. Afterwards, soft matrices [36], fuzzy
soft matrices [37], and fuzzy parameterized fuzzy soft matrices (fpfs-matrices) [38] have been propounded to
process a large number of data faster and more effectively. However, most of the applications therein have been
carried out by using fictitious problems and data [39]. Only a few have been applied to real-world problems,
e.g., classification problem in machine learning [40–43] and performance-based value assignment problem in
image denoising [44–46]. Although the proposed classifiers employing fuzzy soft sets in the studies above are
real-world applications, they have exhibited limited classification performance due to their working principles’
reliance on by-class averaging of the training data and they fail to consider parameters’ effects on classification.
To deal with these drawbacks, a number of studies [48–50] have introduced similarity and distance measures of
fpfs-matrices, which can model problems containing fuzzy parameters/objects and consider parameters’ impacts
on the classification.

In this study, we propose a new classification algorithm, i.e. fuzzy parameterized fuzzy soft aggregation
classifier (FPFS-AC), via the SDM method CCE10 [10, 35] based on an aggregation operator of fpfs-matrices
to utilise multisimilarity measures of fpfs-matrices and generalised eigenvalue-based similarity measure. Our
main goal herein is to avail of modelling skills of each similarity measure of fpfs-matrices and classification
ability of generalised eigenvalues to offer a more precise and stable classification method than EigenClass in
supervised learning. In general, various similarity measures have different classification abilities. It is not
straightforward to figure out which one is more convenient than the others for any classification task. Even if a
proper similarity measure is determined, repeating the determination process may be required for each dataset.
In this paper, the idea of simultaneously employing several similarity measures in the same classification task
is considered to overcome these drawbacks. Moreover, the pseudo-similarities of fpfs-matrices, whose modelling
abilities are manifested in the recent literature [48–50], and an eigenvalue-based quasi-similarity, defined herein
by using the eigenvalue-based quasi-metric [7], are utilised for the aforesaid purpose to achieve high classification
performance. Besides, an SDM method, i.e. CCE10, based on an aggregation operator of fpfs-matrices is applied
to the decision-making problem related to the prediction of the test sample’s class label under the aforesaid
similarity measures. The main reason for choosing CCE10, it has efficacious modelling skills for multicriteria
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decision-making problems. The major contributions of the present study can be summed up as follows:

• Similarity measures of fpfs-matrices were applied to supervised learning.

• An SDM method constructed via fpfs-matrices was applied to supervised learning.

• A generalised eigenvalue-based similarity measure was offered.

• Multi-similarity measures of fpfs-matrices and the generalised eigenvalue-based similarity measure were
simultaneously employed for data classification.

• A new classification algorithm referred to as FPFS-AC was developed.

Section 2 of the present study provides the definitions of fpfs-sets, fpfs-matrices, similarity measures of
fpfs-matrices, and pseudocode of CCE10 required in the next sections. Section 3 presents some basic notations
needed for the FPFS-AC algorithm, a generalised eigenvalue-based similarity measure, and FPFS-AC. Section 4
firstly provides the properties of the University of California-Irvine (UCI) datasets used herein and mathematical
notations of the performance metrics accuracy, precision, recall, macro F-score, and micro F-score. Secondly,
the section performs an experimental study employing the 15 UCI datasets. It then compares FPFS-AC with
the well-known and state-of-the-art classifiers, namely kNN, SVM, fuzzy kNN, EigenClass, and BM-fuzzy kNN,
in terms of the aforesaid performance metrics and running time. Thirdly, it analyses the comparison results
and presents the Nemenyi diagrams for each performance metric. The final section makes some suggestions
and provides some conclusive remarks for further research. This study was derived from the first author’s PhD
dissertation.

2. Preliminaries
In this section, we first present some of the basic definitions needed for the following sections. Throughout
this paper, let E be a parameter set, F (E) be the set of all fuzzy sets over E , and µ ∈ F (E) . Here,
µ := {µ(x)x : x ∈ E} .

Definition 1 [35] Let U be a universal set, µ ∈ F (E) , and α be a function from µ to F (U) . Then,
the set

{
(µ(x)x, α(µ(x)x)) : x ∈ E

}
, the graphic of α , is called a fuzzy parameterized fuzzy soft set (fpfs-set)

parameterized via E over U (or briefly over U ).

Throughout the study, the set of all fpfs-sets over U is denoted by FPFSE(U) . In FPFSE(U) , since the
graph(α) and α generate each other uniquely, the notations are interchangeable. Therefore, as long as it causes
no confusion, we denote an fpfs-set graph(α) by α .

Example 1 Let E = {x1, x2, x3} and U = {u1, u2, u3} . Then,

α =
{
(1x1, {0.5u1,

0.2 u2,
0.4 u3}), (0.2x2, {0.1u1,

0.1 u2,
0.8 u3}), (0.4x3, {1u1,

0.5 u2,
1 u3})

}
is an fpfs-sets over U .
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Definition 2 [38] Let α ∈ FPFSE(U) . Then, [aij ] is called the fpfs-matrix of αand is defined by

[aij ] :=



a01 a02 a03 . . . a0n . . .
a11 a12 a13 . . . a1n . . .
...

...
... . . . ...

...
am1 am2 am3 . . . amn . . .

...
...

... . . . ... . . .


such that for i ∈ {0, 1, 2, · · · } and j ∈ {1, 2, · · · } ,

aij :=

{
µ(xj), i = 0

α(µ(xj)xj)(ui), i ̸= 0

Here, if |U | = m− 1 and |E| = n , then [aij ] has order m× n .

Hereinafter, the set of all fpfs-matrices parameterized via E over U is denoted by FPFSE [U ] and let
[aij ], [bij ], [cij ] ∈ FPFSE [U ]. Moreover, Let Im denote the set of all unsigned integer numbers from 1 to
m , i.e. Im := {1, 2, . . . ,m} . Similarly, let I∗m := {0, 1, 2, . . . ,m} .

Example 2 Let us consider the α provided in Example 1. From the Definition 2, all the entries of the
fpfs-matrices of α are obtained as a01 = µ(x1) = 1 , a02 = µ(x2) = 0.2 , a03 = µ(x3) = 0.4 , a11 =

α(µ(x1)x1)(u1) = 0.5 , a12 = α(µ(x2)x2)(u1) = 0.1 , a13 = α(µ(x3)x3)(u1) = 1 , a21 = α(µ(x1)x1)(u2) = 0.2 ,
a22 = α(µ(x2)x2)(u2) = 0.1 , a23 = α(µ(x3)x3)(u2) = 0.5 , a31 = α(µ(x1)x1)(u3) = 0.4 , a32 = α(µ(x2)x2)(u3) =

0.8 , and a33 = α(µ(x3)x3)(u3) = 1 . Then, the fpfs-matrices of α is

[aij ] =


a01 a02 a03
a11 a12 a13
a21 a22 a23
a31 a32 a33

 =


1 0.2 0.4
0.5 0.1 1
0.2 0.1 0.5
0.4 0.8 1


Definition 3 [38] Let [aij ] ∈ FPFSE [U ] . For all i and j , if aij = λ , then [aij ] is called λ-fpfs-matrix and
is denoted by [λ] . Here, [0] and [1] are called empty fpfs-matrix and universal fpfs-matrix, respectively.

Definition 4 [38] Let [aij ], [bij ] ∈ FPFSE [U ] . For all i and j ,

If aij = bij , then [aij ] and [bij ] are called equal fpfs-matrices and is denoted by [aij ] = [bij ] .

If aij ≤ bij , then [aij ] is called a submatrix of [bij ] and is denoted by [aij ]⊆̃[bij ] .

If [aij ]⊆̃[bij ] and [aij ] ̸= [bij ] , then [aij ] is called a proper submatrix of [bij ] and is denoted by [aij ]⊊̃[bij ] .

Definition 5 [48]Let s : FPFSE [U ]× FPFSE [U ]→ R be a mapping. Then, for all [aij ] , [bij ] ,∈ FPFSE [U ] ,
s is pseudo-similarity over FPFSE [U ] if and only if s satisfies the following properties:

i) s([aij ], [aij ]) = 1

ii) s([aij ], [bij ]) = s([bij ], [aij ])

iii) 0 ≤ s([aij ], [bij ]) ≤ 1
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Proposition 1 [50] The mapping sH defined by sH([aij ], [bij ]) := 1− 1
(m−1)n

∑m−1
i=1

∑n
j=1 |a0jaij − b0jbij | is a

pseudo-similarity over FPFSE [U ] and is called Hamming pseudo-similarity.

Proposition 2 [48] The mapping sE defined by sE([aij ], [bij ]) := 1− 1√
(m−1)n

(∑m−1
i=1

∑n
j=1 |a0jaij − b0jbij |2

) 1
2

is a pseudo-similarity over FPFSE [U ] and is called Euclidean pseudo-similarity.

Proposition 3 [48] The mapping sHs defined by sHs([aij ], [bij ]) := 1− 1
m−1

∑m−1
i=1 max

j∈In
{|a0jaij − b0jbij |} is a

pseudo-similarity over FPFSE [U ] and is called Hausdorff pseudo-similarity.

Proposition 4 [48] The mapping spM defined by spM ([aij ], [bij ]) := 1− 1
p
√

(m−1)n

(∑m−1
i=1

∑n
j=1 |a0jaij − b0jbij |p

) 1
p

is a pseudo-similarity over FPFSE [U ] and is called Minkowski pseudo-similarity. Here p ∈ N+ .

Definition 6 [7] Let A,B ∈Mn×n(R) and φ be a nonzero n-dimensional vector. If there exists a scalar λ such
that Aφ = λBφ , then λ is called generalised eigenvalue of A according to B or briefly eigenvalue of A according

to B. The vector which contains all eigenvalues of A according to B is denoted by eig(A,B) =

 φ1

...
φn

 .

Definition 7 [7] Let u ∈ Rn . Then, diagonal form of u := (u1, u2, . . . , un) is


u1 0 · · · 0
0 u2 · · · 0
...

... . . . ...
0 0 · · · un

 and is

denoted by diag(u) .

Definition 8 [7] Let A and B be two diagonal matrices whose diagonal entries differ from zero. Then, the

mapping dev defined by dev(A,B) :=
∑ ∣∣∣∣∣

[
1

...
1

]
− eig(A,B)

∣∣∣∣∣ is called A′s quasi-distance to B . Here,
∑

A

stands for the sum of all the entries of A and that |A| represents a matrix whose entries equal the absolute
values of the entries of A .

Secondly, we present the pseudocode of CCE10 [10, 35] in Algorithm 1.

3. Fuzzy parameterized fuzzy soft aggregation classifier (FPFS-AC)

This section first provides the definitions and notations occurring in FPFS-AC. Across the present study, let
D = [dij ]m×(n+1) denotes a data matrix and its last column contains class labels of the data. Here, m and
n stand for the number of the samples and the number of the attributes in the data matrix, respectively.
(Dtrain)m1×n , (C)m1×1 , and (Dtest)m2×n represent the training matrix, class labels of the training matrix, and
the test matrix obtained from D , respectively, such that m1 +m2 = m . Di−train and Di−test denote ith row
of Dtrain and Dtest , respectively. Similarly, Dtrain−j and Dtest−j denote jth column of Dtrain and Dtest ,
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Algorithm 1 Pseudocode of CCE10
Input: fpfs-matrix [aij ]m×n

Output: Score matrix [si1](m−1)×1 , Decision matrix [dmi1] , and Optimum alternatives’ matrix [opi1]

1: [s]← [0](m−1)×1

2: for i from 1 to m− 1 do
3: for j from 1 to n do
4: si1 ← si1 + a0jaij
5: end for
6: si1 ← si1

n
7: end for
8: for i from 1 to m− 1 do
9: dmi1 ← si1

max
k∈Im−1

{sk1}

10: end for
11: [op]← argmax

k∈Im−1

{dmk1}

respectively. Tm2×1 and T ′
m2×1 stand for ground truth class matrix and predicted class matrix obtained from

Dtrain and Dtest , respectively.

Definition 9 Let u, v ∈ Rn . Then, Pearson correlation coefficient between u and v is defined by

P(u, v) := n
∑n

i=1 uivi − (
∑n

i=1 ui)(
∑n

i=1 vi)√
[n

∑n
i=1 u

2
i − (

∑n
i=1 ui)2] [n

∑n
i=1 v

2
i − (

∑n
i=1 vi)

2]

Definition 10 Let Dtrain has order m1 × n and Cm1×1 be the class column vector of Dtrain . fw is
called the feature weight vector based on Pearson correlation coefficient of Dtrain and is defined by fwj1 :=

|P (Dtrain−j , C)| , j ∈ In

Definition 11 Let Dtrain has order m1 × n and Dtest has order m2 × n . D̃train is called the feature

fuzzifications of Dtrain and is defined by d̃ij−train :=
dij−train−min

r,s
{drj−train,dsj−test}

max
r,s

{drj−train,dsj−test}−min
r,s

{drj−train,dsj−test} such that

i, r ∈ Im1
, s ∈ Im2

, and j ∈ In .

Definition 12 Let Dtrain has order m1 × n and Dtest has order m2 × n . D̃test is called the feature

fuzzifications of Dtest , and is defined by d̃ij−test :=
dij−test−min

r,s
{drj−train,dsj−test}

max
r,s

{drj−train,dsj−test}−min
r,s

{drj−train,dsj−test} such that

r ∈ Im1
, i, s ∈ Im2

, and j ∈ In .

Definition 13 Let A and B be two diagonal matrices whose diagonal entries differ from zero. Then, the
mapping sev defined by sev(A,B) := 1 −

(
2
π arctan (dev(A,B))

)
is called A’s quasi-similarity to B based on

generalised eigenvalues.

This section then offers a new classification algorithm, i.e. FPFS-AC, based on the Hamming, Eu-
clidean, Hausdorff, and Minkowski pseudo-similarities of fpfs-matrices and the generalised eigenvalue-based
quasi-similarity. Its pseudocode is provided in Algorithm 2.

FPFS-AC employs Pearson correlation coefficient to obtain parameter weights based on their impacts
on classification. Afterwards, it constructs two fpfs-matrices, namely train fpfs-matrix and test fpfs-matrix, via
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Algorithm 2 Pseudocode of FPFS-AC
Input: (Dtrain)m1×n ,Cm1×1 , and (Dtest)m2×n

Output: T ′
m2×1

1: procedure FPFS-AC(Dtrain , C , Dtest )
2: Compute fw using Dtrain and C

3: Compute feature fuzzification of Dtrain and Dtest , namely D̃train and D̃test

4: for i from 1 to m2 do
5: Compute the test fpfs-matrix [aij ] using fw and D̃i−test

6: for j from 1 to m1 do
7: Compute the train fpfs-matrix [bij ] using fw and D̃j−train

8: fj1 ← sH([aij ], [bij ])
9: fj2 ← sE([aij ], [bij ])

10: fj3 ← sHs([aij ], [bij ])
11: fj4 ← s3M ([aij ], [bij ])
12: for all i and j do
13: if d̃ij−train = 0 then
14: d̃ij−train ← 0.0001
15: end if
16: if d̃ij−test = 0 then
17: d̃ij−test ← 0.0001
18: end if
19: end for
20: fj5 ← sev(diag(D̃j−train),diag(D̃i−test))
21: end for
22: for j from 1 to 5 do
23: sdj ← std(F j)
24: end for
25: pw ← (1− ŝd)
26: Compute fpfs-matrix [gij ] using pw and F for soft decison-making
27: [[sk1], [dmk1], [opk1]]← CCE10 ([gij ])
28: t′i1 ← C(op11, 1)
29: end for
30: return T ′

m2×1

31: end procedure

normalised train instance, normalised test instance, and parameter weights. Thereafter, the proposed classifier
assigns the class label of the optimum train instance, obtained by CCE10, to the test instance. This process is
similar in all the test instances. Finally, the predicted class matrix of the test data is constructed.

4. Experimental study

In this section, we detail the properties of the 15 classification datasets in the UCI machine learning repository
[51]. We then present five performance metrics for performance evaluation in machine learning. Next, we perform
some experiments to show that our proposed method is more efficient than kNN [3], fuzzy kNN [6], SVM [4],
EigenClass [7], and BM-fuzzy kNN [8]. Finally, we carry out the statistical evaluation of the experimental
results based on Friedman test [52] and Nemenyi post-hoc test [53].
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4.1. UCI datasets and performance measures

In Table 1, we firstly present the properties of the datasets [51] used in the simulation herein: “Statlog (Aus-
tralian credit approval)”, “Banknote”, “Breast tissue”, “Cryotherapy”, “Glass”, “Hayes-Roth”, “Ionosphere”,
“Iris”, “Mice protein expression”, “Parkinsons[sic]”, “Parkinson’s disease”, “Image segmentation”, “Connec-
tionist bench (sonar, mines vs. rocks)”, “Teaching assistant evaluation”, and “Connectionist bench (vowel
recognition-Deterding data)”.

Table 1. Description of UCI datasets. (# stands for the number of)

No. Name #Instance #Attribute #Class
1 Australian 690 14 2
2 Banknote 1372 4 2
3 Breast Tissue 109 9 6
4 Cryotherapy 90 6 2
5 Glass 214 9 7
6 Hayes-Roth 132 5 3
7 Ionosphere 351 34 2
8 Iris 150 4 3
9 Mice 1077 72 8
10 Parkinsons[sic] 195 22 2
11 Parkinson’s disease 756 754 2
12 Image segmentation 2310 19 7
13 Sonar 208 60 2
14 Teaching 151 5 3
15 Vowel 990 13 11

We subsequently provide the mathematical notations of five performance metrics, i.e. accuracy (Acc),
precision(Pre), recall (Rec), macro F-score (MacF), and micro F-score (MicF), to compare the aforementioned
methods. Let Dtest = {x1, x2, . . . , xn} , T = {T1, T2, . . . , Tn} , T ′ = {T ′

1, T
′
2, . . . , T

′
n} , and l be n samples to be

classified, ground truth class sets of the samples, prediction class sets of the samples, and the number of the
class of the samples, respectively.

Acc(T, T ′) :=
1

l

l∑
i=1

TPi + TNi

TPi + TNi + FPi + FNi
, Pre(T, T ′) :=

1

l

l∑
i=1

TPi

TPi + FPi

Rec(T, T ′) :=
1

l

l∑
i=1

TPi

TPi + FNi
, MacF(T, T ′) :=

1

l

l∑
i=1

2TPi

2TPi + FPi + FNi

MicF(T, T ′) :=
2
∑l

i=1 TPi

2
∑l

i=1 TPi +
∑l

i=1 FPi +
∑l

i=1 FNi

where TPi , TNi , FPi , and FNi are the number of true positive, true negative, false positive, and false negative
for the class i , respectively, and their mathematical notations are as follows:

TPi := |{xk | i ∈ Tk ∧ i ∈ T ′
k, 1 ≤ k ≤ l}| , TNi := |{xk | i /∈ Tk ∧ i /∈ T ′

k, 1 ≤ k ≤ l}|
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FPi := |{xk | i /∈ Tk ∧ i ∈ T ′
k, 1 ≤ k ≤ l}| , FNi := |{xk | i ∈ Tk ∧ i /∈ T ′

k, 1 ≤ k ≤ l}|

4.2. Simulation results
In this part of the present paper, we focus on the comparison between our proposed FPFS-AC and the well-
known and state-of-the-art classifiers, i.e. kNN [3], fuzzy kNN [6], SVM [4], EigenClass [7], and BM-fuzzy kNN
[8]. We perform the simulation of the algorithms by utilising MATLAB R2020b and a workstation with I(R)
Xeon(R) CPU E5-1620 v4 @ 3.5 GHz and 64 GB RAM. Each classifier is trained and tested by employing
the k -fold cross-validation [54], in which the dataset is split into equal-sized k -part subsamples. This process
is randomly carried out. One subsample is kept as validating data (testing data) and the remaining k − 1

subsamples are operationalised to train the algorithm. Since the cross-validation process is repeated k times,
each subsample is made use of only once as validating data. Thus, the entire dataset is exploited as both
training and testing data.

The higher value of k results in a less biased model that large variance might get around to over-fit,
whereas its lower value is like the train-test split approach. Moreover, the higher value of k leads to higher
running time. As k gets larger, the difference in size between the training set and the resampling subsets gets
smaller. As this difference decreases, the bias of the technique becomes smaller. Therefore, in most research,
5 -folds and 10 -folds are commonly employed as k -folds cross-validation [55]. In this study, we choose the k

value as 5 for the cross-validation throughout the simulation. Here, utilising 5 -folds cross-validation provides
that a split of data 80% is a training set, and 20% is a testing set. In 5 -fold cross-validation, the dataset is
randomly divided into five parts. One part is used for testing, and the remaining four parts are used for training.
This process is repeated five times, with each part being used as test data once. Afterwards, to obtain more
reliable performance results, 10 runs are carried out, and average Acc, Pre, Rec, MacF, MicF, and running time
results are obtained. The number of runs, i.e. 10 herein, is one of the commonly used numbers in the literature.
Consequently, the performance results of a machine-learning algorithm in one run are avoided from being high
by chance, and the results are stable.

Table 2 presents the accuracy, precision, recall, macro F-score, micro F-score, and running time results of
the methods for the datasets. The results show that FPFS-AC produces the best performance in the datasets in
terms of accuracy (75%− 100%), precision (64%− 100%), recall (63%− 100%), macro F-score (62%− 100%),
and micro F-score (63%−100%) performance. Especially in the “Parkinson’s disease” and “Teaching” datasets,
FPFS-AC performs far better than the others. Additionally, in the other datasets, where the overall performance
results do not exceed 90% , FPFS-AC outperforms the others. Furthermore, in “mice protein”, the performance
of FPFS-AC, just as of SVM, is 100% as far as the performance metrics are concerned.

Thanks to FPFS-AC’s employing four pseudo-similarities of fpfs-matrices based on Pearson correlation
coefficient and generalised eigenvalue-based quasi-similarity and obtaining the optimum training label for the
test instances by utilising CCE10, it achieves remarkable classification success. On the other hand, employing
the CCE10 by calculating the four pseudo-similarities and generalised eigenvalue-based quasi-similarity causes
FPFS-AC to run slightly slower than the others except SVM. As clear from the mean results in Table 2,
FPFS-AC is a more efficacious method than kNN, fuzzy kNN, SVM, EigenClass, and BM-fuzzy kNN.
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We summarize Table 2 by ranking the number of the best performance results for every classifier to ease
interpreting the results therein. Afterwards, we provide the ranking results in Table 3 and 4. Table 3 and Table 4
include ranking numbers of the best results and a pairwise comparison of the ranking results, respectively. Table
3 corroborates that FPFS-AC outperforms the other state-of-the-arts classifiers for 15 datasets. In addition,
Table 3 manifests that FPFS-AC has the highest classification results of 75 for all the performance metrics.
In contrast, kNN, SVM, fuzzy kNN, EigenClass, and BM-fuzzy kNN have the same classification results with
FPFS-AC in the number of 0 , 5 , 0 , 1 , and 0 performance metrics according to only one dataset, respectively.

Table 3. Ranking number of the best results for all kNN-based classifier compared among each other.

Classifiers Acc Pre Rec MacF MicF Total Rank
kNN 0/15 0/15 0/15 0/15 0/15 0/75
SVM 1/15 1/15 1/15 1/15 1/15 5/75
Fuzzy kNN 0/15 0/15 0/15 0/15 0/15 0/75
EigenClass 1/15 0/15 0/15 0/15 0/15 1/75
BM-fuzzy kNN 0/15 0/15 0/15 0/15 0/15 0/75
FPFS-AC 15/15 15/15 15/15 15/15 15/15 75/75

Table 4. Ranking number of the best results for two kNN-based classifier compared versus each other

Classifiers Acc Pre Rec MacF MicF
FPFS-AC versus kNN 15 15 15 15 15
FPFS-AC versus SVM 15 15 15 15 15
FPFS-AC versus fuzzy kNN 15 15 15 15 15
FPFS-AC versus EigenClass 15 15 15 15 15
FPFS-AC versus BM-fuzzy kNN 15 15 15 15 15

4.3. Statistical analyses of the simulation results

In this subsection, we employ the corrected Friedman test [52] and the Nemenyi post-hoc test [53] in a
manner recommended by Demšar [56] to evaluate whether the overall differences in the performance results
obtained in view of five performance metrics and running time are statistically significant. The Friedman test,
a nonparametric test for multiple hypotheses testing, produces a performance-based ranking of the algorithms
for each data set. Thereby, the rank of 1 refers to the best performing algorithm, the rank of 2 to the second
best, etc. It assigns average ranks in the event that the ranks of the algorithms are equal.

Afterwards, the Friedman test first compares the average ranks of the algorithms and secondly calculates
the Friedman statistic χ2

F , distributed according to the χ2
F distribution with k− 1 degrees of freedom. Here, k

is the number of algorithms. If a statistically significant difference is detected in the performance, a post-hoc test
should be used to detect which difference belong to which algorithm. The Nemenyi test is one of the post-hoc
tests commonly used to compare all the classifiers with each other. In this test, if the average ranks of the two
algorithms occur more than the critical distance, then the test shows that their performance is considerably
different.
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We first calculate the average rank of each algorithm considered in our experiments with k = 6 and
N = 15 since the total number of the methods is 6 and the total number of the datasets is 15 . If the
accuracy, precision, recall, macro F-score, micro F-score, and running time values of the Friedman test statistic
are χ2

F = 37.61 , χ2
F = 39.16 , χ2

F = 37.04 , χ2
F = 39.85 , χ2

F = 38.55 and χ2
F = 51.84 , respectively, with

5 (k − 1) degrees of freedom and the critical value for the Friedman test [52] given for k = 6 and N = 15

is 11.07 at a significance level of α = 0.05 , we can conclude that the accuracy (37.61 > 11.07), precision
(39.16 > 11.07), recall (37.04 > 11.07), macro F-score (39.85 > 11.07), micro F-score (38.55 > 11.07), and
running time (51.84 > 11.07) values of the studied methods are significantly different. Now that the null
hypothesis is rejected, we can proceed with a post-hoc test. The Nemenyi test [53] can be used when all
classifiers are compared with each other [56].

The critical value in our experiments with k = 6 and α = 0.05 is 1.9469 . As a result, the accuracy,
precision, recall, macro F-score, and micro F-score of the proposed FPFS-AC method is significantly different
from fuzzy kNN, FSSC, FussCyier, HDFSSC, and BM-fuzzy kNN methods while its running time results are
not significantly different from those of fuzzy kNN. Figure 1 presents the critical diagrams generated by the
Nemenyi post-hoc test for the five evaluation measures and running time.

FPFS-AC (1.07)

kNN (3.47)

SVM (3.60)

BM-Fuzzy kNN (5.07)

EigenClass (3.93)

Fuzzy kNN (3.87)

1 2 3 4 5 6

Critical Distance =1.9469

Accuracy

FPFS-AC (1.03)

kNN (3.47)

SVM (3.47)

BM-Fuzzy kNN (5.10)

EigenClass (4.07)
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1 2 3 4 5 6

Critical Distance =1.9469
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kNN (3.60)

SVM (3.70)

BM-Fuzzy kNN (5.00)

Fuzzy kNN (3.93)
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Critical Distance =1.9469
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SVM (3.37)
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BM-Fuzzy kNN (2.73)

kNN (3.13)

FPFS-AC (5.53)

SVM (4.53)

EigenClass (4.00)

1 2 3 4 5 6

Critical Distance =1.9469

Running time

Figure 1. The critical diagrams for the five evaluation measures and running time: The results from the Nemenyi
post-hoc test at 0.05 significance level and average rank scores from Friedman Test.

Figure 1 shows that the average ranks of FPFS-AC and the others were calculated to be more than
a critical distance of 1.9469 but not in terms of running time results. Besides, Table 5 offers the pairwise
comparison between the classifiers obtained via the critical distances in the Friedman test. Figure 1 and Table
5 manifest that FPFS-AC remarkably outperforms the others in terms of five performance measures.
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Table 5. Pairwise performance comparison of the classifiers via Friedman test.

kNN SVM Fuzzy kNN EigenClass BM-fuzzy kNN FPFS-AC
kNN – – – – – +
SVM – – – – – +
Fuzzy kNN – – – – – +
EigenClass – – – – – +
BM-fuzzy kNN – – – – – +
FPFS-AC + + + + + –

Here, the symbol – represents compared classifiers’ performances are not significantly different, whereas + stands
for they are.

4.4. Computational complexity analysis of FPFS-AC

This section provides a comparison of FPFS-AC’s computational complexity with those of the classifiers by
utilising the big O notation besides their running time results obtained in 10 runs featuring the 15 UCI
datasets in Table 2. As clear from Table 2, FPFS-AC generally seems to operate faster than SVM and slightly
slower than kNN, fuzzy kNN, EigenClass, and BM-fuzzy kNN, which results from its processing all the training
instances by exploiting CCE10 to predict the class label of the considered test instances. On the other hand,
longer processing time in the specific datasets primarily stems from the MATLAB operation. To elaborate,
parallel computing for multi-parameter eig(A, B) is not allowed by MATLAB. In future works, the running
time may be remarkably decreased if the parallel computing problem is overcome for multiparameters. Despite
this problem, FPFS-AC’s running time occurs under 1 s for eight of 15 datasets. From the pseudocode of FPFS-
AC, the computational complexity is O(mn) since mn is higher than m5 for each test sample. Here, m and
n are the number of the training samples and of their attributes, respectively. The computational complexities
of the compared classifiers are provided in Table 6.

Table 6. Computational complexities of the classifiers.

Classifier Computational complexity
kNN O(n log k)

SVM with kernel O(m3)

Fuzzy kNN O(n2 log k)

EigenClass O(mn)

BM-fuzzy kNN O(ln3 log k)

FPFS-AC O(mn)

k is number of nearest neighbour, m is the sample number of the
training data, n is the parameter number of the training data,
and l is the class number of the data.

5. Conclusion
In this study, we developed an efficient CCE10-based classification algorithm, namely FPFS-AC. In contrast to
most of the available literature relying on fictitious problems, we applied the similarity measures of fpfs-matrices
and an SDM method to a real-world problem (data classification). By doing so, we proposed FPFS-AC based
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on multiple pseudo-similarities of fpfs-matrices, generalised eigenvalue-based quasi-similarity, and CCE10 for
numerical data classification and compared FPFS-AC with kNN [3], SVM [4], fuzzy kNN [6], EigenClass [7], and
BM-fuzzy kNN [8]. The results manifested that FPFS-AC outperformed the other well-known and state-of-the-
art methods and SDM method using fpfs-matrices was efficacious in data classification. This paper is believed
to inspire new research on how to apply the SDM methods based on fpfs-matrices to real-world problems, such
as data classification.

FPFS-AC has various advantages, from classification performance to its developable algorithmic structure.
The simulation results and statistical analyses prove that FPFS-AC achieves the highest classification results.
Besides these performances, it can produce the highest classification performance in a great variety of datasets
or problems. This issue is the most significant advantage of FPFS-AC. Furthermore, it has ease of development.
For instance, utilising different similarity measures and SDM methods is possible without any complex procedure.
Thus, FPFS-AC can be easily improved for specific datasets or problems to exceed the previous classification
performance. Since we focus on proposing an efficacious classifier for any considered datasets, we did not
develop a classifier herein for a specific dataset. On the other hand, FPFS-AC’s drawback is to be employed
several classical operations, such as Pearson’s correlation coefficient and standard deviation whose classification
performances have some inherent limitations, for the weighting of the similarity measures. To deal with this
drawback, some new mathematical or statistical tools can be utilised or defined.

The results in the present study demonstrated that fpfs-matrices and SDM methods relying on these
matrices had notable modelling abilities exploitable in data classification. Therefore, further research should
be focused on SDM methods constructed by fpfs-matrices and their implementations in machine learning.
Furthermore, it is possible to improve the proposed FPFS-AC, for example, by employing different SDM
methods [10–13, 17–21, 44–47] and the similarity measures of fpfs-matrices. Researchers can also define
similarity measures of the intuitionistic fuzzy parameterized intuitionistic fuzzy soft matrices [16] or interval-
valued intuitionistic fuzzy parameterized interval-valued intuitionistic fuzzy soft sets/matrices [27]. In addition,
new mathematical tools, such as picture fuzzy sets [59, 60] and picture fuzzy soft sets [59], can be utilised. One
can also insert a preprocessing step in the training phase of FPFS-AC to decrease the negative effects of the
unstable training instances in the considered datasets on classification success.
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