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Abstract: Recently, a precise and stable machine learning algorithm, i.e. eigenvalue classification method (EigenClass),
has been developed by using the concept of generalised eigenvalues in contrast to common approaches, such as k-nearest
neighbours, support vector machines, and decision trees. In this paper, we offer a new classification algorithm called fuzzy
parameterized fuzzy soft aggregation classifier (FPFS-AC) to combine the modelling ability of soft decision-making (SDM)
and classification success of generalised eigenvalues. FPFS-AC constructs a decision matrix by employing the similarity
measures of fuzzy parameterized fuzzy soft matrices (fpfs-matrices) and a generalised eigenvalue-based similarity measure.
Then, it applies an SDM method based on the aggregation operator of fpfs-matrices to a decision matrix and classifies
the given test sample. Afterwards, we perform an experimental study using 15 UCI datasets to manifest the success
of our approach and compare FPFS-AC with the well-known and state-of-the-art classifiers (kNN, SVM, fuzzy kNN,
EigenClass, and BM-fuzzy kNN) in terms of accuracy, precision, recall, macro F-score, micro F-score, and running time.
Moreover, we statistically analyse the experimentally obtained data. Experimental and statistical results show that

FPFS-AC outperforms the state-of-the-art classifiers in all the datasets concerning the five performance metrics.
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1. Introduction

An excess of data and many uncertainties are encountered in a great number of fields, including space sciences,
meteorology, defence industry, medicine, psychology, and finance. Therefore, some data-processing technologies,
such as machine learning, are needed to handle the data in the aforesaid fields more effectively. Supervised
learning is a widely-employed subfield of machine learning for this purpose [1]. One of the most popular
supervised learning techniques is classification, in which the main goal of the classifier is to predict the class
of unlabelled data (testing set) using the information of the labelled data (training set). To this end, in the
literature, various classification algorithms have been introduced. The well-known classification algorithms are
k-nearest neighbour (kNN) [2, 3] and support vector machines (SVM) [4]. These two classifiers have been
applied to many areas from medical diagnostics to finance and are still in use. To enhance the classification
performance of these well-known classifiers, the concept of fuzzy sets [5] has been availed of, listed among the

widespread mathematical tools defined to deal with uncertainty. For example, fuzzy k-nearest neighbour (fuzzy
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kNN) [6] utilises a fuzzy membership degree concerning the distance of each neighbour to the test instance to
weight each k-nearest neighbour.

Unlike the aforementioned approaches, eigenvalue classification method (EigenClass) [7] based on gener-
alised eigenvalues has been proposed in recent times. EigenClass is a precise and stable classifier thanks to the
employed generalised eigenvalue-based quasi-distance. One of the other state-of-the-art classifiers is fuzzy kNN
classifier based on the Bonferroni mean (BM-fuzzy kNN) [8]. BM-fuzzy kNN computes the Bonferroni mean
vectors of kNNs splitting them into subsamples in terms of their classes. It then calculates the membership
degree of the query instance by means of Euclidean distances between the Bonferroni mean vectors and the
query instance. Finally, the label of the highest membership degree is assigned to the query instance.

Besides the fuzzy sets successfully applied in machine learning as mentioned above, the concept of soft
sets [9] has been propounded by Molodtsov to overcome various uncertainties as a new mathematical tool and
applied to assorted fields from algebra to medical diagnostics over the last two decades [10-17]. Soft sets have
led to the emergence of new fields, including soft algebra [22—24], soft topology [25-27], soft analysis [28], and
soft decision-making (SDM) [29-31], which have given birth to their various applications [18-21]. Moreover,
hybrid versions of fuzzy sets and soft sets, such as fuzzy soft sets [32, 33], fuzzy parameterized soft sets [34],
and fuzzy parameterized fuzzy soft sets (fpfs-sets) [35] have been put forward to model further uncertainties
than fuzzy uncertainty and applied to several decision-making problems. Afterwards, soft matrices [36], fuzzy
soft matrices [37], and fuzzy parameterized fuzzy soft matrices (fpfs-matrices) [38] have been propounded to
process a large number of data faster and more effectively. However, most of the applications therein have been
carried out by using fictitious problems and data [39]. Only a few have been applied to real-world problems,
e.g., classification problem in machine learning [40-43] and performance-based value assignment problem in
image denoising [44-46]. Although the proposed classifiers employing fuzzy soft sets in the studies above are
real-world applications, they have exhibited limited classification performance due to their working principles’
reliance on by-class averaging of the training data and they fail to consider parameters’ effects on classification.
To deal with these drawbacks, a number of studies [48-50] have introduced similarity and distance measures of
fpfs-matrices, which can model problems containing fuzzy parameters/objects and consider parameters’ impacts

on the classification.
In this study, we propose a new classification algorithm, i.e. fuzzy parameterized fuzzy soft aggregation

classifier (FPFS-AC), via the SDM method CCE10 [10, 35] based on an aggregation operator of fpfs-matrices
to utilise multisimilarity measures of fpfs-matrices and generalised eigenvalue-based similarity measure. Our
main goal herein is to avail of modelling skills of each similarity measure of fpfs-matrices and classification
ability of generalised eigenvalues to offer a more precise and stable classification method than EigenClass in
supervised learning. In general, various similarity measures have different classification abilities. It is not
straightforward to figure out which one is more convenient than the others for any classification task. Even if a
proper similarity measure is determined, repeating the determination process may be required for each dataset.
In this paper, the idea of simultaneously employing several similarity measures in the same classification task
is considered to overcome these drawbacks. Moreover, the pseudo-similarities of fpfs-matrices, whose modelling
abilities are manifested in the recent literature [48-50], and an eigenvalue-based quasi-similarity, defined herein
by using the eigenvalue-based quasi-metric [7], are utilised for the aforesaid purpose to achieve high classification
performance. Besides, an SDM method, i.e. CCE10, based on an aggregation operator of fpfs-matrices is applied
to the decision-making problem related to the prediction of the test sample’s class label under the aforesaid

similarity measures. The main reason for choosing CCE10, it has efficacious modelling skills for multicriteria
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decision-making problems. The major contributions of the present study can be summed up as follows:
o Similarity measures of fpfs-matrices were applied to supervised learning.
¢ An SDM method constructed via fpfs-matrices was applied to supervised learning.
e A generalised eigenvalue-based similarity measure was offered.

o Multi-similarity measures of fpfs-matrices and the generalised eigenvalue-based similarity measure were

simultaneously employed for data classification.
¢ A new classification algorithm referred to as FPFS-AC was developed.

Section 2 of the present study provides the definitions of fpfs-sets, fpfs-matrices, similarity measures of
fofs-matrices, and pseudocode of CCE10 required in the next sections. Section 3 presents some basic notations
needed for the FPFS-AC algorithm, a generalised eigenvalue-based similarity measure, and FPFS-AC. Section 4
firstly provides the properties of the University of California-Irvine (UCI) datasets used herein and mathematical
notations of the performance metrics accuracy, precision, recall, macro F-score, and micro F-score. Secondly,
the section performs an experimental study employing the 15 UCI datasets. It then compares FPFS-AC with
the well-known and state-of-the-art classifiers, namely kNN, SVM, fuzzy kNN, EigenClass, and BM-fuzzy kNN,
in terms of the aforesaid performance metrics and running time. Thirdly, it analyses the comparison results
and presents the Nemenyi diagrams for each performance metric. The final section makes some suggestions
and provides some conclusive remarks for further research. This study was derived from the first author’s PhD

dissertation.

2. Preliminaries
In this section, we first present some of the basic definitions needed for the following sections. Throughout

this paper, let E be a parameter set, F(E) be the set of all fuzzy sets over E, and pu € F(F). Here,
pi={"¥z .z € E}.

Definition 1 [35] Let U be a universal set, p € F(E), and « be a function from p to F(U). Then,
the set {(“(z)z,a(“(‘”)z)) S E}, the graphic of «, is called a fuzzy parameterized fuzzy soft set (fpfs-set)

parameterized via E over U (or briefly over U ).

Throughout the study, the set of all fpfs-sets over U is denoted by FPFSg(U). In FPFSg(U), since the
graph () and « generate each other uniquely, the notations are interchangeable. Therefore, as long as it causes

no confusion, we denote an fpfs-set graph(«) by «.

Example 1 Let E = {z1, 22,23} and U = {uy,uz,uz}. Then,

o = {(1331’ {0'5U1,0'2 U2,0'4 U3}), (0.23:2’ {0'111,1,0'1 u270.8 U3}), (0'47,‘3, {1U1,0'5 Ug,l U3})}

is an fpfs-sets over U .
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Definition 2 [38] Let a € FPFSg(U). Then, [a;;] is called the fpfs-matriz of cand is defined by

ap1  ap2 Gop3 ...  Qon

a11 @12 a3 ... QGin
laij] =

Am1 Am2 Am3 e Amn

such that for i € {0,1,2,---} and j € {1,2,---},

o[ om0
ij - (@) gz ) (u;), i#0

Here, if Ul =m —1 and |E| =n, then [a;;] has order m x n.

Hereinafter, the set of all fpfs-matrices parameterized via E over U is denoted by FPFSg[U] and let
[ai;], [bij]; [cij] € FPFSg[U]. Moreover, Let I,, denote the set of all unsigned integer numbers from 1 to
m, ie. Iy :={1,2,...,m}. Similarly, let I :={0,1,2,...,m}.

Example 2 Let us consider the a provided in Example 1. From the Definition 2, all the entries of the
fofs-matrices of « are obtained as apr = p(r1) = 1, ape = wp(xa) = 0.2, aps = p(rs) = 0.4, a3 =
a(*E0z ) (uy) = 0.5, ajp = a(M®)ay)(uy) = 0.1, a1z = a(P@)x3)(uy) = 1, agr = a(*@Vz)(uy) = 0.2,
agy = (M) xy)(ug) = 0.1, agz = a(*®)x3)(ug) = 0.5, az = a(*@Vx)(uz) = 0.4, azs = a(*@)ay)(uz) =

0.8, and azz = a (M) x3)(us) = 1. Then, the fpfs-matrices of a is

apr Qg2 Qo3 1 0.2 04
[ai;] = ann a2 a3 | _ | 05 01 1
t azy a9 a23 02 0.1 05
aszy asgz ass 04 08 1

Definition 3 [38] Let [a;;] € FPFSg[U]. For all i and j, if a;; = X\, then [a;;] is called A-fpfs-matriz and
is denoted by [\]. Here, [0] and [1] are called empty fpfs-matriz and universal fpfs-matriz, respectively.
Definition 4 [38] Let [a;;], [bi;] € FPFSg[U]. For all i and j,

If a;j = b;;, then [a;;] and [b;] are called equal fpfs-matrices and is denoted by [a;;] = [bi;].

If a;j < bi;, then [a;;] is called a submatriz of [b;;] and is denoted by [a;;]C[bij].

If [a;;1C[bij] and [a;;] # [bij], then [ai;] is called a proper submatriz of [bi;] and is denoted by [a;;]C[bij].

Definition 5 [48]Let s : FPFSg[U] x FPFSg[U] — R be a mapping. Then, for all [a;;],[bi;], € FPFSg[U],
s is pseudo-similarity over FPFSg[U] if and only if s satisfies the following properties:

i) s([aiz], [ai]) =1
i) s([aij], [bi]) = s([bij], [aiz])

iti) 0 < s([ai;], [biy]) <1
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Proposition 1 [50] The mapping sy defined by sp([ai;],[bis]) == 1— mz:?:ll > i laojaij — bojbij| is a

pseudo-similarity over FPFSg[U] and is called Hamming pseudo-similarity.

N

Proposition 2 [48] The mapping sg defined by sg([ai;], [bi;]) == 1—\/ﬁ (Z:Z_ll > i laojaij — bojbij|2)

is a pseudo-similarity over FPFSg|U] and is called Euclidean pseudo-similarity.
Proposition 3 [48] The mapping sps defined by sus([ais], [bis]) =1 — ﬁzzn:? I%%X{\aojaij —bo;bij|} isa
Jel,

pseudo-similarity over FPFSE[U] and is called Hausdorff pseudo-similarity.

I S

1
ops . m—1 n P
Proposition 4 [48] The mapping sk, defined by sh,([a;;], [bi;]) == 1— = (Zi:l > j—1 laojai; — bojbij|p)

is a pseudo-similarity over FPFSg[U] and is called Minkowski pseudo-similarity. Here p € NT .

Definition 6 [7] Let A, B € M,,xn(R) and ¢ be a nonzero n-dimensional vector. If there exists a scalar A such

that Ap = ABy, then X is called generalised eigenvalue of A according to B or briefly eigenvalue of A according

¥1
to B. The vector which contains all eigenvalues of A according to B is denoted by eig(A, B) = :
Pn
wg 0 - 0
0 u -~ O
Definition 7 [7] Let uw € R™. Then, diagonal form of u = (uy,us,...,up) is . . and is
0 O Uy,

denoted by diag(u).
Definition 8 [7] Let A and B be two diagonal matrices whose diagonal entries differ from zero. Then, the

mapping de, defined by dey(A,B) := > is called A's quasi-distance to B. Here, > A

1
[ : 1 —eig(A, B)

1

stands for the sum of all the entries of A and that |A| represents a matriz whose entries equal the absolute

values of the entries of A.

Secondly, we present the pseudocode of CCE10 [10, 35] in Algorithm 1.

3. Fuzzy parameterized fuzzy soft aggregation classifier (FPFS-AC)

This section first provides the definitions and notations occurring in FPFS-AC. Across the present study, let
D = [dij]mx(nt1) denotes a data matrix and its last column contains class labels of the data. Here, m and
n stand for the number of the samples and the number of the attributes in the data matrix, respectively.
(Dtrain)myxns (C)myx1, and (Diest)mqxn represent the training matrix, class labels of the training matrix, and
the test matrix obtained from D, respectively, such that m; +my = m. D;_trqin and D;_ies denote it* row

of Dirqin and Dyeg, respectively. Similarly, Dirgin—; and Dieg—; denote jt* column of Dyygin and Dyes:,
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Algorithm 1 Pseudocode of CCE10

Input: fpfs-matrix [ai;]lmxn
Output: Score matrix [s;1](m—1)x1, Decision matrix [dm;1], and Optimum alternatives’ matrix [op;1]

1: [s] « [0](m—1)x1

2: for ¢ from 1 to m —1 do

3: for j from 1 to n do

4: 8i1 <= si1 + ao;aq;

5: end for

6: Si1 3#1

7: end for

8: for 7 from 1 to m — 1 do

9: dm; ¢+ ———il
il ke“l‘,ix,l{skl}

10: end for

11: [op] + argmax{dmy}
k€lm_1

respectively. Tp,x1 and T, ., stand for ground truth class matrix and predicted class matrix obtained from

Dirain and Dyegt, respectively.

Definition 9 Let u,v € R™. Then, Pearson correlation coefficient between u and v is defined by

P(u,v) = n Yy uiv — (S ) (i, vi)
| VinZiiiul = (CL w2l o - (2 v)’]

Definition 10 Let Diygin has order my xn and Cp,x1 be the class column vector of Dipgin. fw is
called the feature weight vector based on Pearson correlation coefficient of Dirgin and is defined by fw; =
|P(Dtrain—jac)| ) .] S In

Definition 11 Let Dy.qin has order mi xn and Diest has order mo X n. Etrain is called the feature

dij—train _Igi‘gl{drj —train,dsj—test

such that

fuzzifications of Dirqin and is defined by (Zj_tmm =

Iga;x{drjftnzin 7dsj7test } _Iz}igl{drjftrain 7dsj7test }

4,1 €ln,, s€EILy,, and j € 1I,.

17

Definition 12 Let Dyyginn has order mi xn and Diess has order mo Xn. 5test is called the feature

dij—test *Tisn{drj—tmm Jdsj—test}

fuzzifications of Diest, and is defined by (Zj,test such that

n}‘aéx{drjftrainadsjftest}7n;‘usn{drjftrainadsj7test}

r€ln,, 1,s€ Iy,, and 7 € I,.

Definition 13 Let A and B be two diagonal matrices whose diagonal entries differ from zero. Then, the
mapping Se, defined by Sep(A,B) :=1— (%arctan (dev(A,B))) is called A’s quasi-similarity to B based on
generalised eigenvalues.

This section then offers a new classification algorithm, i.e. FPFS-AC, based on the Hamming, Eu-
clidean, Hausdorff, and Minkowski pseudo-similarities of fpfs-matrices and the generalised eigenvalue-based
quasi-similarity. Its pseudocode is provided in Algorithm 2.

FPFS-AC employs Pearson correlation coefficient to obtain parameter weights based on their impacts

on classification. Afterwards, it constructs two fpfs-matrices, namely train fpfs-matrix and test fpfs-matrix, via

876



MEMIS et al./Turk J Elec Eng & Comp Sci

Algorithm 2 Pseudocode of FPFS-AC

Inle-t: (Dtrain)ml Xn70m1><17 and (Dtest)mzxn
Output: 77, .,
procedure FPFS-AC(D;rgin, C, Diest)

Compute fw using Dipqin and C

Compute feature fuzzification of Dypqin and Dyegt , namely lNDtmm and ﬁtest

for ¢ from 1 to my do

1:

2

3

4 ~

5: Compute the test fpfs-matrix [a;;] using fw and D;_jeq
6

7

8

9

for j from 1 to m; do
Compute the train fpfs-matrix [b;;] using fw and ﬁj,tmm
fir < su([ag], [bij])
fiz = se([ai;], [bij])

10: fis < Sﬁs([aij]a [bi;])

11 fia = s3([aij], [bij])

12: for all 4 and 5 do

13: if dij_train = 0 then

14: dij—train < 0.0001

15: end if

16: if dijftest =0 then

17: dij—test < 0.0001

18: end if

19: end for B B
20: fj5 < Sew (diag(Djftrain)a dia'g(Diftest))
21: end for

22: for j from 1 to 5 do

23: sdj « std(F7)

24: end for

25: pw <+ (1 — sd)

26: Compute fpfs-matrix [g;;] using pw and F for soft decison-making
27: [[sk1], [dmia], [opra]] = CCE10 ([g:5])
28: t21 — C(Opll, 1)

29: end for

30: return 7}, .,

31: end procedure

normalised train instance, normalised test instance, and parameter weights. Thereafter, the proposed classifier
assigns the class label of the optimum train instance, obtained by CCE10, to the test instance. This process is

similar in all the test instances. Finally, the predicted class matrix of the test data is constructed.

4. Experimental study

In this section, we detail the properties of the 15 classification datasets in the UCI machine learning repository
[51]. We then present five performance metrics for performance evaluation in machine learning. Next, we perform
some experiments to show that our proposed method is more efficient than kNN [3], fuzzy kNN [6], SVM [4],
EigenClass [7], and BM-fuzzy kNN [8]. Finally, we carry out the statistical evaluation of the experimental

results based on Friedman test [52] and Nemenyi post-hoc test [53].
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4.1. UCI datasets and performance measures

In Table 1, we firstly present the properties of the datasets [51] used in the simulation herein: “Statlog (Aus-
tralian credit approval)”, “Banknote”, “Breast tissue”, “Cryotherapy”, “Glass”, “Hayes-Roth”, “Ionosphere”,
“Iris”, “Mice protein expression”, “Parkinsons]sic]”, “Parkinson’s disease”, “Image segmentation”, “Connec-
tionist bench (sonar, mines vs. rocks)”, “Teaching assistant evaluation”, and “Connectionist bench (vowel

recognition-Deterding data)”.

Table 1. Description of UCI datasets. (# stands for the number of)

No. | Name #Instance | #Attribute | #Class
1 Australian 690 14 2
2 Banknote 1372 4 2
3 Breast Tissue 109 9 6
4 Cryotherapy 90 6 2
5 Glass 214 9 7
6 Hayes-Roth 132 5 3
7 Tonosphere 351 34 2
8 Iris 150 4 3
9 Mice 1077 72 8
10 Parkinsons[sic] 195 22 2
11 Parkinson’s disease | 756 754 2
12 Image segmentation | 2310 19 7
13 Sonar 208 60 2
14 Teaching 151 5 3
15 Vowel 990 13 11

We subsequently provide the mathematical notations of five performance metrics, i.e. accuracy (Acc),
precision(Pre), recall (Rec), macro F-score (MacF), and micro F-score (MicF), to compare the aforementioned
methods. Let Dyest = {21, 29,..., 20}, T ={T11,Ts,..., Tn}, T' ={T{,T5,...,T.}, and I be n samples to be
classified, ground truth class sets of the samples, prediction class sets of the samples, and the number of the

class of the samples, respectively.

1 l
1 TP + TN, 1 TP
Ace(T, T) = = : i Pre(T,T") =~ S ——- "t
ce(T,T") l;TPi—i—TNH—FPH—FNi re( l; TP, + FP,

1 l
1 TP 1 2T P;
A § : t M 7.7 = E !
Ree(T,T7) := 7 £~ TP, + FN,;’ acl(LT) = 7 £~ 2TP, + FP, + FN,

25, TP,
255 TP+ X, FRi+ X, F,

where TP;, TN;, FP;, and F'N; are the number of true positive, true negative, false positive, and false negative

MicF (T, T’) :=

for the class i, respectively, and their mathematical notations are as follows:

TP = {ap|i €Ty Ni€ T\, 1<k<1}, TN;:=|{ex|i¢Th AigT,1<k<I})
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FPo={op|ig¢Te Ni €T, 1 <k<Il}, FNi:=|{ar]icTy Nig¢T,,1<k<I}

4.2. Simulation results

In this part of the present paper, we focus on the comparison between our proposed FPFS-AC and the well-
known and state-of-the-art classifiers, i.e. kNN [3], fuzzy kNN [6], SVM [4], EigenClass [7], and BM-fuzzy kNN
[8]. We perform the simulation of the algorithms by utilising MATLAB R2020b and a workstation with I(R)
Xeon(R) CPU E5-1620 v4 @ 3.5 GHz and 64 GB RAM. Each classifier is trained and tested by employing
the k-fold cross-validation [54], in which the dataset is split into equal-sized k-part subsamples. This process
is randomly carried out. One subsample is kept as validating data (testing data) and the remaining k — 1
subsamples are operationalised to train the algorithm. Since the cross-validation process is repeated k times,
each subsample is made use of only once as validating data. Thus, the entire dataset is exploited as both
training and testing data.

The higher value of k results in a less biased model that large variance might get around to over-fit,
whereas its lower value is like the train-test split approach. Moreover, the higher value of k leads to higher
running time. As k gets larger, the difference in size between the training set and the resampling subsets gets
smaller. As this difference decreases, the bias of the technique becomes smaller. Therefore, in most research,
5-folds and 10-folds are commonly employed as k-folds cross-validation [55]. In this study, we choose the k
value as 5 for the cross-validation throughout the simulation. Here, utilising 5-folds cross-validation provides
that a split of data 80% is a training set, and 20% is a testing set. In 5-fold cross-validation, the dataset is
randomly divided into five parts. One part is used for testing, and the remaining four parts are used for training.
This process is repeated five times, with each part being used as test data once. Afterwards, to obtain more
reliable performance results, 10 runs are carried out, and average Acc, Pre, Rec, MacF, MicF, and running time
results are obtained. The number of runs, i.e. 10 herein, is one of the commonly used numbers in the literature.
Consequently, the performance results of a machine-learning algorithm in one run are avoided from being high
by chance, and the results are stable.

Table 2 presents the accuracy, precision, recall, macro F-score, micro F-score, and running time results of
the methods for the datasets. The results show that FPFS-AC produces the best performance in the datasets in
terms of accuracy (75% — 100% ), precision (64% — 100% ), recall (63% — 100% ), macro F-score (62% — 100%),
and micro F-score (63% — 100% ) performance. Especially in the “Parkinson’s disease” and “Teaching” datasets,
FPFS-AC performs far better than the others. Additionally, in the other datasets, where the overall performance
results do not exceed 90% , FPFS-AC outperforms the others. Furthermore, in “mice protein”, the performance
of FPFS-AC, just as of SVM, is 100% as far as the performance metrics are concerned.

Thanks to FPFS-AC’s employing four pseudo-similarities of fpfs-matrices based on Pearson correlation
coefficient and generalised eigenvalue-based quasi-similarity and obtaining the optimum training label for the
test instances by utilising CCE10, it achieves remarkable classification success. On the other hand, employing
the CCE10 by calculating the four pseudo-similarities and generalised eigenvalue-based quasi-similarity causes
FPFS-AC to run slightly slower than the others except SVM. As clear from the mean results in Table 2,
FPFS-AC is a more efficacious method than kNN, fuzzy kNN, SVM, EigenClass, and BM-fuzzy kNN.
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We summarize Table 2 by ranking the number of the best performance results for every classifier to ease
interpreting the results therein. Afterwards, we provide the ranking results in Table 3 and 4. Table 3 and Table 4
include ranking numbers of the best results and a pairwise comparison of the ranking results, respectively. Table
3 corroborates that FPFS-AC outperforms the other state-of-the-arts classifiers for 15 datasets. In addition,
Table 3 manifests that FPFS-AC has the highest classification results of 75 for all the performance metrics.
In contrast, kNN, SVM, fuzzy kNN, EigenClass, and BM-fuzzy kNN have the same classification results with
FPFS-AC in the number of 0, 5, 0, 1, and 0 performance metrics according to only one dataset, respectively.

Table 3. Ranking number of the best results for all kNN-based classifier compared among each other.

Classifiers Acc Pre Rec MacF | MicF | Total Rank
kNN 0/15 | 0/15 | 0/15 | 0/15 0/15 0/75

SVM 1/15 1/15 1/15 1/15 1/15 5/75

Fuzzy kNN 0/15 | 0/15 | 0/15 | 0/15 0/15 0/75
EigenClass 1/15 | 0/15 | 0/15 | 0/15 0/15 1/75
BM-fuzzy kNN | 0/15 | 0/15 | 0/15 | 0/15 0/15 0/75
FPFS-AC 15/15 | 15/15 | 15/15 | 15/15 | 15/15 | 75/75

Table 4. Ranking number of the best results for two kNN-based classifier compared versus each other

Classifiers Acc | Pre | Rec | MacF | MicF
FPFS-AC versus kNN 15 15 15 15 15
FPFS-AC versus SVM 15 15 15 15 15
FPFS-AC versus fuzzy kNN 15 15 15 15 15
FPFS-AC versus EigenClass 15 15 15 15 15
FPFS-AC versus BM-fuzzy kNN | 15 15 15 15 15

4.3. Statistical analyses of the simulation results

In this subsection, we employ the corrected Friedman test [52] and the Nemenyi post-hoc test [53] in a
manner recommended by Demsar [56] to evaluate whether the overall differences in the performance results
obtained in view of five performance metrics and running time are statistically significant. The Friedman test,
a nonparametric test for multiple hypotheses testing, produces a performance-based ranking of the algorithms
for each data set. Thereby, the rank of 1 refers to the best performing algorithm, the rank of 2 to the second
best, etc. It assigns average ranks in the event that the ranks of the algorithms are equal.

Afterwards, the Friedman test first compares the average ranks of the algorithms and secondly calculates
the Friedman statistic x% , distributed according to the x% distribution with k — 1 degrees of freedom. Here, k
is the number of algorithms. If a statistically significant difference is detected in the performance, a post-hoc test
should be used to detect which difference belong to which algorithm. The Nemenyi test is one of the post-hoc
tests commonly used to compare all the classifiers with each other. In this test, if the average ranks of the two
algorithms occur more than the critical distance, then the test shows that their performance is considerably
different.
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We first calculate the average rank of each algorithm considered in our experiments with £ = 6 and

N = 15 since the total number of the methods is 6 and the total number of the datasets is 15. If the
accuracy, precision, recall, macro F-score, micro F-score, and running time values of the Friedman test statistic

are x% = 37.61, x% = 39.16, x% = 37.04, x% = 39.85, x% = 38.55 and x% = 51.84, respectively, with
5 (k — 1) degrees of freedom and the critical value for the Friedman test [52] given for kK = 6 and N = 15
is 11.07 at a significance level of a = 0.05, we can conclude that the accuracy (37.61 > 11.07), precision
(39.16 > 11.07), recall (37.04 > 11.07), macro F-score (39.85 > 11.07), micro F-score (38.55 > 11.07), and
running time (51.84 > 11.07) values of the studied methods are significantly different. Now that the null
hypothesis is rejected, we can proceed with a post-hoc test. The Nemenyi test [53] can be used when all
classifiers are compared with each other [56].

The critical value in our experiments with k = 6 and o = 0.05 is 1.9469. As a result, the accuracy,
precision, recall, macro F-score, and micro F-score of the proposed FPFS-AC method is significantly different
from fuzzy kNN, FSSC, FussCyier, HDFSSC, and BM-fuzzy kNN methods while its running time results are
not significantly different from those of fuzzy kNN. Figure 1 presents the critical diagrams generated by the

Nemenyi post-hoc test for the five evaluation measures and running time.

Critical Distance =1.9469

Critical Distance =1.9469

1 2 3 4 5 6 1 2 3 4 5 6
FPFS-AC (1.07) J L——— BM-Fuzzy kNN (5.07) FPFS-AC (1.03) L—— BM-Fuzzy kNN (5.10)
kNN (3.47) EigenClass (3.93) kNN (3.47) EigenClass (4.07)
SVM (3.60) Fuzzy kNN (3.87) SVM (3.47) Fuzzy kNN (3.87)

Accuracy Precision

Critical Distance =1.9469

Critical Distance =1.9469

1 2 3 4 5 6 1 2 3 4 5 6
FPFS-AC (1.03) ——— BM-Fuzzy kNN (5.00) FPFS-AC (1.03) L——— BM-Fuzzy kNN (5.13)
kNN (3.60) Fuzzy kNN (3.93) SVM (3.37) EigenClass (4.07)
SVM (3.70) EigenClass (3.73) kNN (3.47) Fuzzy kNN (3.93)
Recall Macro F-score

Critical Distance =1.9469

1 2 3

4

FPFS-AC (1.03)

——— BM-Fuzzy kNN (5.07)
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Fuzzy kNN (4.00)
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Critical Distance =1.9469

1 2 3 4
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Figure 1. The critical diagrams for the five evaluation measures and running time: The results from the Nemenyi
post-hoc test at 0.05 significance level and average rank scores from Friedman Test.

Figure 1 shows that the average ranks of FPFS-AC and the others were calculated to be more than
a critical distance of 1.9469 but not in terms of running time results. Besides, Table 5 offers the pairwise
comparison between the classifiers obtained via the critical distances in the Friedman test. Figure 1 and Table

5 manifest that FPFS-AC remarkably outperforms the others in terms of five performance measures.

885



MEMIS et al./Turk J Elec Eng & Comp Sci

Table 5. Pairwise performance comparison of the classifiers via Friedman test.

kNN | SVM | Fuzzy kNN | EigenClass | BM-fuzzy kNN | FPFS-AC
kNN - - - - - +
SVM - - - - - +
Fuzzy kNN - - - - - +
EigenClass - - - - - +
BM-fuzzy kNN | — - - - - +
FPFS-AC + + + + + -

Here, the symbol — represents compared classifiers’ performances are not significantly different, whereas + stands
for they are.

4.4. Computational complexity analysis of FPFS-AC

This section provides a comparison of FPFS-AC’s computational complexity with those of the classifiers by
utilising the big O notation besides their running time results obtained in 10 runs featuring the 15 UCI
datasets in Table 2. As clear from Table 2, FPFS-AC generally seems to operate faster than SVM and slightly
slower than kNN, fuzzy kNN, EigenClass, and BM-fuzzy kNN, which results from its processing all the training
instances by exploiting CCE10 to predict the class label of the considered test instances. On the other hand,
longer processing time in the specific datasets primarily stems from the MATLAB operation. To elaborate,
parallel computing for multi-parameter eig(A, B) is not allowed by MATLAB. In future works, the running
time may be remarkably decreased if the parallel computing problem is overcome for multiparameters. Despite
this problem, FPFS-AC’s running time occurs under 1 s for eight of 15 datasets. From the pseudocode of FPFS-
AC, the computational complexity is O(mn) since mn is higher than m5 for each test sample. Here, m and
n are the number of the training samples and of their attributes, respectively. The computational complexities

of the compared classifiers are provided in Table 6.

Table 6. Computational complexities of the classifiers.

Classifier Computational complexity
kNN O(nlogk)

SVM with kernel | O(m?)

Fuzzy kNN O(n%logk)

EigenClass O(mn)

BM-fuzzy kNN O(In?log k)

FPFS-AC O(mn)

k is number of nearest neighbour, m is the sample number of the
training data, n is the parameter number of the training data,
and [ is the class number of the data.

5. Conclusion
In this study, we developed an efficient CCE10-based classification algorithm, namely FPFS-AC. In contrast to
most of the available literature relying on fictitious problems, we applied the similarity measures of fpfs-matrices

and an SDM method to a real-world problem (data classification). By doing so, we proposed FPFS-AC based
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on multiple pseudo-similarities of fpfs-matrices, generalised eigenvalue-based quasi-similarity, and CCE10 for
numerical data classification and compared FPFS-AC with kNN [3], SVM [4], fuzzy kNN [6], EigenClass [7], and
BM-fuzzy kNN [8]. The results manifested that FPFS-AC outperformed the other well-known and state-of-the-
art methods and SDM method using fpfs-matrices was efficacious in data classification. This paper is believed
to inspire new research on how to apply the SDM methods based on fpfs-matrices to real-world problems, such
as data classification.

FPFS-AC has various advantages, from classification performance to its developable algorithmic structure.
The simulation results and statistical analyses prove that FPFS-AC achieves the highest classification results.
Besides these performances, it can produce the highest classification performance in a great variety of datasets
or problems. This issue is the most significant advantage of FPFS-AC. Furthermore, it has ease of development.
For instance, utilising different similarity measures and SDM methods is possible without any complex procedure.
Thus, FPFS-AC can be easily improved for specific datasets or problems to exceed the previous classification
performance. Since we focus on proposing an efficacious classifier for any considered datasets, we did not
develop a classifier herein for a specific dataset. On the other hand, FPFS-AC’s drawback is to be employed
several classical operations, such as Pearson’s correlation coefficient and standard deviation whose classification
performances have some inherent limitations, for the weighting of the similarity measures. To deal with this
drawback, some new mathematical or statistical tools can be utilised or defined.

The results in the present study demonstrated that fpfs-matrices and SDM methods relying on these
matrices had notable modelling abilities exploitable in data classification. Therefore, further research should
be focused on SDM methods constructed by fpfs-matrices and their implementations in machine learning.
Furthermore, it is possible to improve the proposed FPFS-AC, for example, by employing different SDM
methods [10-13, 17-21, 44-47] and the similarity measures of fpfs-matrices. Researchers can also define
similarity measures of the intuitionistic fuzzy parameterized intuitionistic fuzzy soft matrices [16] or interval-
valued intuitionistic fuzzy parameterized interval-valued intuitionistic fuzzy soft sets/matrices [27]. In addition,
new mathematical tools, such as picture fuzzy sets [59, 60] and picture fuzzy soft sets [59], can be utilised. One
can also insert a preprocessing step in the training phase of FPFS-AC to decrease the negative effects of the

unstable training instances in the considered datasets on classification success.

Acknowledgement

This research study was granted 2211-C Domestic Doctoral Fellowship for Priority Areas by the Scientific and
Technological Research Council of Turkey (TUBITAK) under Grant 1649B031905299.

Author Contributions

Samet Memis produced the main conceptual ideas and developed the theoretical framework. Ugur Erkan
carried out the simulations and statistical analyses. Serdar Enginoglu supervised the findings of this work.
Samet Memis and Serdar Enginoglu wrote the manuscript by consulting with Ugur Erkan. All the authors

discussed the results and contributed to the final manuscript.

References

[1] Mehryar M, Rostamizadeh A, Talwalkar A. Foundations of Machine Learning. In: Bach F (editor). Introduction:
Learning Scenarios, 2nd ed. London, England; The MIT Press, 2018. p. 6.

887



2]

[13]

[14]

[15]

[16]

888

MEMIS et al./Turk J Elec Eng & Comp Sci

Fix E, Hodges JL. Discriminatory analysis, nonparametric discrimination: Consistency properties. Texas, USA:
USAF School of Aviation Medicine, Randolph Field, 1951.

Cover TM, Hart PE. Nearest neighbor pattern classification. IEEE Transactions on Information Theory 1967; 13:
21-27. doi: 10.1109/TIT.1967.1053964

Cortes C, Vapnik V. Support-vector networks. Machine learning 1995; 20 (3): 273-297. doi: 10.1007/BF00994018
Zadeh LA. Fuzzy sets. Information and Control 1965; 8: 338-353. doi: 10.1016/S0019-9958(65)90241-X

Keller JM, Gray MR, Givens JA. A fuzzy k-nearest neighbor algorithm. IEEE Transactions on Systems, Man, and
Cybernetics 1985; 15: 580-585. doi: 10.1109/TSMC.1985.6313426.

Erkan U. A precise and stable machine learning algorithm: Eigenvalue classification (EigenClass). Neural Computing
and Applications 2021; 33 (10): 5381-5392. doi: 10.1007/s00521-020-05343-2

Kumbure MM, Luukka P, Collan M. A new fuzzy k-nearest neighbor classifier based on the Bonferroni mean.
Pattern Recognition Letters 2020; 140: 172-178. doi: 10.1016/j.patrec.2020.10.005

Molodtsov D. Soft set theory-first results. Computers and Mathematics with Applications 1999; 37 (4-5): 19-31.

Enginoglu S, Memisg S. A configuration of some soft decision-making algorithms via fpfs-matrices. Cumhuriyet
Science Journal 2018; 39 (4): 871-881. doi: 10.17776/csj.409915

Enginoglu S, Memis S. Comment on fuzzy soft sets [The Journal of Fuzzy Mathematics 9(3), 2001, 589-602].
International Journal of Latest Engineering Research and Applications 2018; 3 (9): 1-9.

Enginoglu S, Memig S. A review on an application of fuzzy soft set in multicriteria decision making problem [P. K.
Das, R. Borgohain, International Journal of Computer Applications 38 (2012) 33-37]. In: International Conference
on Mathematical Studies and Applications 2018; Karaman, Turkey; 2018, pp. 173-178.

Enginoglu S, Memisg S. A review on some soft decision-making methods. In: International Conference on Mathe-
matical Studies and Applications 2018; Karaman, Turkey; 2018, pp. 437-442.

Enginoglu S, Ay M, Cagman N, Tolun V. Classification of the monolithic columns produced in troad and mysia
region ancient granite quarries in northwestern anatolia via soft decision-making. Bilge International Journal of
Science and Technology Research 2019; 3(Special Issue): 21-34. doi: 10.30516/bilgesci.646126

Enginoglu and Ongel T. Configurations of several soft decision-making methods to operate in fuzzy parameterized
fuzzy soft matrices space. Eskigehir Technical University Journal of Science and Technology A-Applied Sciences and
Engineering 2020; 21 (1): 58-71. doi: 10.18038/estubtda.562578

Aydin T, Enginoglu S. Configurations of SDM methods proposed between 1999 and 2012: A follow-up study. In:
4th International Conference on Mathematics “An Istanbul Meeting for World Mathematicians”; Istanbul, Turkey;
2020, pp. 192-211.

Enginoglu S, Aydin T, Memig S, Arslan B. Operability-oriented configurations of the soft decision-making methods
proposed between 2013 and 2016 and their comparisons. Journal of New Theory 2021; 34: 82-114.

Enginoglu S, Memis S, Ongel T. A fast and simple soft decision-making algorithm: EMO18o. In: International
Conference on Mathematical Studies and Applications 2018; Karaman, Turkey; 2018, pp. 179-186.

Enginoglu S, Memis S, Arslan B. A fast and simple soft decision-making algorithm: EMA18an. In: International
Conference on Mathematical Studies and Applications 2018; Karaman, Turkey; 2018, pp. 428-436.

Enginoglu S, Memis S, Ongel T. Comment on soft set theory and uni-int decision-making [European Journal of
Operational Research, (2010) 207, 848-855]. Journal of New Results in Science 2018; 7 (3): 28-43.

Enginoglu S, Memis S, Arslan B. Comment (2) on soft set theory and uni-int decision-making [European Journal
of Operational Research, (2010) 207, 848-855]. Journal of New Theory 2018; 25: 84-102.

Sezgin A, Cagman N, Citak F. «a-inclusions applied to group theory via soft set and logic. Communications Faculty
of Sciences University of Ankara Series A1 Mathematics and Statistics 2019; 68 (1): 334-352.



MEMIS et al./Turk J Elec Eng & Comp Sci

Ozlii S, Sezgin A. Soft covered ideals in semigroups. Acta Universitatis Sapientiae, Mathematica 2020; 12 (2):
317-346. doi:10.2478/ausm-2020-0023

Senel G, Lee JG, Hur K. Advanced soft relation and soft mapping. International Journal of Computational
Intelligence Systems 2021; 14 (1): 461-470. doi: 10.2991 /ijcis.d.201221.001

Enginoglu S, Cagman N, Karatag S, Aydin T. On soft topology, El-Cezeri Journal of Science and Engineering 2015;
2 (3): 23-38. doi: 10.31202/ecjse.67135

Riaz M, Hashm R, Farooq A. Fuzzy parameterized fuzzy soft metric spaces. Journal of Mathematical Analysis 2018;
9: 25-36.

Aydin T, Enginoglu S. Some results on soft topological notions. Journal of New Results in Science 2021; 10 (1):
65-75.

Molodtsov DA. The Theory of Soft Sets. Moscow, Russia: URSS Publishers, 2004 (in Russian).

Cagman N, Enginoglu S. Soft set theory and uni-int decision making. European Journal of Operational Research
2010; 207: 848-855. doi: 10.1016/j.ejor.2010.05.004.

Karaaslan F, Deli 1. Soft neutrosophic classical sets and their applications in decision-making. Palestine Journal of
Mathematics 2020; 9 (1): 312-326.

Garg H, Arora R. Algorithms based on COPRAS and aggregation operators with new information measures for
possibility intuitionistic fuzzy soft decision-making. Mathematical Problems in Engineering 2020; 2020: Article ID
1563768, 1-20. doi: 10.1155/2020/1563768

Maji PK, Biswas R, Roy AR. Fuzzy soft sets. The Journal of Fuzzy Mathematics 2001; 9 (3): 589-602.

Cagman N, Enginoglu S, Citak F. Fuzzy soft set theory and its applications. Iranian Journal of Fuzzy Systems 2011;
8: 137-147.

Cagman N, Citak F, Enginoglu S. FP-soft set theory and its applications. Annals of Fuzzy Mathematics and
Informatics 2011; 2: 219-226.

Cagman N, Citak F, Enginoglu S. Fuzzy parameterized fuzzy soft set theory and its applications. Turkish Journal
of Fuzzy Systems 2010; 1 (1): 21-35.

Cagman N, Enginoglu S. Soft matrix theory and its decision making. Computers and Mathematics with Applications
2010; 59: 3308-3314. doi: 10.1016/j.camwa.2010.03.015.

Cagman N, Enginoglu S. Fuzzy soft matrix theory and its application in decision making. Iranian Journal of Fuzzy
Systems 2012; 9: 109-119.

Enginoglu S, Cagman N. Fuzzy parameterized fuzzy soft matrices and their application in decision-making. TWMS
Journal of Applied and Engineering Mathematics 2020; 10: 1105-1115.

Khameneh AZ, Kiligman A. Multi-attribute decision-making based on soft set theory: A systematic review. Soft
Computing 2019; 23 (16): 6899-6920. doi: 10.1007/s00500-018-3330-7

Mushrif MM, Senqupta S, Ray AK. Texture classification using a novel, soft-set theory based classification algorithm.
In: 7th Asian Conference on Computer Vision; Hyderabad, India; 2006, pp. 246-254. doi: 10.1007/11612032_26

Handaga B, Onn H, Herawan T. FSSC: An algorithm for classifying numerical data using fuzzy soft set theory.
International Journal of Fuzzy System Applications 2012; 3 (4): 29-46. doi: 10.4018/ijfsa.2012100102

Lashari SA, Ibrahim R, Senan N. Medical data classification using similarity measure of fuzzy soft set based distance

measure. Journal of Telecommunication, Electronic and Computer Engineering 2017; 9 (2-9): 95-99.

Yanto ITR, Seadudin RR, Lashari SA, Haviluddin. A numerical classification technique based on fuzzy soft set
using hamming distance. In: Third International Conference on Soft Computing and Data Mining; Johor, Malaysia;
2018, pp. 252-260. doi: 10.1007/978-3-319-72550-5_ 25

889



[44]

[48]

[49]

[50]

[59]

[60]

890

MEMIS et al./Turk J Elec Eng & Comp Sci

Enginoglu S, Memis S, Cagman N. A generalisation of fuzzy soft max-min decision-making method and its appli-
cation to a performance-based value assignment in image denoising. El-Cezerl Journal of Science and Engineering
2018; 6 (3): 466-481. doi: 10.31202/ecjse.551487

Enginoglu S, Memis S, Karaaslan F. A new approach to group decision-making method based on TOPSIS under

fuzzy soft environment. Journal of New Results in Science 2019; 8 (2): 42-52.

Enginoglu S, Memis S. A new approach to the criteria-weighted fuzzy soft max-min decision-making method and
its application to a performance-based value assignment problem. Journal of New Results in Science 2020; 9 (1):
19-36.

Enginoglu S, Aydin, T., Memis S. Arslan, B. SDM methods’ configurations (2017-2019) and their application to
a performance-based value assignment problem: A follow up study. Annals of Optimization Theory and Practice
2021; 4 (1): 41-85. doi: 10.22121/A0TP.2021.287404.1069

Memis S, Enginoglu S, Erkan U. Numerical data classification via distance-based similarity measures of fuzzy
parameterized fuzzy soft matrices. IEEE Access 2021; 9: 88583-88601. doi: 10.1109/ACCESS.2021.3089849

Memis S, Enginoglu S. An application of fuzzy parameterized fuzzy soft matrices in data classification. In: Inter-
national Conferences on Science and Technology; Natural Science and Technology ICONST-NST 2019; Prizren,
Kosovo; 2019. pp. 68-77.

Memis S, Enginoglu S, Erkan U. A data classification method in machine learning based on normalised hamming
pseudo-similarity of fuzzy parameterized fuzzy soft matrices. Bilge International Journal of Science and Technology
Research 2019; 3 (Special Issue): 1-8. doi: 10.30516/bilgesci.643821

Dua D, Graff C. UCI Machine Learning Repository, University of California, Irvine, School of Information and
Computer Sciences 2019.

Friedman M. A comparison of alternative tests of significance for the problem of m rankings. Annals of Mathematical
Statistics 1940; 11 (1): 86-92.

Nemenyi PB. Distribution-free multiple comparisons. PhD, Princeton University, Princeton, New Jersey, USA, 1963.

Stone M. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society.
Series B (Methodological) 1974; 36: 111-147. doi: 10.1111/;.2517-6161.1974.tb00994.x

Xiong Z. Cui Y. Liu Z. Zhao Y. Hu M. Hu J. Evaluating explorative prediction power of machine learning algorithms
for materials discovery using k-fold forward cross-validation. Computational Materials Science 2020; 171: 109203.
doi: 10.1016/j.commatsci.2019.109203

Demsar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 2006;
7: 1-30.

Enginoglu S, Arslan B. Intuitionistic fuzzy parameterized intuitionistic fuzzy soft matrices and their application in
decision-making. Computational and Applied Mathematics 2020; 39: Article Number: 325. doi: 10.1007%2Fs40314-
020-01325-1

Aydin T, Enginoglu S. Interval-valued intuitionistic fuzzy parameterized interval-valued intuitionistic fuzzy soft sets
and their application in decision-making. Journal of Ambient Intelligence and Humanized Computing 2021; 12 (1):
1541-1558. doi: 10.1007/s12652-020-02227-0

Cuong BC. Picture fuzzy sets. Journal of Computer Science and Cybernetics 2014; 30 (4): 409-420. doi:
10.15625,/1813-9663/30/4/5032

Memig S. A study on picture fuzzy sets. In: 7th IFS and Contemporary Mathematics Conference; Mersin, Turkey;
2021. pp. 125-132.



	Introduction
	Preliminaries
	Fuzzy parameterized fuzzy soft aggregation classifier (FPFS-AC)
	Experimental study
	UCI datasets and performance measures
	Simulation results
	Statistical analyses of the simulation results
	Computational complexity analysis of FPFS-AC

	Conclusion

