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Abstract: Electric vehicles (EVs) exhibit several benefits over combustion engine vehicles, making them an attractive
mode of mobility for the future. However, supplying the electrical energy required to recharge their batteries could
adversely affect the power system infrastructure. The most severe impact of EV integration is expected to be on the
distribution transformers, which are among the costliest equipment in the distribution network. Sustained overloads on
the transformer could lead to accelerated aging and early retirement. As the rate of EV deployment rises, so does the
probability of transformer overloads and the subsequent loss of life. There is a need for smart charging schemes in which
the distribution system operator can schedule the charging of EVs in an optimal manner that prevents overloads and
extends the transformer’s life. However, EV owners might hesitate to surrender the charging control of their vehicles
for the utility’s benefit alone. Charging-cost minimization has been identified as an effective motivation for EV users
to participate in charge management schemes. This paper presents a smart charging scheme, which minimizes the cost
of charging EVs by optimizing their charging powers with respect to a real-time pricing tariff. As the electricity price
changes dynamically with the system demand, cost minimization is equivalent to network decongestion. A decongested
network is less susceptible to overloads and equipment damage. Simulation results show that with smart charging, the
charging cost incurred by EV owners as well as the rate of aging undergone by the transformer can be significantly
reduced.
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1. Introduction
Electric vehicles (EVs) have emerged as a practical solution to reduce the transportation sector’s petroleum
consumption and greenhouse gas emissions. EVs, if widely adopted, could play a significant role in the global
efforts to curb air pollution amidst climate-change concerns. In addition to nullifying fossil-fuel requirements
and tailpipe emissions, EVs can also bring down the per-kilometer cost of mobility [1]. Thus, EVs represent
a mode of transportation that is both economically and environmentally beneficial while being technologically
realizable. The smart grid environment with distributed energy resources and advanced metering infrastructure
promises to be conducive for the effective integration of EVs.

Like any other energy storage device, the EV batteries need to be recharged periodically. Due to the
limited number of public charging options, most EV users are expected to charge their vehicles at home.
The addition of EV charging load can double the energy consumption of a typical household [2]. Based on
the daily travel behavior exhibited by light-vehicle owners, it is anticipated that the majority of EVs will be
∗Correspondence: arjunvisakh301@gmail.com
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plugged into the distribution system within a narrow time frame, thereby overloading the network equipment
[3]. Uncontrolled EV charging could also worsen the distribution system’s power quality and energy efficiency
[4]. The overloads caused by EV loads will accelerate the aging of network assets, especially the distribution
transformers (DTs). Sustained overloads on the DT could raise its internal temperature significantly, causing
insulation degradation and loss of life. The loss of life is exacerbated in cities with warmer climates, leading to
accelerated aging, service disruption, and early retirement of DTs [5].

The flexibility of EV energy demand presents the distribution system operator (DSO) with an opportunity
to centrally manage the charging of vehicles connected to an overloaded DT. Thus, the EV charging loads can
be optimally scheduled with smart charging (SC) technology instead of replacing the DT with a larger unit.
SC schemes for EVs could be motivated by a wide range of techno-economic objectives. EV charging may
be coordinated with the objective of peak shaving [6, 7] and flattening the load profile [8, 9]. The variance of
system demand from the optimal loading can be minimized with controlled charging of EVs [10, 11]. The energy
losses in the system can be minimized by optimally scheduling the EV charging loads [12, 13]. SC schemes that
minimize voltage deviations in the network have also been developed [14, 15]. In addition to these technical
objectives, SC may also seek to minimize the utility’s generation costs [16, 17] or the EV owners’ charging cost
[18, 19]. The bidirectional communication and smart metering that are indispensable for the above SC strategies
require significant capital outlay. The loss of life of DTs, which are among the most expensive components in
the grid infrastructure, is a critical factor in deciding whether to invest in SC solutions or not [20]. DT aging
depends upon the thermal effects from loading. All of the SC approaches cited above have ignored the DT’s
thermal modeling aspects and hence fail to account for its loss of life. A brief review of the SC schemes that
have taken transformer aging into consideration is given below.

A peak-shaving strategy that improves DT insulation life was presented in [21], but it ignores the
randomness of EV mobility as all the vehicles are assumed to plug in and plug out simultaneously. Although the
temperature-based SC scheme in [20] prevents EVs from reducing DT life, it fails to guarantee charge completion
by the time of departure. The same deficiency is found in the rule-based algorithm in [22] that lowers the aging
rate of DTs. The authors in [23] concluded that delaying EV charging to off-peak hours could prolong DT
life. However, off-peak charging might create a new peak load in the early off-peak hours [24]. A domestic SC
scheme that prevents DT overloads and accelerated aging was presented in [25]. However, it only accounts for
EV penetration up to 50% and not the worst-case scenario of 100%. A centralized strategy that cooptimizes the
DT’s loss of life was developed in [26], but without the provision for EV users to demand the energy desired.
An optimal charging scheme that minimizes the impact of EVs on the aging of a DT was introduced in [27].
However, it does not apply to domestic charging as it was designed for a commercial charging station with solar
generation and battery backup. Similarly, the SC scheduler proposed in [28] focuses on an insular grid feeding
industrial loads.

Thus, there is a need to minimize the DT’s loss of life caused by domestic charging of EVs without
compromising on the vehicles’ charge fulfillment. As transformer aging is a function of its loading, setting
maximum limits on the DT to prevent overloads might seem like an obvious solution to the accelerated-aging
problem. However, such a tactic might lead to missing the charging deadlines of some EVs, as observed in
[20, 22]. Incomplete charging is unwelcome as it could aggravate the range anxiety among EV users and deter
their participation in centralized SC programs. A successful SC method should satisfy the energy requirements of
all EV owners to reduce their inconvenience [20]. Thus, placing upper bounds on DT loading is not the preferred
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solution. Moreover, the authors in [20] have highlighted the need for financially motivating EV owners to give
up the charging control of their vehicles for the utility’s sake. Charging cost minimization has been identified
as a powerful incentive to elicit the participation of EV owners in charge management schemes [29, 30].

The SC scheme employed in this paper seeks to minimize the charging cost incurred by EV owners as
a reward for permitting the charging of their vehicles to be controlled by the DSO. Successful completion of
charging requests is ensured by placing constraints on the final battery energy while formulating the optimization
problem. Cost-minimization cannot be realized under fixed tariffs, in which the electricity price remains constant
throughout the day leaving no room for optimal scheduling. The scope for cost-saving exists only under dynamic
tariffs, such as time-of-use and real-time pricing. Out of these, the time-of-use tariff could shorten transformer
life owing to the accelerated aging during load spikes when the lower-priced electricity becomes available [20].
Hence, in this study it is assumed that the DSO employs real-time pricing tariff in the network. The electricity
price is modeled as a linear function of the system demand. This proportionality ensures that by shifting EV
charging from the expensive peak-load hours to the cheaper off-peak hours, the SC algorithm can regulate
transformer loading and slow down the subsequent aging. The optimized loading profile ensures minimum
charging cost for EV users and maximum life for the DT simultaneously. Thus, the SC scheme represents a
win-win scenario for both the DSO and the EV owners. The rest of this paper is organized as follows: Section
2 presents the modeling aspects of the simulation study. The need for SC and its mathematical formulation is
covered in Section 3. A method for estimating the aging of a transformer using its thermal model is explained
in Section 4. The simulation results are discussed in Section 5 and the paper is concluded in Section 6.

2. Distribution system modeling
In order to account for the variations in the DT’s loading and operating temperature, it is necessary to discretize
the day into smaller time intervals. In this study, each day is assumed to be divided into 96 time slots, each
of length ∆t = 0.25 h [26]. Let I represent the set of intervals in a day that begins at 12 noon and ends 24

h later at 12 pm on the next day, such that, I = {12 : 00 pm − 12 : 15 pm, . . . , 11 : 45 pm − 12 : 00 am, 12 :

00 am − 12 : 15 am, . . . , 11 : 45 am − 12 : 00 pm}. System variables, such as power flows and temperatures are
assumed to remain unchanged during each time interval.

2.1. Network topology

The IEEE European low voltage test feeder1 is used as the test system in this study. It is a radial distribution
feeder operating at 416 V (phase-to-phase), which is typical in European low voltage distribution systems. This
distribution network supplies single-phase electricity at 240 V to 55 residential consumers with connected load
of 3 kW each. Each household’s load variation over 24 h is provided with a one-minute resolution for time-
series simulation. The household loads in the network correspond to lighting, cooling, heating, cooking or other
domestic applications that cannot be rescheduled by the DSO. The aggregate demand of such nonschedulable
loads represents the base load on the system, which is beyond the DSO’s control and cannot be modified. The
overall power factor of the base load is 0.9 lagging. The low-voltage feeder is connected to the medium-voltage
system by a 11 kV/ 416 V, 160 kVA three-phase DT. The transformer loading during the i -th interval, Li

DT

consists of two parts, such that:
Li
DT = Li

B + Li
EV . (1)

1IEEE PES Distribution Systems Analysis Subcommittee. Radial Test Feeders. European Low Voltage Test Feeder [online].
Website https://site.ieee.org/pes-testfeeders/resources [accessed 18 July 2021].
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The term Li
B in (1) refers to the base load, that can be predicted by load forecasting. Thus, the value of Li

B is
assumed to be known in advance for the whole day. The term Li

EV denotes the controllable EV charging load
that can be rescheduled optimally by the DSO. Due to the randomness of vehicle mobility, Li

EV is unpredictable
and its modeling is explained in the following section.

2.2. Electric vehicle modeling
EVs utilize the energy stored in their batteries to power the electric drive. Based on the presence of auxiliary
combustion engine, EVs can be categorized into hybrid electric vehicles or battery electric vehicles (BEVs). The
EVs considered in this study are plug-in BEVs that can be connected to the power distribution network via
standard power outlets for recharging their batteries. Four different EV models were considered in this study,
with specifications2 as indicated in Table 1. It can be seen that each vehicle model has a different battery
capacity and charging efficiency. The penetration level of EVs is assumed to be 100%, i.e. all the fifty-five
consumers own EVs. This situation represents the worst-case scenario in terms of DT loading and aging [26].
Let N = {EV1, EV2, EV3, . . . , EV55} represent the set of all EVs, with the make of each vehicle randomly picked
from Table 1. The power demand of an EV under charging depends on the maximum rating of its on-board
charger, Pmax . It is assumed to be 3 kW, which corresponds to the charging rate for plug outlets with 16 A
capacity that are common in European networks [31]. The provision for transferring power from vehicle-to-grid
(V2G) is not considered in this study.

Table 1. EV specifications.

EV Make/Model Year of launch Battery capacity (kWh) Charger efficiency (%)
Chevrolet Volt 2012 16 88.5
BMW i3 2014 18.8 93
Nissan Leaf 2015 24 88
Mercedes B-Class 2015 36 87

The energy requirement of the n -th EV (∀n ∈ N) depends on its battery’s initial energy at the time
of plug-in, Einitial

n , and the desired energy at plug-out time, Edesired
n . The residual energy available in the

EV battery at the start of charging is a function of the total distance travelled by the vehicle since it was
last charged. The uncertainty in Einitial

n is simulated using a normal probability distribution model with
mean of 50% and standard deviation of 30% of the vehicle’s battery capacity [32]. Thus, Einitial

n is a random
variable that depends on battery capacity, which in turn varies from vehicle to vehicle as evident from Table
1. It is further assumed that all the EVs are required to be fully charged by the hour of departure such that
Edesired

n = Ecapacity
n . The next parameter to be modeled is the EV’s plug-in duration, which depends on the

time of arrival and departure from home. Previous studies based on traffic-survey data have identified the
Gaussian distribution as an effective tool to model the travel pattern of EVs [32, 33]. In this study, the arrival
time is assigned a Gaussian distribution with a mean of 6 p.m. and a standard deviation of 2 hours, whereas
the departure time’s distribution has a mean of 7 a.m. with 2 h as standard deviation [33]. Let tarrn denote the
arrival (and plug-in) time of the n -th EV and let tdepn denote its departure time. Then, the charging task of

2Idaho National Laboratory. Vehicle Charging System Testing [online]. Website https://avt.inl.gov/content/charging-system-
testing/vehicle-charging-system-testing [accessed 21 October 2021].
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the n -th EV can be characterized by the set of variables - [tarrn , tdepn , Einitial
n , Edesired

n ] .
If ti represents the starting time of the i -th time slot, then the connection status of the n -th EV during

the i -th interval can be determined as:

sin =


0, ti < tarrn

1, tarrn ≤ ti < tdepn

0, ti ≥ tdepn

(2)

Furthermore, the energy-requirement status of the n -th vehicle during interval i can be defined as a function
of its battery energy Ei

n at time ti , as shown below:

ein =

{
1, Einitial

n ≤ Ei
n < Edesired

n

0, Ei
n ≥ Edesired

n

(3)

The total EV charging load applied on the system can be expressed as:

Li
EV =

∑
n∈N

sin · ein · pin , ∀i ∈ I (4)

where pin denotes the charging power of the n -th EV during the i -th interval. The value of pin depends on the
charging scheme employed, as explained in section 3.

2.3. Energy costs
In this study, the consumers are billed according to a real-time pricing tariff, in which the electricity price varies
from time-slot to time-slot, reflecting the variations in system demand (and DT loading). Here the complex
relationship between electricity price and power demand is approximated using a linear relationship [31, 34].
Thus, the real-time price during the i -th time slot, ri is a linear function of the total load during that interval,
li and is given by:

ri = r(li) = k0 + k1 l
i , ∀i ∈ I (5)

where k0 and k1 are positive real numbers denoting the intercept and slope of the linear relationship, re-
spectively. These coefficients are assigned values that give an average price comparable with other tariffs.
Here, k0 = 2.3 × 10−3 e/kWh and k1 = 2.76 × 10−3 e/kWh/kW, such that the average price for base load
(≈ 0.225 e/kWh) is comparable with that in Spain at present3.

The total energy cost for the system during the i -th time slot, Ci
S is given by the relation:

Ci
S = Ci

B + Ci
EV (6)

where, Ci
B denotes the energy cost incurred by the base load and Ci

EV is the EV charging cost. These costs
can be estimated using (7) and (8), in which the price function from (5) is integrated over the corresponding
loading limits and multiplied with the interval duration.

Ci
B =

(∫ Li
B

0

r(l) dl

)
∆t (7)

3Eurostat. Electricity price statistics [online]. Website https://ec.europa.eu/eurostat [accessed 18 July 2021].
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Ci
EV =

(∫ Li
DT

Li
B

r(l) dl

)
∆t (8)

3. Electric vehicle charging schemes

Two charging schemes are considered in this study: 1) dumb charging, in which EV charging is unaffected
by electricity price and 2) smart charging, in which EV charging is regulated to minimize the charging cost.
Although, the same EV charging parameters such as energy requirement and plug-in duration are considered in
both charging schemes, the charging load applied on the system is considerably different, as explained below.

3.1. Dumb charging scheme
In dumb charging, the vehicles are allowed to charge at the maximum possible rate of Pmax as soon as they
are plugged-in, irrespective of the electricity price. The charging continues until the battery is fully charged or
the vehicle departs, whichever occurs first. In this study, the parking time of each EV is greater than the time
required for full charge. Thus, the EVs continue to draw energy until they are fully charged.

Under dumb charging, there is no control over the number of plugged-in EVs and the subsequent charging
load on the system. The EV charging load at any interval is equal to:

Li
EV =

∑
n∈N

sin · ein · Pmax , ∀i ∈ I (9)

where sin and ein are given by (2) and (3) respectively, and Pmax = 3 kW.

3.2. Smart charging scheme
Under SC, the DSO optimizes EV charging with the objective of charging-cost minimization. The optimal
charging schedule determines the intervals during which a plugged-in EV is allowed to charge and the power
at which it must do so. Therefore, although the number of EVs plugging in remains random, the charging load
applied on the network does not; it is maintained at the optimal value that gives the lowest charging cost. The
methodology for determining the optimal charging schedule is explained below.

3.2.1. Nomenclature
The following variables are used in the problem formulation of the SC algorithm-
Cday

EV - total charging cost incurred over the day
Ci

EV - charging cost incurred during the i -th interval
Li
B - base load during the i -th interval

Li
DT - distribution transformer loading during the i -th interval

sin - charging status of the n -th EV during the i -th interval
ein - energy requirement status of the n -th EV during the i -th interval
pin - charging power of the n -th EV during the i -th interval
Einitial

n - energy available in the battery of the n -th EV at arrival time
Efinal

n - energy available in the battery of the n -th EV at departure time
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Edesired
n - energy desired by the n -th EV’s user at departure time

Ecapacity
n - energy storage capacity of the n -th EV’s battery

Pmax - maximum power rating of EV charger
ηn - power conversion efficiency of the n -th EV’s charger.

3.2.2. Problem formulation

The total charging cost over a day, Cday
EV can be obtained by summing the EV charging cost incurred during

each time slot over the entire day, i.e.

Cday
EV =

∑
i∈I

Ci
EV (10)

where the charging cost per slot, Ci
EV can be calculated from (8) as:

Ci
EV =

(∫ Li
DT

Li
B

r(l) dl

)
∆t =

(∫ Li
DT

Li
B

(k0 + k1l) dl

)
∆t

=

[(
k0L

i
DT +

k1
2
(Li

DT )
2

)
−
(
k0L

i
B +

k1
2
(Li

B)
2

)]
∆t

(11)

The objective of the smart charging algorithm is to find the optimal charging power pi∗n for each EV n(∀n ∈ N)

and the resulting optimal charging load Li∗
EV during each time slot i (∀i ∈ I) that will minimize the total cost

of charging EVs for the day. Mathematically, the charging-cost minimization problem can be formulated as:

min
∑
i∈I

[(
k0L

i
DT +

k1
2
(Li

DT )
2

)
−
(
k0L

i
B +

k1
2
(Li

B)
2

)]
(12)

subject to the following constraints:

Li
DT = Li

B +
∑
n∈N

(sin e
i
n p

i
n) , ∀n ∈ N, ∀i ∈ I (13)

Efinal
n ≥ Edesired

n , ∀n ∈ N (14)

Einitial
n ≤ Efinal

n ≤ Ecapacity
n , ∀n ∈ N (15)

0 ≤ pin ≤ Pmax , ∀n ∈ N, ∀i ∈ I (16)

where
Efinal

n = Einitial
n +

∑
i∈I

ηn(s
i
n e

i
n p

i
n)∆t. (17)

In the above optimization problem, (12) represents the objective function to be minimized. The objective
function is a is a convex function that depends on transformer loading, LDT and the base load, LB of the
system. The ∆t term from (11) has been omitted in (12), as it is a constant and cannot affect the minimization
process. The relationship between Li

DT , L
i
B and the charging power of individual EVs, pin is given in (13).
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Equation (14) represents the final energy constraint which specifies that the final battery energy at departure,
Efinal

n should be equal to or greater than the user-desired level, Edesired
n . The final energy can be computed

by adding the initial energy at plug-in, Einitial
n with the total energy transferred subsequently as shown in

(17). The final battery energy is constrained by (15) to prevent overcharging beyond rated capacity, Ecapacity
n .

Furthermore, as V2G operation is neglected, battery energy can never drop below its initial value. Constraint
(16) gives the limits of pin between which it is assumed to be continuously variable. The charging power cannot
exceed the maximum rating of the charger. The lower bound is set to zero as negative power flow (V2G) is not
considered.

In the problem formulation presented above, the objective function (12) is convex and all the constraints
are linear. Therefore, the charging-cost minimization problem is a convex optimization problem, that can be
solved efficiently with the interior point method [34]. The solution provides the optimal charging schedule for
EVs, from which the optimal EV charging load on the system can be calculated as:

Li∗
EV =

∑
n∈N

sin · ein · pi∗n , ∀i ∈ I (18)

where sin and ein are given by (2) and (3) respectively, and pi∗n is the optimal power at which the n -th EV
should charge during the i -th interval, so that the total charging cost will be minimum.

3.3. Comparison of charging schemes

The charging power profile of a single EV (which happens to be of Chevrolet Volt make) under both charging
schemes is compared in Figure 1. At the time of plug in (7:00 pm), 6.7 kWh of energy (42% of capacity) is
available in the vehicle battery. The vehicle owner expects the vehicle to be charged to its capacity (16 kWh)
by the time of departure (8:15 am). Under dumb charging, the EV is allowed to charge at the maximum rating
(3 kW) as soon as it is plugged-in, even though the electricity price tends to be higher during this (evening)
time of the day. Although the battery requirement is 9.3 kWh, the charger ends up consuming 10.5 kWh owing
to power conversion losses (88.5% efficiency). At the rate of 3 kW, the required energy can be delivered in 3.5
hours and the EV is fully charged by 10:30 pm.

12pm 3pm 6pm 9pm 12am 3am 6am 9am 12pm

Time of day

1

2

3

4

P
o
w

er
 (

k
W

)

Dumb charging Smart charging

Figure 1. Comparison of charging-power profile of an EV.

However, under SC the same energy is transferred over a much longer duration and the vehicle continues
to charge until the time of departure. The charging power is especially small during the initial stages as the
prices are higher during this peak-load time. The average charging power has been reduced from 3 kW to 0.82
kW signifying a much smaller impact on transformer loading despite transferring the same amount of energy.
An added benefit of SC is the slower degradation of EV battery when compared with dumb charging. The
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longer battery life can be attributed to the use of lower charging powers and the lower duration of time spent
in fully charged condition [35].

The impact of the two EV charging schemes on DT loading is analyzed next. Dumb charging raises
the peak load from 143.08 kVA (under base load) to 255.97 kVA, leaving the 160 kVA rated DT significantly
overloaded for an extended duration, as evident from Figure 2. The SC algorithm is able to reduce the peak
load to 143.08 kVA, which is within its rated capacity of 160 kVA. The 44% reduction in peak load is more
than double of that achieved in [11, 23] and is comparable to that in [6, 10]. Furthermore, as a consequence of
shifting EV charging to off-peak hours, the loading profile is much flatter, which implies lower line losses and
higher distribution efficiency [36].

12pm 3pm 6pm 9pm 12am 3am 6am 9am 12pm

Time of day

0

50

100

150

200

250

300

D
T

 l
o
ad

in
g
 (

k
V

A
)

Base load

Dumb charging

Smart charging

Figure 2. Transformer loading under different scenarios.

4. Analysis of distribution transformer aging
Having analyzed the effect of EVs on DT loading, the next step is to estimate their impact on DT aging.
Typically, insulation is the first component to fail within a transformer and the estimated life of a DT is primarily
a function of insulation degradation [20]. The state of insulation is governed by the transformer’s internal
temperature, which has a nonuniform distribution. As a result, the aging effect is evaluated considering the
hottest-spot temperature (HST), which corresponds to the point on the winding where the highest temperature
and the greatest insulation degradation occurs [5]. The IEEE standard C57.91 [37] has defined the following
method for estimating the different temperatures within an oil-immersed transformer such as winding HST and
top-oil temperature, which depend on transformer loading and ambient temperature.

The transformer winding’s HST at the i -th time slot, Θi
HST can be determined using:

Θi
HST = Θi

A +∆Θi
TO +∆Θi

HST , (19)

where Θi
A is the ambient temperature, ∆Θi

TO is the top-oil temperature rise over the ambient temperature,
and ∆Θi

HST is the rise in winding HST over the top-oil temperature during the interval. The value of ∆Θi
TO

in (19) can be calculated as:

∆Θi
TO = ∆Θi−1

TO + (∆ΘTO,u −∆Θi−1
TO )(1− e−∆t/τTO

), (20)

where ∆ΘTO,u is the ultimate top-oil rise over the ambient temperature and τTO is the top-oil time constant.
The value of ∆Θi

HST in (19) can be calculated as:

∆Θi
HST = ∆Θi−1

HST + (∆ΘHST,u −∆Θi−1
HST )(1− e−∆t/τW

), (21)
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where ∆ΘHST,u is the ultimate HST rise over the top-oil temperature and τW is the winding time constant.
The ultimate values of top-oil and HST rise can be calculated using (22) and (23), respectively.

∆Θi
TO,u = ∆ΘTO,r

(
k2iR+ 1

R+ 1

)n

(22)

∆ΘHST,u = ∆ΘHST,r

(
k2mi

)
, (23)

where ∆ΘTO,r is the temperature rise of top-oil over ambient at the rated load, ∆ΘHST,r is the HST rise
over top-oil at the rated load, ki is the ratio of the transformer load at the i -th interval (Li

DT ) to its rated
capacity (160 kVA) , R is the ratio between the losses at rated load and at no load, and m and n are the
cooling parameters of the transformer. The values of these parameters for a typical 160 kVA DT [23] are given
in Table 2. By substituting these values in the above equations, the values of HST under different DT loading
can be determined.

Table 2. Thermal model parameters of a typical 160 kVA DT [23].

Parameter τTO τW ∆ΘTO,r ∆ΘHST,r R m n

Value 3 h 5 min 55 ◦C 25 ◦C 5 0.8 0.8

As the HST rises with transformer loading, the transformer ages at a faster rate. The rate of aging can be
quantified using the accelerated aging factor FAA , which is a measure of how quickly the transformer insulation
degrades under actual conditions, relative to the degradation at rated HST conditions, which is considered
as 110◦ C. For transformer operation above this reference value, FAA will be greater than one indicating an
accelerated aging. FAA can be expressed as an exponential function of ΘHST , as given below [37]:

FAA = exp

(
15000

273 + 110
− 15000

ΘHST + 273

)
. (24)

According to (24), when ΘHST = 110◦C, accelerated aging factor, FAA = e0 = 1 , which corresponds to normal
aging that occurs at the HST of 110◦C. For HST below this value, the transformer ages at a lower than normal
rate (0 < FAA < 1) . For values above 110◦C, the transformer ages at an exponentially higher rate (FAA ≫ 1) .

The HST of the transformer varies over the day with changes in loading and ambient temperature. The
accelerated aging factor, in turn varies as a function of HST throughout the day. Thus, there is a need to express
the net amount of aging undergone by the transformer during the entire period under study. The equivalent
aging factor was defined for this purpose [37] and its value for the day under study can be calculated as:

FEQ =

∑96
i=1 F

i
AA∆t∑96

i=1 ∆t
. (25)

The value of FEQ represents the transformer’s equivalent aging (in days) relative to the normal aging, which is
taken as 1 day for a well-dried, oxygen-free unit operating at 110◦C.
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5. Results and analysis
In this section, the impacts of dumb and smart charging schemes on charging cost and transformer aging
are compared. The SC schedule was estimated using the CVX package4 in MATLAB. The thermal model
of the DT was implemented in MATLAB for estimating the HST and aging factor. The test system was
simulated in OpenDSS5, which provides load-flow solution for large-scale distribution networks by solving the
system admittance equation using modified augmented nodal analysis. The nodal analysis technique, which has
good convergence characteristics and high computational performance, is capable of handling arbitrary network
topologies in the multiphase and unbalanced context [38].

The real-time price of electricity under the three loading scenarios is compared in Figure 3. It is clear
that dumb charging is subjected to much higher prices when compared with the other two scenarios. The prices
are the highest during the evening hours, when majority of the EV users return home from work and plug-in
their vehicles for charging. In contrast, SC delays EV charging from the evening hours to the off-peak hours
around the dawn of the following day.
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Figure 3. Electricity price under different scenarios.

The combined action of peak-shaving and valley-filling leads to a flatter load profile (as evident in Figure
2) and steady prices. SC is able to reduce the EV charging cost from 421.39 e to 266.61 e. Having thus realized
the primary objective of charging-cost minimization, the impact on DT aging is addressed next. The ambient
temperature of Madrid, the capital city of Spain is considered in this study. The temperature profile, Θi

A(∀i ∈ I)

in Madrid during two days: one in July, representing summer and the other in December, corresponding to
winter were utilized in this study. The temperature profiles6 are illustrated in Figure 4.
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Figure 4. Ambient temperature profile.

The HST and aging factor of the DT under dumb charging during the two seasons are compared in Figure
4CVX: Matlab software for disciplined convex programming [online]. Website http://cvxr.com/cvx [accessed 11 June 2021].
5EPRI. OpenDSS Program [online]. Website http://sourceforge.net/projects/electricdss [accessed 11 June 2021].
6World Weather Online. Madrid Historical Weather [online]. Website https://www.worldweatheronline.com/madrid-weather-

history/madrid/es.aspx [accessed 11 June 2021].
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5. During summer, the winding HST and aging factor are significantly higher with peak values of 167.26 ◦C
and 162.99, respectively. Due to the lower ambient temperature during winter, the peak values of HST and
aging factor drop to 141.34 ◦C and 19.35 respectively. The equivalent aging factor under summer is found to be
12.48 which implies that the DT ages nearly twelve and a half times as fast as it would normally have. During
winter, although the aging is faster than normal, the rate of acceleration is much smaller at 1.22.
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Figure 5. Variation in HST and aging factor of transformer under dumb charging.

The impact of SC on the HST and aging factor of the DT during the two seasons are compared in Figure
6. Due to regulated EV charging that eliminates DT overloads, the HST never exceeds 110◦C resulting in a
slower-than-normal aging. This is also reflected in the accelerated aging factor which never exceeds 1 (the value
corresponding to normal aging) with peak values of 0.19 and 0.01 during summer and winter, respectively. The
equivalent aging factors of 0.046 (summer) and 0.004 (winter) imply a much longer service life under SC. The
longer life of the DT can be attributed to its cooler operation on account of controlled EV charging by the SC
algorithm.
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Figure 6. Variation in HST and aging factor of transformer under smart charging.

5.1. Summary

The benefits of the SC method presented in this paper can be appreciated from Table 3. The charging cost was
reduced by 36.73% from what it would have been under dumb charging. The cost saving will act as an incentive
for EV owners to relinquish the charging control of their vehicles and participate in centralized charging schemes.
From the DSO’s perspective, SC is able to prevent DT overload by reducing the peak load by 44%. It can be
observed from the mean HST values that EV charging in general raises the operating temperature within the
DT. Due to the absence of overloads, SC leads to a cooler operation by 9.7% and 13.6% during summer and
winter, respectively. By reducing the peak HST by 43.6% (summer) and 54.6% (winter), SC is able to restrict
HST below 110 ◦C and achieve aging-factor reduction in excess of 99% under both seasons.
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Table 3. Summary of simulation results.

Parameter No EV charging Dumb EV charging Smart EV charging
EV charging cost (e) 0 421.39 266.61
Peak transformer load (kVA) 143.08 255.97 143.08
Summer season
Peak HST (◦C) 91.06 167.26 94.32
Mean HST (◦C) 64.52 88.39 79.82
Peak aging factor 0.13 162.99 0.19
Equivalent aging factor 0.02 12.48 0.05
Winter season
Peak HST (◦C) 60.95 141.34 64.22
Mean HST (◦C) 38.89 62.77 54.20
Peak aging factor 0.003 19.35 0.01
Equivalent aging factor 0.0004 1.22 0.004

6. Conclusion
Uncontrolled or dumb EV charging can negatively affect the peak load, network utilization and transformer
aging. In this scenario, having identified the need for regulated EV charging, a smart charging scheme was
developed. With smart charging, the DSO seeks to accommodate the EV charging loads by optimally scheduling
them to achieve a certain objective. The target of the charge scheduling scheme in this study was to minimize
the charging cost incurred by EV owners, which makes it worthwhile for them to participate in such charge
management schemes. The cost minimization was performed with respect to a real-time pricing tariff in which
the electricity price is modeled as a linear function of the system demand. The linear dependence ensures
that charging-cost minimization leads the way for network decongestion. In the optimal charging schedule, EV
charging is shifted from peak load hours (peak shaving) to the off-peak hours (valley filling). Peak shaving
prevents transformer overloads and its accelerated aging, while valley filling ensures better utilization of the
network infrastructure. Thus, with smart charging the primary concerns of both the EV owners and the DSO,
with regard to energy costs and transformer life have been addressed. Future research could seek to incorporate
bidirectional smart charging based on vehicle-to-grid or vehicle-to-home technology into the aging study.
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