
Turk J Elec Eng & Comp Sci
(2022) 30: 502 – 517
© TÜBİTAK
doi:10.3906/elk-2105-44

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Clustering with density based initialization and Bhattacharyya based merging

Erdem KÖSE, Ali Köksal HOCAOĞLU∗

Department of Electronics Engineering, Faculty of Engineering, Gebze Technical University, Gebze, Kocaeli, Turkey

Received: 06.05.2021 • Accepted/Published Online: 26.07.2021 • Final Version: 21.03.2022

Abstract: Centroid based clustering approaches, such as k-means, are relatively fast but inaccurate for arbitrary shape
clusters. Fuzzy c-means with Mahalanobis distance can accurately identify clusters if data set can be modelled by
a mixture of Gaussian distributions. However, they require number of clusters apriori and a bad initialization can
cause poor results. Density based clustering methods, such as DBSCAN, overcome these disadvantages. However, they
may perform poorly when the dataset is imbalanced. This paper proposes a clustering method, named clustering with
density initialization and Bhattacharyya based merging based on the fuzzy clustering. The initialization is carried out
by density estimation with adaptive bandwidth using k-Nearest Orthant-Neighbor algorithm to avoid the effects of
imbalanced clusters. The local peaks of the point clouds constructed by the k-Nearest Orthant-Neighbor algorithm are
used as initial cluster centers for the fuzzy clustering. We use Bhattacharyya measure and Jensen inequality to find
overlapped Gaussians and merge them to form a single cluster. We carried out experiments on a variety of datasets and
show that the proposed algorithm has remarkable advantages especially for imbalanced and arbitrarily shaped data sets.

Key words: Infinite mixture models, density estimation, Jensen inequality, bandwidth selection, optimal number of
clusters, arbitrarily shaped clusters

1. Introduction
Clustering is an unsupervised problem of finding natural groups. It is one of the most difficult tasks for pattern
recognition and machine learning. Difficulty arises from the nature of clustering. A data set may or may not
possess a clustering structure and clustering algorithms may impose a clustering structure. Determining the
presence or the absence of a clustering structure in a dataset is usually easy in low-dimensional settings such
as the three-dimensional features. But, this time, the data set may be very complex to obtain sensible groups.
When the dimensionality increases, it will be more difficult to verify whether the dataset possesses a clustering
structure and to evaluate the results of clustering algorithms. These complexities have led to different clustering
algorithms with some restrictions on the shape of clusters such as spiral, hyper-ellipsoidal, etc.

One of the basic and also a popular clustering algorithm is the k-means algorithm [1–3]. It is a centroid-
based clustering algorithm. The k-means algorithm determines k centroids and associates points to the nearest
centroid. Bezdek et. al. [4] introduced Fuzzy C-means (FCM) algorithm to improve the basic k-means algorithm
by using fuzzy measures to associate points to clusters. Gueorguieva et al. [5] proposed a new algorithm called
Fuzzy C-means with Mahalanobis Distance (MFCM) to improve the conventional FCM algorithm by accurately
identifying cluster shapes using Mahalanobis distance. Centroid-based methods generally require number of
clusters as input. To determine the number of clusters in a data set for centroid-based methods, randomized
∗Correspondence: khocaoglu@gtu.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.
502

https://orcid.org/0000-0002-6763-680X
https://orcid.org/0000-0003-0701-2787

KÖSE and HOCAOĞLU/Turk J Elec Eng & Comp Sci

algorithms [6, 7] were introduced. Centroid based methods mostly have initialization problems, but they have
the advantage of easily assigning a new point to one of existing clusters due to their parametric nature.

Compared to centroid-based clustering, density-based clustering attempts to identify dense clusters
of points, which leads to learning clusters of arbitrary shape. Density based clustering (DBSCAN) [8, 9],
ordering points to identify the clustering structure (optıcs) [10], density based cluster estimation (DENCLUE)
[11, 12], Gaussian density distance (GDD) [13] and others [14–17] are the examples for density based clustering
algorithms. Density based methods use Kernel density estimation (KDE) or k-nearest neighbor (kNN), and they
solve some problems like estimating optimal cluster count, but they cause new problems like kernel bandwidth.
The density based methods do not require a user input for the number of clusters. But, they require one to
specify the bandwidth parameter.

There are also several geometric approaches for clustering using Delaunay triangulation [18–20], Voronoi
diagrams [21] or fuzzy c-means based ones [22]. Although geometrical approaches are computationally intensive
for high dimensions, they can easily find hyperellipsoidal shaped and imbalanced clusters.

Other methods that do not require the number of clusters as a user input are subtractive [23, 24], Kluster
[25] and evidential [26]. It is also worth noting that comprehensive surveys of clustering algorithms are done
by [27, 28]. The reader may refer to them for other types of clustering methods beyond the scope of this
study. Also, there are researches on clustering datasets [29–33]. We will use some of them and real world GPS
trajectory [34] to validate our proposed method.

We focus on the density based algorithms as they are easy to initialize. However, they have the
disadvantage that they cannot perform well when there are large differences in densities. To find better
bandwidth for kernel density estimation, we are inspired from geometric approaches and propose k -nearest
orthant-neighbor (k -NON) method. We form numerous subclusters and use Bhattacharyya measures to find
overlapped ones and merge them to form a single cluster. The proposed algorithm is called clustering with
density based initialization and Bhattacharyya based merging (CDIBM). It has an increased performance on
Gaussian based data, and a decreased performance in thin-line clusters. However, this is not a big disadvantage
because we mostly encounter Gaussian-shaped data as central limit theorem states that if independent random
variables are added, normalized sum of them tends to form a normal distribution even if original random
variables do not have a normal distribution, and any data can be modeled as a mixture of different signals in
nature.

The rest of the paper is organized as follows. Section 2 consists the technical background of the proposed
algorithm. In Section 3, we describe the proposed algorithm. In Section 4, we present the benchmark datasets
and discuss the performance of the proposed algorithm. Section 5 concludes the paper.

2. Technical background

This section presents the building blocks of the proposed CDIBM algorithm, including the technical background
information and the proposed k -NON method. In this section, we also discuss the reasons for utilizing these
methods. The terminologies and notations presented in this chapter are used in the next section to define our
clustering algorithm.

Let X = {x0,x1, ...,xN−1} be a set, which contains univariate, independent and identically distributed
N samples from an unknown d -dimensional distribution. ith sample from X is xi = {xi,0, xi,1, ..., xi,d−1} ,
where 0 ≤ i < N . We want to find optimal clusters in set X without prior knowledge about cluster count and

503

KÖSE and HOCAOĞLU/Turk J Elec Eng & Comp Sci

cluster shape. A summary of the clustering algorithms is given in the first section to find clusters for a given
set X . They have different strengths and also drawbacks, but our aim is to build a hybrid clustering algorithm
using their strengths and avoiding their drawbacks.

Fuzzy C-Means with Mahalanobis distance (MFCM) can provide the parameters of multivariate Gaussian
distribution, µj and Σj , where µj is center and Σj is covariance matrix of the clusters to be identified. A
major drawback for MFCM is that it requires prior knowledge about the number of clusters. We propose a
hybrid approach based on both KDE and k-NN to initialize MFCM.

It is well known that the performance of KDE is mainly dependent on the bandwidth parameter of the
kernel. Since a fixed bandwidth for all mixtures is usually not a valid assumption, adaptive KDE -[35, 36]- is
utilized when number of samples varies greatly for each mixture. The hybrid approach that we propose does
not use a fixed bandwidth parameter and constructs bandwidth matrices based on local properties. We present
this algorithm in the next sub-section.

The proposed CDIBM algorithm utilizes MFCM to determine subclusters, and it is discussed in Section
2.2. Bhattacharyya distance [37] is used to obtain the amount of overlap among the sub-clusters with multivari-
ate Gaussian distributions and Jensen inequality [38] is used to find sub-clusters to construct arbitrarily shaped
main clusters. The mathematical background for this cluster merging approach is provided in Section 2.3 and
Section 2.4.

2.1. Kernel density estimation
Nonparametric density estimation methods are used for clustering with different approaches, but imbalanced
and hyperellipsoid shaped data become a problem with fixed bandwidth [39]. Zhu et. al. [15] showed that
fixed bandwidth for each point is a problem for varying densities. This indicates that one needs to use adaptive
bandwidth for each point [35, 36]. Adaptive bandwidth problem for KDE was studied by [21, 40, 41] using
geometric approaches, but when high dimensional data occur, these methods fail.

Our algorithm use neither KDE nor k -NN to find densities directly. Our proposed algorithm CDIBM
is a hybrid approach using the both. An orthant in d -dimensions is intersection of d mutually orthogonal
half-spaces. By independent selections of half-space signs, there are 2d orthants in d -dimensional space. Our
approach picks k points from each 2d orthants from d dimensional space for central point xi and constructs
a bandwidth matrix Hi from this neighborhood. This method is called k -NON.

Our aim is to find k nearest neighbors from each orthant to construct a point cloud Rxi
as shown in

Figure 1 around the central point xi . The k -NON algorithm given in Algorithm (1) constructs these point
clouds. We, then, calculate the bandwidth matrix Hi using Rxi

for each data point xi .
We calculate a distance vector yi = [yi,n] , where n ̸= i , from a reference point xi to all other points in

X as given in Equation (1). We also calculate orthant indices zi = [zi,n] , which gives orthant index of a point
xn relative to the reference point xi as given in Equation (2), where the function u(.) is the unit step function.
We partition yi with respect to zi and construct neighborhood set Rxi

in Algorithm 1. In an algorithmic
point of view, Rxi

is a vector array composed of indeces of the k -nearest orthant neighbours.

yi,n = ∥xi − xn∥ (1)

zi,n =

d−1∑
m=0

2mu(xi,m − xn,m) (2)

504

KÖSE and HOCAOĞLU/Turk J Elec Eng & Comp Sci

X

x
i

2-Nearest Orthant-Neighbor

8-Nearest Neigbor

Figure 1. Neighbor example for a sample point xi ∈ X in 4-orthant space.

Algorithm 1 can be explained as following. We sort yi and get sorted index vector ñ . Starting from the
nearest point to xi , we determine which xñ(n) point belongs to mth orthant with the help of zi,ñ(n) . We pick
the first k nearest points to xi for each orthant and save their indices to Rxi .

Algorithm 1: k-NON algorithm.
Input: yi , zi , k (nearest neighbor count in each orthant)
Output: Rxi

: indices of k nearest neighbor in each orthant for each i
1 ñ← sortindex (yi, ascend) // Sorted index vector
2 l← 0

3 for m← 0 to 2d − 1 do
4 temp← 0

5 for n← 0 to N − 1 do
6 if zi,ñ(n) = m then
7 temp(l)← ñ(n)

8 l← l + 1

9 end if
10 if l = k then break

11 end for
12 Rxi

(m)← temp

13 end for

Equation (3) gives bandwidth covariance matrix, where |Rxi | denotes the number of elements of Rxi .
After this, Gaussian KDE can be performed using Equation (4). A sample probability density function (PDF)
result can be seen in Figure 2 for the dataset given in [32]. The function given in (4) is used for determining
maximum density points locally among the dataset to obtain initial sub-cluster centers. Equation (5) gives

505

KÖSE and HOCAOĞLU/Turk J Elec Eng & Comp Sci

generalized set for (4).

Hi =
1

|Rxi |
∑

xñ∈Rxi

(xñ − xi) (xñ − xi)
T (3)

fHi (xi) =
|Rxi |

N (2π)
0.5d

det (Hi)
0.5

(4)

fH =
{
fH0 (x0) , fH1 (x1) , , ..., fHN−1

(xN−1)
}

(5)

0.5

1

1.5

2

2.5

3

3.5

4

Figure 2. Probability density of an example independent-identically distributed Gaussian mixture.

2.2. Fuzzy c-means clustering with Mahalanobis distance

We use parameters from Section 2.1 to initialize Fuzzy C-Means algorithm to achieve accurate clusters. Our
clustering metric for C-Means is Mahalanobis distance [5] in order to identify clusters modeled as Gaussian
mixtures. The squared Mahalanobis distance Qi,j from xi to the cluster j when the cluster has a distribution
of N (µj ,Σj) is given in equation (6).

Qi,j = (xi − µj)
T
Σ−1

j (xi − µj) (6)

Equation (6) is not useful for membership calculation because of different covariance matrix volumes.
For membership calculations, the cluster volumes are kept constant ρ > 0 and the modified covariance matrix
Σmod

j in equation (7) is used.

Σmod
j =

Σj

(ρdet (Σj))
1/d

(7)

506

KÖSE and HOCAOĞLU/Turk J Elec Eng & Comp Sci

Thus, det
(
Σmod

j

)
= 1/ρ equation is obtained. The modified Mahalanobis distance Qmod

i,j given in
equation (8) is used instead of equation (7).

Qmod
i,j = (xi − µj)

T (
Σmod

j

)−1
(xi − µj) (8)

Membership of xi to N
(
µj ,Σ

mod
j

)
is calculated using equation (9), where m > 1 is fuzzification

parameter. If fuzziness parameter m in equation (9) decreases to 1, clustering will be crispier.

ri,j =

M−1∑
l=0

(
Qmod

i,j

Qmod
i,l

) 1
m−1

−1

(9)

Cluster center µj and cluster covariance matrix Σj are calculated using equation (10) and (11), respec-
tively.

µj =

∑N−1
i=0 rmi,jxi∑N−1
i=0 rmi,j

(10)

Σj =

∑N−1
i=0 rmi,j (xi − µj) (xi − µj)

T∑N−1
i=0 rmi,j

(11)

2.3. Bhattacharyya distance

Bhattacharyya measure [37] is a well known method for determining divergence or overlap between two different
multivariate Gaussian distributions. We use it to identify clusters to be merged. The Bhattacharyya distance
between the distributions fj and fj̃ are given in equation (12) [37].

Dj,j̃ = − ln
(
BC

(
fj , fj̃

))
= − ln

(∫ ∞

−∞

√
fj (x) fj̃ (x)dx

)
(12)

For multivariate normal distributions, to measure overlap between cluster i and cluster j with distribu-
tions N (µi,Σi) and N (µj ,Σj) , equation (12) results in equation(13).

Dj,j̃ =
DBMah

8
+

DBdet

2
(13)

where DBMah
and DBdet

are (14) and (15), respectively.

DBMah
=
(
µj − µj̃

)T (Σj +Σj̃

2

)−1 (
µj − µj̃

)
(14)

DBdet
= ln

 det
(

Σj+Σj̃

2

)
√

det (Σj) det
(
Σj̃

)
 (15)

507

KÖSE and HOCAOĞLU/Turk J Elec Eng & Comp Sci

2.4. Jensen inequality for chi-squared distributions

If we assume we have point cloud from a distribution N (µj ,Σj) , but we want the points from most probable
quantiles, we must use inequalities like Chebyshevs. In multidimensional Gaussian case, distance from points
X to the distribution N (µj ,Σj) , forms Mahalanobis distance random variable Qi,j .

Qi,j = (xi − µj)
T
Σ−1

j (xi − µj) (16)

Sum of d standard normal random variables has chi-square distribution with d degrees of freedom [42].
So, random variable Qi,j will be chi-squared distributed from definition. Jensen’s inequality for chi-squared
distributions respecting to Lipschitz functions of Gaussian variables [38] is given in equation (17),

Pr [Qi,j > d (1 + t)] ≤ exp

(
−dt2

2

)
(17)

We can modify equation (17) as equation (18)

Pr [Qi,j < d (1 + t)] ≥ 1− exp

(
−dt2

2

)
(18)

where α = 1 − exp
(

−dt2

2

)
is quantile portion we desired, where 0 < α < 1 . We can extract t via

equation (19).

t =
√
−2 ln(1− α)/d (19)

After finding t , we can find the threshold Mahalanobis distance d(1+t) , which shows α portion of region
lies in Qi,j random variable, where 0 < α < 1 .

3. Algorithm

This section introduces our method in algorithmic perspective using the methods previously explained. The
flowchart of the algorithm is shown in Figure 3. The algorithm starts with estimating bandwidth for each point
in a dataset using the k -NON. It uses these bandwidths to estimate KDE. Then, it finds subclusters using the
maximum density point in Rxi

groups. These subclusters are used to initialize fuzzy c-means with Mahalanobis
distance to find more accurate Gaussian subclusters N (µj ,Σj) . Finally, we use Bhattacharyya measure [37]
and Jensen inequality to find overlapped Gaussians and merge them to form a single cluster.

3.1. Initialization with adaptive KDE

We find density estimate fH using Eq. (4) for each xi . Initially, a label unprocessed (value 0) is assigned
for each xi . Then, we find centerpdf and neighpdf for each unprocessed xi and corresponding neighborhood
Rxi

. If centerpdf is smaller than all neighpdf for xi , then xi cannot be a candidate as a cluster center, and,
therefore, it is labeled as not a candidate (value -1). If centerpdf is bigger than all neighpdf for xi , then xi is
as labeled as subcluster center (value 1), and the neighboring points are labeled as not a candidate in order
not to evaluate them as a candidate as a cluster center.

508

KÖSE and HOCAOĞLU/Turk J Elec Eng & Comp Sci

Algorithm 1: Pick k value of k-NON and find KDE of X

Algorithm 2: Find maximum KDE values in
each k-NON and set as sub-cluster center µ j

Algorithm 3: Find Gaussian sub-clusters N (µ j , Σ j) ap-
plying C-Means with Mahalanobis Distance to X and µ j

Algorithm 4: Merge overlapping Gaus-
sian sub-clusters N (µ j , Σ j) using Bhat-
tacharyya distance and Jensen inequality.

Figure 3. Algorithm flowchart of the proposed algorithm.

The initialization algorithm, Algorithm 2, returns the number of points labeled as subcluster center

as the number of subclusters and returns these points as the center of subclusters. At this stage, covariance
matrices for each subcluster is set to identity-matrix. These results are used to initialize MFCM.

Algorithm 2: Initialization.
Input: X , k : nearest neighbor count in each orthant
Output: µ , Σ , M : initial estimate for the number of sub-clusters

1 [fH, R]← kernelPDF (X, k) // Equation (4)
2 cnd← 01,N // All X elements are unprocessed
3 j ← 0

4 for i← 0 to N − 1 do
5 if cnd (i) = 0 then
6 centerpdf ← fH (i) // Single PDF value
7 neighpdf ← fH (Rxi

) // PDF value vector
8 if centrpdf bigger than each of neighpdf then
9 cnd (i)← 1 // Candidate is a center

10 cnd (Rxi
)← −1 // Candidate cannot be a center

11 µj ← xi

12 Σj ← Id // Id is d× d identity matrix
13 j ← j + 1

14 else if centrpdf smaller than one of neighpdf then
15 cnd (i)← −1 // Candidate cannot be a center
16 end if
17 end if
18 end for
19 M ← j // Number of subclusters

3.2. Gaussian Sub-clusters with Fuzzy C-Means

We estimate N (µj ,Σj) for each sub-clusters using MFCM in Section 2.2 with initial values from Section 3.1.

3.3. Bhattacharyya linkage

We find Bhattacharyya distance for each sub-cluster pair j and j̃ to determine if they are overlapped. If
the distance is larger than a threshold Qlimit , then the two sub-clusters are assumed to be not overlapped.

509

KÖSE and HOCAOĞLU/Turk J Elec Eng & Comp Sci

Otherwise, the distance below the threshold is seen as an evidence of an overlap and the subclusters j and j̃

are labeled as overlapped by setting the related elements of the evidence matrix to true : Ej,j̃ = true , and
Ej̃,j = true (see Algorithm 3 for an algorithmic view). This matrix is later used to perform merging not only

the subclusters j and j̃ , but also all clusters overlapped by any of these clusters directly or indirectly. For
example, if Ei,j = true , Ei,k = true and Ek,m = true , then the subclusters i , j , k and m are merged resulting
in a single cluster and if this is the lth linked sub-cluster, then the lth linked subcluster index vector LSCl is
set to {i, j, k,m} to indicate that these subclusters are merged.

Algorithm 3: Bhattacharyya linkage.
Input: D from (13), α from (19)
Output: LSC (Array of linked sub-cluster index vectors)

1 Qlimit ← d
(
1 +

√
(−2 log(1− α)) /d

)
2 E← IM,M // Threshold matrix, initially identitiy
3 for j ← 0 to M − 2 do
4 for j̃ ← j + 1 to M − 1 do
5 Ej,j̃ ← u

(
Qlimit −Dj,j̃

)
// u : Unit-step function

6 Ej̃,j ← Ej,j̃

7 end for
8 end for
9 [rowind, colind]← find(E = 1) // Corresponding indices of 1s

10 LSC← unique([rowind, colind]) // Unique couples remains
11 NLSC ← |LSC| // Number of vectors in LSC

12 Concatenateen ←true; Breaken ←false
13 while Concatenateen =true do
14 for l← (NLSC − 1) to 0 , step:−1 do
15 for l̃← (l − 1) to 0 , step:−1 do
16 Nl,l̃ ← |LSCl|+

∣∣LSCl̃

∣∣ // Sum of element counts
17 Uniontmp ← LSCl ∪ LSCl̃

18 if |Uniontmp| ̸=
(
Nl +Nl̃

)
then

19 LSCl ← Uniontmp

20 Remove l̃th vector from LSC

21 Breaken ←true
22 break
23 end if
24 end for
25 if Breaken =true then
26 Breaken ←false
27 break
28 end for
29 if NLSC = |LSC| then Concatenateen ←false
30 end while

510

KÖSE and HOCAOĞLU/Turk J Elec Eng & Comp Sci

3.4. Final clustering
Each point is assigned to the nearest subcluster using Mahalanobis distance. Then, we obtain the final clusters
by merging the sub-clusters indicated by the linked subcluster index vector LSCl , where l = 1, 2, ..., |LSC| .
Algorithm 4 gives an algorithmic view for this step.

Algorithm 4: Final clustering.
Input: X , µ , Σ , ρ , LSC
Output: Clusternew

1 for j ← 0 to M − 1 do
2 Σmod

j = Σj/
(
(ρ det (Σj))

1/d
)

3 for i← 0 to N − 1 do Qmod
i,j = (xi − µj)

T (
Σmod

j

)−1
(xi − µj)

4 end for
5 for i← 0 to N − 1 do Clusterout (i)← argmin

j

(
Qmod

i,j

)
6 if LSCl ̸= ∅ then
7 Nunion ← |LSCl| // Number of elements in LSCl

8 for l← 0 to Nunion − 1 do
9 for i← 0 to N − 1 do

10 if Clusterout (i) ∈ LSCl then Clusternew (i)← l

11 end for
12 end for
13 end if

4. Performance
We used five different algorithms and nine different synthetic datasets to validate the proposed algorithm.
Figure 4 provides a quick overview of the results. Datasets used to validate the proposed algorithm are, in the
order in which they are given in Figure 4, a) Two circles [31], b) Two half-circles [29], c) Three spiral [31], d)
Gaussian mixture [32, 43], e) Imbalanced, [32, 43], f) Overlapped Gaussian mixture, g) Hepta [33], h) Atom
[33] and i) Chainlink [33] We used adjusted rand index (ARI) and normalized mutual information (NMI) [44]
for performance evaluation and comparison with other algorithms in Table 1 and 2, respectively because ARI
has no assumption on the cluster structure, and NMI can easily measure random label assignments [45].

The proposed algorithm has two parameters to affect its performance: k , the number of neighbors for
the k -NON algorithm, and α , the Jensen inequality parameter. Figure 5 shows the effects of the parameters
k and α for all of the test dataset. Both NMI and ARI are between 0.7 and 0.95 for these parameter ranges.
Based on this analysis, we use k = 6 and α = 0.3 in the rest of the experiments.

The algorithms used for the comparison are spectral [46, 47], Average-linkage agglomerative [48], DB-
SCAN [8], OPTICS [10] and GDD [13]. Compared algorithms are used via Scikit-learn [45]. Parameters
of algorithms used in the experiments are given in Table 3, 4 and 5 to optimize their performance for each
individual dataset.

Table 1, 2 and Figure 4 show that the proposed algorithm fails only for dataset (c) because the Gaussianity
assumption for the subclusters is not met for this dataset. This is a known and only drawback for the proposed
algorithm in terms of cluster shape. The proposed algorithm is successful on the rest of the datasets with an
average ARI of 0.952 and average NMI of 0.954. If the datasets given the worst performances are ignored for

511

KÖSE and HOCAOĞLU/Turk J Elec Eng & Comp Sci

x

(
a
)

y

Spectral

x

y

Agglomerative

x

y

DBSCAN

x

y

OPTICS

x

y

GDD

x

y

CDIBM

x

(
b
)

y

x

y

x

y

x

y

x

y

x

y

x

(
c
)

y

x

y

x

y

x

y

x

y

x

y

x

(
d
)

y

x

y

x

y

x

y

x

y

x

y

x

(
e
)

y

x

y

x

y

x

y

x

y

x

y

x

(
f
)

y

x

y

x

y

x

y

x

y

x

y

x

(
g
)

z

y x

z

y x

z

y x

z

y x

z

y x

z

y

x

(
h
)

z

y x

z

y x

z

y x

z

y x

z

y x

z

y

x

(
i) z

y x

z

y x

z

y x

z

y x

z

y x

z

y

Figure 4. Obtained clusters from synthetic datasets for different algorithms. Colors represent different clusters, black
means noise for DBSCAN and OPTICS.

each algorithm, the best performance for both minimum and average ARI and NMI metrics is provided by the
proposed algorithm. The averages for ARI and NMI become 0.988 and 0.985, respectively for the proposed
algorithm, while the figures are 0.986 and 0.981 for DBSCAN, which gives the most competitive performance.
When evaluating these results, it must be taken into account that a fixed parameter set is used for the proposed
algorithm, while the parameters are optimized individually for the rest of the algorithms for each dataset. This

512

KÖSE and HOCAOĞLU/Turk J Elec Eng & Comp Sci

0.1 0.2 0.3 0.4
α

0

0.2

0.4

0.6

0.8

1

M
e
a
n
 A

R
I

 k =2

 k =4

 k =6

 k =8

(a) Mean ARI of dataset.

0.1 0.2 0.3 0.4
α

0

0.2

0.4

0.6

0.8

1

M
e
a
n
 N

M
I

 k =2

 k =4

 k =6

 k =8

(b) Mean NMI of dataset.

Figure 5. Sweep of α and k parameters and corresponding ARI and NMI results for CDIBM.

Table 1. Adjusted Rand Index results for reference algorithms and datasets.

Dataset Spectral Agglom. DBSCAN OPTICS GDD CDIBM
(a) 1.000 0.997 1.000 1.000 0.996 1.000
(b) 1.000 1.000 1.000 1.000 0.997 1.000
(c) 1.000 1.000 1.000 1.000 1.000 0.670
(d) 0.979 0.183 0.944 0.670 0.796 0.979
(e) 0.446 0.612 0.999 0.993 0.983 1.000
(f) 0.941 0.926 0.877 0.711 0.559 0.924
(g) 0.465 1.000 1.000 1.000 1.000 1.000
(h) 1.000 1.000 0.941 1.000 0.917 1.000
(i) 1.000 1.000 1.000 1.000 1.000 1.000
Min. 0.446 0.183 0.877 0.670 0.559 0.670
Avg. 0.870 0.857 0.973 0.930 0.916 0.952

is an advantage of the proposed algorithm, and it doesn’t require fine tuning the parameters for each dataset
to achieve this performance.

We also investigated the performance of our algorithm on the real world GPS trajectory [34] dataset,
and the results are given in Table 6. The best performance is provided by the GDD algorithm in terms of both
NMI and ARI. The proposed algorithm is among the best ones.

Density initialization and cluster formation are the two parts of the proposed algorithm having the most
of the computational cost. Density initialization requires calculating the determinant of the matrix H , and it is
done N times for all X . This has a complexity of O

(
N2d2.373

)
[49]. We use Fuzzy C-Means with Mahalanobis

Distance, which is very similar to Expectation Maximization for Gaussian Mixture Models, with a complexity
of O

(
N2MNiter

)
for Niter number of iterations [27]. The computational cost of the rest of the algorithm is

proportional to either M or N , and, therefore, they are negligible. In total, the cost of the proposed algorithm
is O

[
N2(d2.373 +MNiter)

]
.

513

KÖSE and HOCAOĞLU/Turk J Elec Eng & Comp Sci

Table 2. Normalized Mutual Information results for reference algorithms and datasets.

Dataset Spectral Agglom. DBSCAN OPTICS GDD CDIBM
(a) 1.000 0.993 1.000 1.000 0.989 1.000
(b) 1.000 1.000 1.000 1.000 0.992 1.000
(c) 1.000 1.000 1.000 1.000 1.000 0.707
(d) 0.984 0.571 0.949 0.883 0.916 0.982
(e) 0.689 0.809 0.997 0.969 0.944 1.000
(f) 0.915 0.898 0.862 0.732 0.671 0.901
(g) 0.744 1.000 1.000 1.000 1.000 1.000
(h) 1.000 1.000 0.902 1.000 0.842 1.000
(i) 1.000 1.000 1.000 1.000 1.000 1.000
Min. 0.689 0.571 0.862 0.732 0.671 0.707
Avg. 0.925 0.919 0.967 0.953 0.928 0.954

Table 3. Compared algorithms’ parameters in general.

Algorithm Parameters
Spectral Cluster count, eigen_solver=”arpack”, affinity=”nearest_neighbors”
Agglomerative Cluster count, linkage=”average”, affinity=”cityblock”
GDD No input parameters
CDIBM α=0.3, k=6, FCM_iteration=10, m=1.1

Table 4. Dataset specific parameters for DBSCAN algorithm.

Parameters Dataset
(a) (b) (c) (d) (e) (f) (g) (h) (i) Real world

min_samples 0.3 0.3 0.3 0.1 0.3 0.2 0.5 0.15 0.3 0.0003
eps 4 4 4 10 4 10 4 10 4 4

Table 5. Dataset specific parameters for OPTICS algorithm.

Parameters Dataset
(a) (b) (c) (d) (e) (f) (g) (h) (i) Real world

x_samples 0.25 0.25 0.25 0.1 0.25 0.035 0.25 0.25 0.25 0.0005
xi 20 20 20 50 20 5 20 20 20 4
min_cluster_size None None None None None 0.2 None None None None

Table 6. NMI and ARI performance metrics of algorithms for real world dataset.

Metric Spectral Agglom. DBSCAN OPTICS GDD CDIBM
ARI 0.149 0.027 0.107 0.005 0.280 0.115
NMI 0.572 0.390 0.523 0.519 0.644 0.557

514

KÖSE and HOCAOĞLU/Turk J Elec Eng & Comp Sci

Table 7. Computational complexities of used algorithms.

Algorithm Spectral Agglom. DBSCAN OPTICS GDD CDIBM
Complexity O

(
N3
)

O
(
N2 log(N)

)
O (N log(N)) O (N log(N)) O

(
N2
)
O
[
N2(d2.373 +MNiter)

]
We compared the complexities in Table 7. The proposed algorithm depends on the dimension exponen-

tially, but it brings a new perspective and may lead to new studies to decrease its computational complexity.

5. Conclusion
The proposed algorithm uses a centroid based method and it is initialized with a kernel density estimation.
Bhattacharyya measure is used to determine subclusters to be merged. We use Jensen inequality to find
optimal clusters. The proposed algorithm has remarkable advantages especially for imbalanced and arbitrary
shaped data and doesn’t require one to pre-specify the number of clusters. It fails only for very thin shaped
clusters. It overperforms OPTICS and GDD on syntetic data, and it shows a similar performance with DBSCAN.
The computational complexity of the proposed algorithm is mostly affected by the kernel density initialization
algorithm. A computationally efficient initialization algorithm can be integrated as future work.

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit
sectors. Erdem Köse gave the idea and did the experiments. Erdem Köse and Ali Köksal Hocaoğlu interpreted
the results and wrote the paper.

References

[1] Forgy EW. Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 1965;
21: 768-769.

[2] Bandyopadhyay A, Deb K, Das A, Bag R. Impulse noise removal by k-means clustering identified fuzzy filter:
a new approach. Turkish Journal of Electrical Engineering & Computer Sciences 2020; 28 (5): 2838-2862. doi:
10.3906/elk-1910-34

[3] Rezaee MJ, Eshkevari M, Saberi M, Hussain O. GBK-means clustering algorithm: An improvement to
the K-means algorithm based on the bargaining game. Knowledge-Based Systems 2021; 213: 106672. doi:
10.1016/j.knosys.2020.106672

[4] Bezdek JC, Ehrlich R, Full W. FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences 1984; 10
(2-3): 191-203. doi: 10.1016/0098-3004(84)90020-7

[5] Gueorguieva N, Valova I, Georgiev G. M&MFCM: fuzzy c-means clustering with Mahalanobis and Minkowski
distance metrics. Procedia Computer Science 2017; 114: 224-233. doi: 10.1016/j.procs.2017.09.064

[6] Tellaroli P, Bazzi M, Donato M, Brazzale AR, Drăghici S. Cross-clustering: a partial clustering algorithm with
automatic estimation of the number of clusters. PloS One 2016; 11 (3): e0152333. doi: 10.1371/journal.pone.0152333

[7] Gupta A, Datta S, Das S. Fast automatic estimation of the number of clusters from the minimum inter-center
distance for k-means clustering. Pattern Recognition Letters 2018; 116: 72-79. doi: 10.1016/j.patrec.2018.09.003

[8] Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases
with noise. In: KDD’96 Proceedings of the Second International Conference on Knowledge Discovery and Data
Mining; Portland, Oregon, USA; 1996. vol. 96, pp. 226-231. doi: 10.5555/3001460.3001507

515

KÖSE and HOCAOĞLU/Turk J Elec Eng & Comp Sci

[9] Schubert E, Sander J, Ester M, Kriegel HP, Xu X. DBSCAN revisited, revisited: why and how you should still use
DBSCAN. ACM Transactions on Database Systems 2017; 42 (3): 1-21. doi: 10.1145/3068335

[10] Ankerst M, Breunig MM, Kriegel HP, Sander J. OPTICS: ordering points to identify the clustering structure. ACM
Sigmod record 1999; 28 (2): 49-60. doi: 10.1145/304181.304187

[11] Hinneburg A, Gabriel HH. Denclue 2.0: Fast clustering based on kernel density estimation. In: 7th International
Symposium on Intelligent Data Analysis; Ljubljana, Slovenia; 2007. pp. 70-80. doi: 10.1007/978-3-540-74825-0_7

[12] Rehioui H, Idrissi A, Abourezq M, Zegrari F. DENCLUE-IM: A new approach for big data clustering. Procedia
Computer Science 2016; 83: 560-567. doi: 10.1016/j.procs.2016.04.265

[13] Güngör E, Özmen A. Distance and density based clustering algorithm using Gaussian kernel. Expert Systems with
Applications 2017; 69: 10-20. doi: 10.1016/j.eswa.2016.10.022

[14] Rodriguez A, Laio A. Clustering by fast search and find of density peaks. Science 2014; 344 (6191): 1492-1496. doi:
10.1126/science.1242072

[15] Zhu Y, Ting KM, Carman MJ. Density-ratio based clustering for discovering clusters with varying densities. Pattern
Recognition 2016; 60: 983-997. doi: 10.1016/j.patcog.2016.07.007

[16] Sieranoja S, Fränti P. Fast and general density peaks clustering. Pattern Recognition Letters 2019; 128: 551-558.
doi: 10.1016/j.patrec.2019.10.019.

[17] Yu H, Chen L, Yao J. A three-way density peak clustering method based on evidence theory. Knowledge-Based
Systems 2021; 211: 106532. doi: 10.1016/j.knosys.2020.106532

[18] Eldershaw C, Hegland M. Cluster analysis using triangulation. In: Computational Techniques and Applications:
CTAC 97; Adelaide, Australia; 1997. pp. 201-208. doi: 10.1142/3834

[19] Liu D, Nosovskiy GV, Sourina O. Effective clustering and boundary detection algorithm based on Delaunay
triangulation. Pattern Recognition Letters 2008; 29 (9): 1261-1273. doi: 10.1016/j.patrec.2008.01.028

[20] Deng M, Liu Q, Cheng T, Shi T. An adaptive spatial clustering algorithm based on Delaunay triangulation.
Computers, Environment and Urban Systems 2011; 35 (4): 320-332. doi: j.compenvurbsys.2011.02.003

[21] Azzalini A, Torelli N. Clustering via nonparametric density estimation. Statistics and Computing 2007; 17 (1):
71-80. doi: 10.1007/s11222-006-9010-y

[22] Kesemen O Tezel Ö, Özkul E, Tiryaki BK. Fuzzy c-Means Directional Clustering (FCMDC) algorithm using
trigonometric approximation. Turkish Journal of Electrical Engineering & Computer Sciences 2020; 28 (1): 140-152.
doi: 10.3906/elk-1903-118

[23] Chiu SL. Fuzzy model identification based on cluster estimation. Journal of Intelligent & Fuzzy Systems 1994; 2
(3): 267-278.

[24] Yager RR, Filev DP. Generation of fuzzy rules by mountain clustering. Journal of Intelligent & Fuzzy Systems 1994;
2 (3): 209-219.

[25] Estiri H, Omran BA, Murphy SN. kluster: an efficient scalable procedure for approximating the number of clusters
in unsupervised learning. Big Data Research 2018; 13: 38-51. doi: 10.1016/j.bdr.2018.05.003

[26] Zhang ZW, Liu Z, Martin A, Liu ZG, Zhou K. Dynamic evidential clustering algorithm. Knowledge-Based Systems
2021; 213: 106643. doi: 10.1016/j.knosys.2020.106643

[27] Xu D, Tian Y. A comprehensive survey of clustering algorithms. Annals of Data Science 2015; 2 (2): 165-193. doi:
10.1007/s40745-015-0040-1

[28] Mostafa SM. Clustering Algorithms: Taxonomy, Comparison, and Empirical Analysis in 2D Datasets. J. Artif.
Intell. 2020; 2 (4): 189. doi: 10.32604/jai.2020.014944

[29] Jain AK, Law MH. Data clustering: A user’s dilemma. In: PReMI: International Conference on Pattern Recognition
and Machine Intelligence; Kolkata, India; 2005. pp. 1-10. doi: 10.1007/11590316_1

516

KÖSE and HOCAOĞLU/Turk J Elec Eng & Comp Sci

[30] Gionis A, Mannila H, Tsaparas P. Clustering aggregation. ACM Transactions on Knowledge Discovery from Data
2007; 1 (1): 4-es. doi: 10.1145/1217299.1217303

[31] Chang H, Yeung DY. Robust path-based spectral clustering. Pattern Recognition 2008; 41 (1): 191-203. doi:
10.1016/j.patcog.2007.04.010

[32] Fränti P, Sieranoja S. K-means properties on six clustering benchmark datasets. Applied Intelligence 2018; 48 (12):
4743-4759. doi: 10.1007/s10489-018-1238-7

[33] Thrun MC, Ultsch A. Clustering benchmark datasets exploiting the fundamental clustering problems. Data Brief
2020; 30: 105501. doi: 10.1016/j.dib.2020.105501

[34] Cruz MO , Macedo H, Guimaraes A. Grouping similar trajectories for carpooling purposes. In: 2015 Brazilian
Conference on Intelligent Systems (BRACIS); Natal, Brazil; 2015. pp. 234-239. doi: 10.1109/BRACIS.2015.36

[35] Terrell GR, Scott DW. Variable kernel density estimation. The Annals of Statistics 1992; 20 (3): 1236-1265.

[36] Hazelton ML. Variable kernel density estimation. Australian & New Zealand Journal of Statistics 2003; 45 (3):
271-284. doi: 10.1111/1467-842X.00283

[37] Bhattacharyya A. On a measure of divergence between two statistical populations defined by their probability
distributions. Bulletin of the Calcutta Mathematical Society 1943; 35: 99-109.

[38] Wainwright MJ. High-dimensional statistics: A non-asymptotic viewpoint. Cambridge, UK: Cambridge University
Press, 2019.

[39] Guidoum AC. Kernel Estimator and Bandwidth Selection for Density and its Derivatives: The kedd Package. arXiv
preprint 2015. arXiv: 2012.06102

[40] Browne M. A geometric approach to non-parametric density estimation. Pattern Recognition 2007; 40 (1): 134-140.
doi: 10.1016/j.patcog.2006.05.012

[41] Peterka T, Croubois H, Li N, Rangel E, Cappello F. Self-adaptive density estimation of particle data. SIAM Journal
on Scientific Computing 2016; 38 (5): 646-666. doi: 10.1137/15M1016308

[42] Bar-Shalom Y, Li XR, Kirubarajan T. Estimation with applications to tracking and navigation: theory algorithms
and software. USA: John Wiley & Sons, 2004.

[43] Fränti P, Sieranoja S. How much can k-means be improved by using better initialization and repeats?. Pattern
Recognition 2019; 93: 95-112. doi: 10.1016/j.patcog.2019.04.014

[44] Vinh NX, Epps J, Bailey J. Information theoretic measures for clusterings comparison: Variants, properties,
normalization and correction for chance. Journal of Machine Learning Research 2010; 11: 2837–2854.

[45] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B et al. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research 2011; 12: 2825-2830.

[46] Shi J, Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 2000; 22 (8): 888-905. doi: 10.1109/34.868688

[47] Stella XY, Shi J. Multiclass Spectral Clustering. In: Proceedings Ninth IEEE International Conference on Computer
Vision; Nice, France; 2003. pp. 313-319. doi: 10.1109/ICCV.2003.1238361

[48] Davies DL, Bouldin DW. A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine
Intelligence 1979; PAMI-1(2): 224-227. doi: 10.1109/TPAMI.1979.4766909

[49] Kaltofen E, Villard G. On the complexity of computing determinants. Computational Complexity 2005; 13 (3):
91-130. doi: 10.1007/s00037-004-0185-3

517

	Introduction
	Technical background
	Kernel density estimation
	Fuzzy c-means clustering with Mahalanobis distance
	Bhattacharyya distance
	Jensen inequality for chi-squared distributions

	Algorithm
	Initialization with adaptive KDE
	Gaussian Sub-clusters with Fuzzy C-Means
	Bhattacharyya linkage
	Final clustering

	Performance
	Conclusion

