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Abstract: This paper is devoted to revealing some properties of the probabilistic optimal power flow (POPF) problem.
In conjunction with Hermite polynomial model, Nataf transformation is introduced to map POPF problem to the
independent standard normal space. Firstly, a multivariate polynomial model is employed to represent the function
relationship between POPF inputs and outputs. Then, moment matching equations are derived to characterize the
uncertainty effects of POPF inputs on outputs; three cubature rules are derived to calculate statistical moments of
POPF outputs. Finally, along with Monte Carlo simulation method, the proposed methods are tested on IEEE 57-bus
system and IEEE 118-bus system, whereby it reveals some characteristics of the function relation between POPF inputs
and outputs.
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Nomenclature
POPF probabilistic optimal power flow QMCS Quasi-Monte Carlo simulation
OPF optimal power flow LHS Latin hypercube sampling
CDF cumulative distribution function UT unscented transformation
MCS Monte Carlo simulation CR cubature rule
PEM point estimate method

1. Introduction
Due to the inherent uncertainty in power systems, the probabilistic optimal power flow (POPF) technique has
been suggested to analyze the operation and planning of power systems [1, 2]. POPF is developed by introducing
the probability theory to the deterministic optimal power flow (OPF) calculation, and sets out to obtain the
statistical information of OPF solutions. For the purpose of convenient expression, this paper treats random
variables in the OPF model as POPF inputs, and regards OPF solutions as POPF outputs. Because each POPF
output is implicitly related to input by the OPF model, the statistical information of POPF outputs should be
calculated numerically.

According to the joint cumulative distribution function (CDF) of POPF inputs, Monte Carlo simulation
(MCS) draws samples to simulate various possible scenarios of power system operating states, then it performs
deterministic OPF calculations for each scenario to generate samples of POPF outputs [3, 4]. As long as enough
∗Correspondence: qxiao@mail.hnust.edu.cn
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samples are generated, MCS can yield accurate estimates for statistical moments and distribution functions of
POPF outputs. However, the high accuracy of MCS comes at the cost of a high computational burden. In
order to improve the efficiency, one strategy is to employ the Karush-Kuhn-Tucker condition to group samples
of MCS, such that the computational time can be saved [5]. Another approach is to use Sobol sequence[6, 7]
or Latin hypercube sampling (LHS) [8] to generate samples of POPF inputs. In [9, 10], Markov chain Monte
Carlo method is applied to draw samples from Sobol sequence for POPF computation, which demonstrates a
higher efficiency than MCS. In [8], a rank correlation based LHS method is suggested for POPF computation,
which requires a smaller sample size than MCS.

Note that Monte Carlo-type methods are generic algorithms, they are not POPF-oriented. If we can
exploit some characteristics of POPF problem, it helps to develop more efficient and accurate algorithms for
POPF computation. The approximation method offers a new approach to attack the POPF problem, its
underlying idea is to employ a polynomial model to approximate the function relationship between POPF
inputs and outputs. The framework of approximation method allows to develop a POPF-oriented polynomial
model for POPF computation, the widely used surrogate method[11, 12] and point estimate method (PEM)
[13, 14] are actually two different forms of the approximation method (In Appendix A, an example is presented
to show the equivalence between these two methods). The surrogate method focuses on determining coefficients
of the polynomial model, such that an explicit function can be established to relate POPF inputs and outputs;
the PEM is devoted to choosing quadrature weights and points to match statistical moments of monomials in
the polynomial model, whereby it can fully consider the uncertainty impact of POPF inputs on outputs; the
main disadvantage of Zhao’s PEM is that its accuracy cannot be further improved by adding quadrature points
[15].

The cumulant method and unscented transformation (UT) method may also be classified as the approx-
imation method. The cumulant method performs one deterministic OPF calculation at mean values of POPF
inputs, and establishes an explicit linear model to relate POPF inputs and outputs [16]; this algorithm is very
efficient and behaves well when the stochastic variation of POPF inputs is not large. The UT method also
selects quadrature weights and points by using statistical moments of POPF inputs[17], which shows some
similarity with PEM. When tackling POPF problem with correlated inputs, UT method considers the POPF
problem in the original probability space, while PEM often employs copula method to map POPF problem to
an independent and identically distributed probability space. If Gauss-type quadrature rule is introduced to
determine the accuracy controlling parameters of UT, these two algorithms are identical[18].

Following the framework of the approximation method, this paper is devoted to revealing some properties
of POPF problem. Compared with the existing works, the contribution of this paper is threefold:

1) It derives three new cubature rules to calculate statistical moments of POPF outputs.

2) By analyzing the performance of MCS and cubature rules for POPF computation, it identifies some
characteristics of the function relationship between POPF inputs and outputs.

3) In the context of moment matching equations, it gives some suggestions for deriving new algorithms for
POPF computation.

In order to clearly illustrate aforementioned algorithms and the proposed methods, their advantages and
disadvantages are summarized in Table 1.
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Table 1. A summary of different algorithms for POPF computation.

Points Advantages Disadvantages

MCS pseudo-random
sequence

the accuracy can be improved by using
more points, and an error bound can be
given.

the convergence rate is slow, a large
sample size is required to yield accurate
results.

QMCS Sobol sequence it has a faster convergence rate than
MCS.

a theoretical error bound cannot be given,
and the sample size is not small for POPF
problem with a large number of inputs.LHS low discrepancy

sequence

cumulant
method

−
it employs a linear model to relate POPF
inputs and outputs, and has a very high
efficiency.

it does not work well for POPF problem
with highly variable inputs, and the
accuracy cannot be improved.

UT
method

moments of
POPF inputs

it behaves better than cumulant method,
and the computational burden increases
linearly with the number of POPF inputs.

the accuracy cannot be further
improved.

PEM Gauss-type
quadrature rule

Proposed
method cubature rule

it is more accurate than PEM, the
computational burden increases
linearly with the number of POPF inputs.

it requires to construct an efficient and
accurate cubature rule.

2. Problem formulation
2.1. Hermite polynomial model based Nataf transformation

In this section, a Hermite polynomial model based Nataf transformation is presented to simulate different
stochastic environments of POPF problem.

Let X denote a random variable in the optimal power flow (OPF) model, the stochastic behavior of X

can be characterized by the following Hermite polynomial model [19]:

X = Ω(Z) = µ+
σ [H1(Z) + a2H2(Z) + a3H3(Z)]√

6a23 + 2a22 + 1
, (1)

where µ and σ are the mean and standard deviation of X respectively, Z is a standard normal variable, Ω(·)
is the function relationship between X and Z . Hk(Z) (k = 1, 2, 3) are k th-order Hermite polynomials:

H1(Z) = Z, H2(Z) = Z2 − 1, H3(Z) = Z3 − 3Z.

a2 , a3 are coefficients determined by the skewness γ3 and kurtosis γ4 of X [19]:

a2 =0.1967γ3 − 0.01646γ3γ4 + 0.01809γ3
3 + 7.438× 10−4γ3γ

2
4 − 9.209× 10−4γ3

3γ4 − 1.366× 10−5γ3γ
3
4+

1.527× 10−4γ5
3 + 1.07× 10−5γ3

3γ
2
4 + 8.823× 10−8γ3γ

4
4 ,

a3 =− 0.0721 + 0.03176γ4 − 0.02942γ2
3 − 0.00179γ2

4 + 0.002348γ2
3γ4 + 5.965× 10−5γ3

4 − 6.282× 10−4γ4
3−

6.355× 10−5γ2
3γ

2
4 − 9.692× 10−7γ4

4 − 0.07210γ4
3γ4 − 0.07211γ2

3γ
3
4 − 0.07212γ5

4 .

Let Xi and Xj be two correlated random variables in the OPF model, whose linear correlation coefficient
is ρx . According to Eq. (1), Xi and Xj can be simulated by two correlated standard normal variables Zi and
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Zj respectively:

Xi =Ωi(Zi) = µi +
σi [H1(Zi) + ai,2H2(Zi) + ai,3H3(Zi)]√

6a2i,3 + 2a2i,2 + 1
,

Xj =Ωj(Zj) = µj +
σj [H1(Zj) + aj,2H2(Zj) + aj,3H3(Zj)]√

6a2j,3 + 2a2j,2 + 1
.

Let ρz be the correlation coefficient between Zi and Zj . By using the orthogonal property of Hermite
polynomial, the following formula can be derived to determine ρz for a given ρx [20]:

ρx =
ai,3aj,3ρ

3
z + ai,2aj,2ρ

2
z + ρz√

(6a2i,3 + 2a2i,2 + 1)(6a2j,3 + 2a2j,2 + 1)
, (ρxρz ≥ 0, |ρz| ≤ 1). (2)

Denote all random variables in the OPF model as an m -dimensional random vector X = (X1, . . . , Xi, . . . , Xm) ,
X can be related to an independent standard normal vector U = (U1, . . . , Ui, . . . , Um) by following procedures:

1) For ρx(i, j) between Xi and Xj in X (i, j = 1, . . . ,m), determine the corresponding ρz(i, j) by Eq.(2),
construct a correlation matrix RZ = {ρz(i, j)} , perform Cholesky decomposition on RZ to obtain the
lower triangular matrix L :

RZ = LLT . (3)

2) The correlated standard normal vector Z = (Z1, . . . , Zi, . . . Zm) can be related to an independent standard
normal vector by:

Z = LU . (4)

3) Transform Z to X by Eq.(1).

The above algorithm is also known as Nataf transformation, which can be expressed as [21]:



U1

...
Ui

...
Um


RZ=LLT

↓

Z=LU−−−−−−−−→



Z1

...
Zi

...
Zm


Xi=µi+

σi[H1(Zi)+ai,2H2(Zi)+ai,3H3(Zi)]√
6a2

i,3
+2a2

i,2
+1

−−−−−−−−−−−−−−−−−−−−−−−−−−−→



X1

...
Xi

...
Xm

 . (5)
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2.2. POPF computation

Consider an OPF model aiming to maximize social welfare:

Min: −
(
CT

DPD −CT
SPS

)
→ social welfare

s.t. g(θ,V ,QG,PS ,PD) = 0 → power flow Eqs.

PDmin ≤ PD ≤ PDmax → demand bid limits
PSmin ≤ PS ≤ PSmax → supply bid limits
QGmin ≤ QG ≤ QGmax → generator limits

|Pij(θ, V )| ≤ Pij max → “security”limits

|Pji(θ, V )| ≤ Pji max

|Iij(θ, V )| ≤ Iij max → thermal limits

|Iji(θ, V )| ≤ Iji max

Vmin ≤ V ≤ Vmax → voltage limits

(6)

where CD and CS are vectors of supply and demand bids in $/MWh respectively, PD and PS are bounded
supply and demand power bids in MW, V and θ represent the bus phasor voltages and angles respectively,
QG is the generator reactive powers; Pij (Pji ) represents the power flowing from bus i (j ) to bus j (i), and
are used to indicate system security by limiting the transmission line power flows, together with line current Iij

and Iji thermal limits and bus voltage limits.
If some variables in the OPF model are random variables, solutions of the OPF model would also be

random variables. Denote an arbitrary solution of OPF model as Y , it has[8]:

Y = H(X) = H(X1, . . . , Xi, . . . , Xm), (7)

where Xi (i = 1, . . . ,m) are random variables in the OPF model, which are referred to as POPF inputs; Y is
referred to as POPF outputs. By using Nataf transformation in Eq.(5), Y can be expressed as a function of
independent standard normal variables:

Y = H[Ω1(X1), . . . ,Ωi(Xi), . . . ,Ωm(Xm)] = G(U1, . . . , Ui, . . . , Um). (8)

Then, the k th-order raw moment of Y is calculated by

E[Y k] ≃
n∑

s=1

psG
k(ts) =

n∑
s=1

psG
k(ts,1, . . . , ts,i, . . . , ts,m), (9)

where ts = (ts,1, . . . , ts,i, . . . , ts,m) is the sth quadrature point, ps is the weight of ts . If Gk(·) in Eq.(9) is
represented by a multivariate polynomial, ps and ts should meet the following equations [22]:

n∑
s=1

pst
l1
s,1 · · · t

li
s,i · · · t

lm
s,m = E[U l1

1 · · ·U li
i · · ·U lm

m ] =

m∏
i=1

E[U li
i ]. (10)
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Denote li = 2ri − 1, or 2ri , the moment matching equations in Eq.(10) can be classified into four types:

n∑
s=1

pst
2ri−1
s,i = 0 (11)

n∑
s=1

pst
2ri
s,i = E[U2ri

i ] (12)

n∑
s=1

pst
l1
s,1 · · · t

2ri−1
s,i · · · tlms,m = 0 (13)

n∑
s=1

pst
2r1
s,1 · · · t2ris,i · · · t

2rm
s,m =

m∏
i=1

E[U2ri
i ]. (14)

If ps and ts can satisfy more equations in Eqs.(11)-(14), the quadrature rule is expected to yield more accurate
estimates for E[Y k] in Eq.(9).

3. Cubature rules
In this section, it develops three quadrature rules to calculate E[Y k] in Eq.(9), which are denoted as CR-I,
CR-II, and CR-III respectively.

3.1. Cubature rule of Type-I
This part aims to develop a quadrature rule with an algebraic accuracy of degree 5 , the weights and points are
shown in Table 2.

Table 2. The quadrature weights and points of cubature rule of Type-I.

Number Weight Point
ps ts,1 ts,2 ts,3 · · · ts,m

1 W0 0 0 0 · · · 0

2m W1 ±t1 0 0 · · · 0(
m
2

)
W2 ±t2 ±t2 0 · · · 0

The symmetric structure of CR-I ensures that all equations in Eq.(11) and Eq.(13) can be satisfied. By
matching weights and points in Table 2 to equations in Eq.(12) and Eq.(14), it has:

W0 +W1 · 2m+W2 ·
(
m

2

)
= E[U0] = 1

2W1 · t21 + 4W2(m− 1)t22 = E[U2] = 1

2W1 · t41 + 4W2(m− 1)t42 = E[U4] = 3

4W2t
4
2 = E[U2

i U
2
j ] = 1

(15)

Solving above equations gives

W0 =
2

m+ 2
, W1 =

4−m

2(m+ 2)2
, t1 =

√
m+ 2, W2 =

1

(m+ 2)2
, t2 =

√
m+ 2

2
. (16)
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The number of points of CR-I is

n = 2m2 + 1.

3.2. Cubature rule of Type-II

Denote

T1 =


t1
−t1
−t1
t1

 , T2 =


t2
t2
−t2
−t2

 , O =


0
0
0
0

 , w =


w
w
w
w

 . (17)

Table 3. The quadrature weights and points of cubature rule of Type-II.

Number Weight Point
ps ts,1 ts,2 ts,3 · · · ts,m−1 ts,m

1 1− 4(m+ 1)w 0 0 0 · · · 0 0

4 w T1 O O · · · O O

4 w T2 T1 O · · · O O

4 w O T2 T1 · · · O O
...

4 w O O O · · · T2 T1

4 w O O O · · · O T2

The cubature rule in Table 3 can commit all equations in Eq.(11) and Eq.(13). By matching weights and
points in Table 3 to equations in Eq.(12) and Eq.(14), it has:

4w(t21 + t22) = E[U2] = 1

4w(t41 + t42) = E[U4] = 3

4wt21t
2
2 = E[U2

i U
2
j ] = 1

(18)

Solutions of Eq.(18) are:

w =
1

10
, t1 =

√
5 +

√
5

2
, t2 =

√
5−

√
5

2
. (19)

The number of points of CR-II is
n = 4m+ 5.

3.3. Cubature rule of Type-III

This part develops a more efficient cubature rule than CR-II. Denote

T̂1 =

(
t1
−t1

)
, T̂2 =

(
t2
t2

)
, Ô =

(
0
0

)
. (20)
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The values of t1 and t2 are given in Eq.(19). Following Table 3, a matrix M of size (2D + 2) × D can be
constructed:

M =



T̂1 Ô Ô · · · Ô Ô

T̂2 T̂1 Ô · · · Ô Ô

Ô T̂2 T̂1 · · · Ô Ô
...

Ô Ô Ô · · · T̂2 T̂1

Ô Ô Ô · · · Ô T̂2


, (21)

Let I(2D+2)2R×1 be a column of size (2D + 2)2R × 1 , whose entries are 1 . Let O1×m be a zero row of
size 1×m , the quadrature weights and points of CR-III are presented in Table 4.

Table 4. The quadrature weights and point of cubature rule of Type-III.

Weight Point
1− w(2D + 2) O1×m

w
2R

· I(2D+2)2R×1 Ĥ2R×(2R−1)

⊗
M

In Table 4, “
⊗

” denotes Kronecker product, Ĥ2R×(2R−1) is Hadamard matrix, which is given by the
algorithm in Appendix B. The value of R should satisfy

D(2R − 1) ≥ m. (22)

In the case D(2R − 1) > m , the first m columns of “Ĥ2R×(2R−1)

⊗
M ” in Table 4 are considered, the number

of points of CR-III is

n = (2D + 2)2R + 1.

4. Computational procedures

This section illustrates procedures of the proposed methods to calculate E[Y k] in Eq.(9):

1) Represent each POPF inputs by Hermite polynomial model in Eq.(1), determine the correlation matrix
RZ by Eq. (2)

2) Determine the quadrature weights ps and points ts (s = 1, . . . , n) by cubature rules in Section 3.

3) Transform ts (s = 1, . . . , n) to the original probability space by Eq.(5).

4) Perform deterministic OPF calculations at each quadrature point xs (s = 1, . . . , n), calculate raw
moments of POPF outputs by Eq.(9), obtain the mean µy and standard deviation σy of each POPF
outputs:

µy = E[Y ], σy =
√
E[Y 2]− µ2

y. (23)

1040



XIAO/Turk J Elec Eng & Comp Sci

5. Case study

In this section, case studies are performed on IEEE 57-bus system 1 and IEEE 118-bus system2.

5.1. IEEE 57-bus system

The IEEE 57-bus system includes 42 loads, 57 buses and 80 lines. The load demands are treated as POPF
inputs, whose stochastic behavior is represented by Hermite polynomial model in Eq.(1):

Xi = Ωi(Zi) = µi +
σi [H1(Zi) + ai,2H2(Zi) + ai,3H3(Zi)]√

6a2i,3 + 2a2i,2 + 1
, (i = 1, . . . , 42), (24)

where µi equals the base case data, and σi = 2µi/100 .
In order to check the linearity of the function relationship between POPF inputs and outputs, all POPF

inputs are assumed to follow normal distributions. For Xi represented by Eq.(24), it has:

ai,2 = ai,3 = 0, (i = 1, . . . , 42),

and the following scenarios are considered:

Case-I: the load demands are independent of each other.

Case-II the load demands are correlated with each other, and the correlation coefficient is 0.5 .

Because the sum of normal random variables is still normal, for Case-I and Case-II, if the POPF outputs in
Eq.(7) can be expressed as a linear sum of Xi (i = 1, . . . , 42):

Y = H(X) = a0 +

42∑
i=1

biXi, (25)

then Y would also follow the normal distribution; the skewness of Y must be 0 , and the kurtosis of Y must
be 3 . If the skewness (kurtosis) of Y shows an obvious deviation with respect to 0 (3), it implies that Y

is not normal, and the linear model in Eq.(25) does not provide an accurate representation for the function
relationship between Y and X .

In this part, MCS with 105 trials is employed to calculate the skewness and kurtosis of voltage (V ),
phase angle (Θ), active power flow (Pl ) and reactive power flow ( Ql ), which are depicted in Fig. 1 and Fig.
2. An inspection of Fig. 1 and Fig. 2 indicates that, for most POPF outputs, the skewness is close to 0 , the
kurtosis is close to 3 , which means that they can be well characterized by near-normal distributions. However,
the skewness of some angles shows an obvious deviation with respect to 0 , these POPF outputs cannot be
related to POPF inputs by the linear model in Eq.(25).

Note that the POPF inputs of Case-II are correlated with each other, the interactive uncertainty of POPF
inputs is more significant than that of Case-I. Table 5 presents the minimum and maximum values of skewness
and kurtosis, the results indicate that the nonnormality of POPF outputs of Case-II is more severe than that

1IEEE 57-Bus System. [Online]. 2021. URL https://icseg.iti.illinois.edu/ieee-57-bus-system/
2IEEE 118-Bus System. [Online]. 2021. URL https://icseg.iti.illinois.edu/ieee-118-bus-system/
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Table 5. The minimum and maximum values of skewness and kurtosis of POPF outputs.

Case-I Case-II
Skewness Kurtosis Skewness Kurtosis

min. max. min. max. min. max. min. max.
V −0.047 0.091 2.703 3.097 −0.412 0.229 2.936 3.318

Θ −0.549 0.131 2.974 4.012 −1.231 0.367 2.948 4.991

Pl −0.262 0.283 2.925 3.404 −0.603 1.021 2.930 5.172

Ql −0.171 0.175 2.933 3.597 −0.469 0.544 2.943 4.759

of Case-I, therefore, the interactive uncertainties among POPF inputs do have impacts on POPF outputs. In
summary, the POPF outputs should be related to POPF inputs by the following model:

Y =H(X) ≃ a0 +

m∑
i=1

biXi +

m∑
i=1

ciX
2
i +

∑
1≤i<j≤m

ei,jXiXj ,

Y 2 =H2(X) ≃

a0 +

m∑
i=1

biXi +

m∑
i=1

ciX
2
i +

∑
1≤i<j≤m

ei,jXiXj

2

.

(26)

According to Eq.(26), in order to accurately obtain the moments of POPF outputs, the weights and
points in Eq.(9) should commit the following equations:

n∑
s=1

psts,i = 0,

n∑
s=1

pst
3
s,i = 0; (27)

n∑
s=1

ps = 1,

n∑
s=1

pst
2
s,i = 1,

n∑
s=1

pst
4
s,i = 3; (28)

n∑
s=1

psts,its,j = 0,

n∑
s=1

pst
2
s,its,j = 0,

n∑
s=1

psts,it
2
s,j = 0; (29)

n∑
s=1

pst
2
s,it

2
s,j = 1. (30)

Table 6 shows the moment matching equations satisfied by cubature rules in Section 3 and Zhao’s PEM in [23],
the last row gives the number of quadrature points.

To comprehensively illustrate the accuracy of these algorithms, the skewness of each load demand is set
to be 0.5 , the kurtosis is set to be 4 , it has:

ai,2 = 0.072782, ai,3 = 0.024588, (i = 1, . . . , 42), (31)

and the following two cases are considered:

Case-III: the skewness of each load demand is 0.5 , the kurtosis of each load demand is 4 , the load demands
are independent of each other.
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Figure 1. The skewness and kurtosis of POPF outputs (Case-I).
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Figure 2. The skewness and kurtosis of POPF outputs (Case-II).
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Table 6. Checking cubature rules and PEM by moment matching equations.

CR-I CR-II CR-III PEM (2m+ 1)
Eq.(27) all all all all
Eq.(28) all all all all
Eq.(29) all all most all
Eq.(30) all some most none
n 2m2 + 1 4m+ 5 (2D + 2)2R + 1 2m+ 1

Case-IV: the skewness of each load demand is 0.5 , the kurtosis of each load demand is 4 , the load demands
are correlated with each other, and the correlation coefficient is 0.5 , the equivalent correlation coefficient
in normal space is 0.491 (see Eq.(2)).

The following error index is defined to assess the performance of algorithms in Table 6:

εk =
1

N

N∑
r=1

∣∣∣∣∣µMCS
k,r − µ∗

k,r

µMCS
k,r

∣∣∣∣∣× 100[%] (32)

where µMCS
k,r is the mean (k = 1) or standard deviation (k = 2) of r th POPF outputs from MCS, µ∗

k,r is
the one estimated by algorithms in Table 6. εk is the average absolute relative error. N is the number of the
output variables in the system.

The parameters of CR-III are:
D = 6, R = 3.

With the benchmark from MCS with 105 trials, the results are summarized in Table 7 (V , Θ , Pl , and Ql

denote the voltage, phase angle, active power flow, and reactive power flow respectively). For the four algorithms
in Table 7, if an algorithm can meet more moment matching equations, it is expected to yield more accurate
results. Along with Table 6, the following conclusions can be drawn:

1) An inspection of Eq.(26) and Eq.(23) indicates that, in comparison to E[Y ] , E[Y 2] is related to POPF
inputs by a function with a higher nonlinearity; therefore, values of ε2 are generally larger than those of
ε1 .

2) According to Table 6, the major difference among the implemented four algorithms lies in how well they
can commit Eq.(30). Compared with the proposed cubature rules, PEM can satisfy no equations in
Eq.(30), and thus performs poorly for calculating standard deviations in Case-II and Case-IV. Because
CR-I and CR-III can meet more equations in Eq.(30) than CR-II, these two cubature rules perform better
than CR-II.

3) For Case-III and Case-IV, the POPF inputs are nonnormal, Ωi(·) in Eq.(24) is a third-order polynomial.
According to Eq.(8), the function relationship between Y and U is more severely nonlinear than that of
Case-I and Case-II, where Ωi(·) is linear. When calculating mean and standard deviations for Case-III
and Case-IV, the cubature rule should satisfy more equations in Eqs.(11)-(14). While by checking the
weights and points, CR-I cannot well match equations in Eq.(12) with ri ≥ 3 and equations in Eq.(14)
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Table 7. Error in % of cubature rules and PEM (IEEE 57-bus system).

Independent POPF inputs Correlated POPF inputs
Case-I CR-I CR-II CR-III PEM Case-II CR-I CR-II CR-III PEM

V
ε1 0.0002 0.0195 0.0002 0.0006

V
ε1 0.0008 0.0196 0.0004 0.0196

ε2 0.90 0.75 0.78 0.41 ε2 2.08 1.93 2.01 2.44

Θ
ε1 0.10 0.31 0.02 0.23

Θ
ε1 0.30 0.55 0.09 2.09

ε2 1.13 1.26 1.07 1.28 ε2 1.99 2.31 1.85 5.49

Pl
ε1 0.03 0.08 0.03 0.08

Pl
ε1 0.05 0.74 0.03 1.72

ε2 1.03 1.16 0.76 1.07 ε2 1.33 1.95 2.02 6.12

Ql
ε1 0.03 0.09 0.01 0.06

Ql
ε1 0.07 0.75 0.04 0.77

ε2 0.72 0.67 0.64 0.37 ε2 1.62 1.70 1.38 2.17

n 3529 173 113 83 n 3529 173 113 83

Time (s) 1245.4 61.1 39.9 29.3 Time (s) 1245.4 61.1 39.9 29.3

Case-III CR-I CR-II CR-III PEM Case-IV CR-I CR-II CR-III PEM

V
ε1 0.0001 0.0003 0.0001 0.0001

V
ε1 0.0016 0.0003 0.0003 0.0008

ε2 2.13 0.46 0.55 1.39 ε2 2.61 2.06 1.87 7.05

Θ
ε1 0.11 0.04 0.03 0.06

Θ
ε1 0.44 0.13 0.06 0.33

ε2 2.27 1.72 1.33 2.42 ε2 1.90 2.26 2.08 8.57

Pl
ε1 0.18 0.02 0.01 0.02

Pl
ε1 0.41 0.05 0.03 0.14

ε2 2.05 0.96 0.78 1.33 ε2 2.24 2.64 1.42 9.35

Ql
ε1 0.05 0.03 0.01 0.02

Ql
ε1 0.54 0.02 0.03 0.08

ε2 1.94 0.86 0.53 1.10 ε2 2.48 2.43 1.58 9.29

n 3529 173 113 83 n 3529 173 113 83

Time (s) 1245.4 61.1 39.9 29.3 Time (s) 1245.4 61.1 39.9 29.3

with (r1 + · · ·+ rm) ≥ 3 :

n∑
s=1

pst
2ri
s,i < 0 < E[U2ri

i ], (ri ≥ 3)

n∑
s=1

pst
2r1
s,1 · · · t2ris,i · · · t

2rm
s,m ≫

m∏
i=1

E[U2ri
i ], (r1 + · · ·+ rm) ≥ 3.

(33)

As shown in Table 6, CR-I demonstrates a lower accuracy than CR-III in Case-III and Case-IV.

4) For the POPF problem with correlated inputs, the interactive uncertainty among POPF inputs would
be more significant than that of the independent case. An inspection of Table 7 indicates that all four
algorithms show a higher accuracy in Case-I and Case-III, where POPF inputs are independent of each
other.

5.2. IEEE 118-bus system
In this part, a case study is performed on a modified IEEE 118-bus system, of which the detailed description
can be found in [6]. The POPF inputs comprise load demands at 99 nodes and wind speeds at 14 wind farms.
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The wind speed is represented by Weibull distribution with scale parameter 10.7 and shape parameter 3.97 ,
the parameters of corresponding Hermite polynomial model are [19]:

µ = 9.694361, σ = 2.738277, a2 = −0.012739, a3 = 0.002615.

For the tested IEEE 118-bus system, the number of POPF inputs is 113 , and the parameters of CR-III are

D = 8, R = 4.

With benchmark from MCS with 106 trials, values of ε1 and ε2 are calculated by Eq.(32), which are
shown in Table 8. As shown in Table 6 and Table 8, CR-III can meet most equations in Eq.(30), and yields
results with satisfactory accuracy; CR-II can commit some equations in Eq.(30), and gives good estimations
for mean values of POPF outputs; the poor performance of PEM demonstrates the importance of satisfying
equations in Eq.(30), which represents the interactive uncertainty effects of POPF inputs on outputs.

Table 8. Error in % of cubature rules and PEM (IEEE 118-bus system).

CR-I CR-II CR-III PEM

V
ε1 0.010 0.007 0.003 0.008

ε2 3.60 5.90 2.08 9.40

Θ
ε1 1.36 0.84 0.43 1.37

ε2 2.79 2.66 2.23 3.14

Pl
ε1 1.47 0.94 0.67 4.44

ε2 4.32 4.08 1.96 5.08

Ql
ε1 1.04 0.75 0.87 2.25

ε2 4.52 4.16 2.19 5.00

n 25539 457 289 227

Time (s) 29009.8 519.1 328.3 257.8

If CR-III is checked by using equations in Eq.(12) with ri ≥ 3 and equations in Eq.(14) with (r1 + · · ·+
rm) ≥ 3 , it has:

0 <

n∑
s=1

pst
2ri
s,i < E[U2ri

i ], (ri ≥ 3)

0 <

n∑
s=1

pst
2r1
s,1 · · · t2ris,i · · · t

2rm
s,m <

m∏
i=1

E[U2ri
i ], (r1 + · · ·+ rm) ≥ 3.

(34)

A comparison between Eq.(33) and Eq.(34) illustrates the lower accuracy of CR-I with respect to CR-III.

6. Conclusion
This paper is devoted to revealing some properties of POPF problem. In conjunction with Hermite polynomial
model, Nataf transformation is introduced to simulate different operating conditions of power systems. In the
context of moment matching equations, three cubature rules are developed for POPF computation. Through
numerical experiments and theoretical analysis, the following conclusions can be drawn:
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1) The polynomial model in Eq.(26) can well approximate the function relationship between POPF input
and outputs.

2) The interactive uncertainty among POPF inputs has a significant impact on POPF output, the employed
cubature rule should well satisfy moment matching equations in Eq.(13) and Eq.(14).

3) If POPF inputs follow normal distributions, cubature rules derived from Eqs.(27)-(30) would yield accurate
estimates for means and standard deviations of POPF outputs; if POPF inputs are nonnormal random
variables, the cubature rule should satisfy more equations in Eqs.(11)-(14).

4) Even if the cubature rule cannot exactly match Eqs.(11)-(14), the sum of weights and points by moment
matching equations should satisfy Eq.(34) rather than Eq.(33).
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S1. Appendix A
Let Y denote a POPF output, let U be a POPF input, which is assumed to follow the standard normal
distribution, and

Y = G(U). (35)

According to the surrogate method, G(·) can be approximated by a weighted sum of Hermite polynomial:

Y = H(U) =

∞∑
k=0

akHk(U) ≃
m∑

k=0

akHk(U), (36)

where ak (k = 0, 1, . . . ,m) are coefficients, Hk(U) is the k th-order Hermite polynomial, and

H0(U) = 1, H1(U) = U, Hk(U) = UHk−1(U)− (k − 1)Hk−2(U).

The Hermite polynomials have the following property:

E[H0(U)] = 1, E[Hk(U)] = 0, (k = 1, 2, 3, . . . ). (37)

According to Eq.(36), the mean of Y is calculated by:

E[Y ] ≃
m∑

k=0

akE[Hk(U)] = a0. (38)

The coefficients in Eq.(36) can be calculated by an n -point Gauss-Hermite quadrature rule (n > m):

ak =
1

k!

n∑
s=1

psHk(ts)G(ts), (k = 0, 1, . . . ,m), (39)

where ps and ts (s = 1, . . . , n) are the quadrature weights and points, respectively.
Substitute Eq.(39) into Eq.(38), it has:

E[Y ] ≃
m∑

k=0

akE[Hk(U)] = a0 =
1

0!

n∑
s=1

psH0(ts)G(ts) =

n∑
s=1

psG(ts). (40)

As shown in Eq.(40), E[Y ] is actually calculated by the univariate Gauss-Hermite quadrature, which is also
referred to as PEM.

S2. Appendix B
Here, an easy-to-use algorithm is presented to construct Hadamard matrix.

M (1) =

(
0 1
1 0

)
,

M (R) =

(
M (R−1) 2R−1E2R−1×2R−1

2R−1E2R−1×2R−1 M (R−1)

) (41)

where E2R−1×2R−1 is the identity matrix of size 2R−1 × 2R−1 . Denote λk as the eigenvalue of M (R) , it has:

λk = 2k − 2R − 1, (k = 1, . . . , 2R).

1
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Denote Λ = diag(λ1, . . . , λk, . . . , λ2R) , denote V (R) as the eigenvectors of M (R) , it has:

M (R) ·Λ = V (R) ·Λ, (42)

then, V (R) would be the Hadamard matrix of order 2R .
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