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Abstract: Cloud data centres, which are characteristic of dynamic workloads, if not optimized for energy consumption,
may lead to increased heat dissipation and eventually impact the environment adversely. Consequently, optimizing
the usage of energy has become a hard requirement in today’s cloud data centres wherein the major part of energy
consumption is mostly attributed to computing and cooling systems. Motivated by which this paper proposes an online
algorithm for dynamic resource allocation, namely, temperature aware online dynamic resource allocation algorithm
(TARA). TARA demonstrates a novel algorithm design to adapt dynamic resource allocation based on the temperature
of a data centre using computational fluid dynamics (CFD). Also, TARA demonstrates a new dynamic resource reclaim
strategy for making efficient resource allocations leading to efficient energy consumptions in dynamic environments. The
proposed algorithm provides optimal resource allocation considering energy efficiency without being overwhelmed by
online dynamic workloads. The optimal energy-efficient dynamic resource allocation for online workloads eventually
optimizes the computing and cooling energy consumption. We show through theoretical analysis the correctness,
efficiency and optimality bounds given as TARA(P ) ≤ 2OPT (P ) , relative to the optimal solution provided by offline
dynamic resource allocation algorithm (OPT (P )) . We show through empirical analysis that the proposed method is
efficient and significantly saves energy by 26% when the data centre utilization is 100% compared to batched reclaim.
The performance analysis shows significant improvement in optimizing computing and cooling efficiency. TARA can be
used in multiple areas of on-demand dynamic resource allocation in cloud computing like resource allocation for virtual
machine creation, resource allocation for virtual machine migrations, and virtual resources assignment for elastic cloud
applications.

Key words: Thermal aware scheduling, energy efficiency, server consolidation, workload placement, green computing,
data centres, bin packing

1. Introduction
Cloud data centres are characterized to face the challenges of handling unpredictable dynamic workloads which
often overwhelm the resource allocation strategies. The very nature of the cloud demands online dynamic
provisioning of resources for smooth rendering of services. Often, handling peak workloads result in over-
provisioning and high energy consumption. Therefore to meet the above challenges, cloud data centres are
built as high-density infrastructures to meet the dynamic workloads but such designs consume a huge amount
of energy, incur a high cooling cost, suffer from high-temperature dissipation, and eventually produce high
∗Correspondence: nthilagavathi2013@gmail.com
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carbon emission. Moreover, when the electrical energy consumed by the servers dissipates heat [1], it leads to
equipment reliability issues and increased maintenance. A recent study shows that the data centres consume
about 1−3% of total the United States energy usage [2]. The unique green features that characterize each data
centre are energy consumption, heat dissipation, and carbon emission. It is therefore pertinent that the energy
consumption is optimized for environmental sustainability [3]. Workload distribution, physical arrangement of
racks, computer room air condition (CRAC) unit placement and functioning [1] are some of the key factors
that affect energy consumption optimization in a cloud data centre. Heat recirculation leads to hotspots and
consequently increases the cooling energy requirement in cases such as mixing of cold air from the underground
plenum and hot air from server outlet, failure to pull the hot air back during air conditioner failures, and
presence of obstructions in the airflow (hot air) from the server outlet mixing up with the incoming cold air
from CRAC supply [1, 4]. A realistic estimate of the Inlet temperature distribution in a data centre can be
obtained by computational fluid dynamics (CFD) methods. CFD models [1] can truly predict the airflow and
temperature distribution of the elements inside a data centre and these models can be used to analyse the heat
recirculation. Therefore, the online dynamic resource allocation algorithm should allocate resources being aware
of the energy usage and heat recirculation characteristics of the cloud data centre.

There have been efforts on energy optimization to improve the cooling performance such as minimizing
cooling power consumption and temperature hotspots [5], minimizing hot air recirculation [1], study the effect
of server workload on airflow pattern [6, 7], minimizing peak inlet temperature of the servers, a study of factors
affecting energy efficiency and thermal management [8]. Even after such efforts of adopting more sophisticated
cooling methods in data centres, such efforts have only increased the cooling system cost without a proportionate
increase in the amount of energy saved. Hence, it can be inferred that it is necessary to handle issues of computing
and cooling energy optimization holistically. Motivated by the above discussion, this paper proposes a holistic
design approach that combines server consolidation through a reclaim strategy and temperature-aware workload
placement to achieve energy optimization based on the thermal conditions of the nodes. The proposed approach
obtains thermal information of the data centre servers using CFD models. Then it groups servers according to
the thermal conditions and power states of the nodes for energy optimization. The empirical analysis shows the
efficient performance of the proposed design approach. Thus, the main contributions of this paper are:

1. We propose a temperature aware online dynamic resource allocation (TARA) scheme for energy optimiza-
tion in cloud data centres with dynamic workloads.

2. The proposed TARA introduces a novel technique based on the temperature distribution characteristics
in a typical cloud data centre modelled using CFD tools.

3. The proposed TARA introduces an effective grouping mechanism based on the temperature characteristics
of the servers. A reclaim strategy is adopted to consolidate the servers which helps in the optimization of
energy consumption.

The rest of the paper is organised as follows. Section 2 reviews various thermal management algorithms and
approaches for the data centre. The system model, system architecture, design, and algorithms are described
in Section 3. The simulation setup and results are described in Section 4, followed by discussions in Section 5
and a conclusion in Section 6.
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2. Related work

The research work on thermal management of data centre can be categorized into minimizing heat recirculation,
optimizing heat dissipation and energy consumption. Thermal management of data centre constitutes two steps:
one is obtaining thermal characteristics of the data centre and second step is optimizing energy consumption.
The thermal information was obtained through CFD simulations, using prediction tools and sensor-based
thermal mapping. This information is used for temperature-oblivious resource allocation strategies. The
data centre thermal profile is based on the factors such as heat circulation, placement of jobs, and cooling
systems. Moore et al. [1], proposed a zone-based discretisation (ZBD) algorithm and minimize-heat-circulation
(MinHR) algorithm for thermal management to reduce the cooling cost of the data centre. The ZBD algorithm
borrows excess power required from the neighbouring nodes in the zones to run the workload. Similar to the
power allocation algorithm, this ZBD is designed such that equal temperature throughout the data centre is
maintained by thermal state management. Whereas, MinHR algorithm provisions power to minimize the heat
air recirculation to reduce the cooling cost.

Chan et al. [9] proposed a convex optimization model for energy optimization with thermal constraints in
the data centre systems. The authors designed an optimal fan speed policy for the given workload condition to
manage energy and temperature. Chen et al. [10] proposed a dynamic thermal management (DTM) framework
for accurate temperature estimation based on the temperature behavior of the server chips. In contrast to
the estimation of full chip temperature distribution, this work aims to design an algorithm that identifies the
optimal placement of thermal sensors. This framework enables efficient thermal management with limited
thermal sensing capability. Tang et al. [11] have addressed minimizing peak inlet temperature problem through
task assignment (MPIT-TA) problem through XInt-GA and XInt-SQP algorithms which eventually reduce the
cooling cost of a data centre. The authors designed an assignment strategy in which the tasks are assigned to
the server such that the supply temperature of the CRAC unit is maximized thereby reducing the cooling cost.
They demonstrate that assigning tasks to the servers affects the inlet temperature of the nodes. Wang et al.
[12] proposed an energy-saving technique through virtual server consolidation and provision scheme.

An online dynamic scheduling algorithm is proposed by Abbasi et al. [13] for resource provision and
workload distribution to minimize inlet temperature but their mechanisms do not take into account real-time
temperature changes caused by workload variations. Ilager et al. [5] proposed a dynamic energy and thermal
aware scheduling (ETAS) algorithm for VM consolidation and hotspot reduction in cloud data centres. The
ETAS algorithm performs host overload, under-load detection, selecting the VM for migration, and identifying
the target host for VM placement for energy optimization. CFD tools like FloVENT, OpenFoam, Fluent
accurately predicts air flow pattern and temperature dynamics of the elements in the data centre environment.
The research work by Patel et al. [14] and Moore et al. [1] used FloVENT for thermal analysis. The FloVENT
tool is a widely used tool that has been utilized by many other researchers such as Tang et al. [4], Mukherjee
et al. [15] and Banerjee et al. [16]. Zhao et al. [17] used OpenFoam and ANSYS Fluent was used by Nada et
al. [18]. Tools like Weatherman (Moore et al. [19]) and C-Oracle (Yang et al. [20], Ramos & Bianchini [21])
were proposed to predict the future thermal information. Moreover, the real time sensors (Bash & Forman [22],
Coskun et al. [23]) were placed in the appropriate locations to obtain the temperature information needed for
thermal management.

Temperature aware resource allocation schemes fall into static, dynamic or online approaches. Static
methods schedule the jobs with prior information about the jobs. Moore et al. [1] proposed power-based task
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scheduling whereas, Tang et al. [4] proposed task-oriented scheduling for temperature aware resource allocation.
Dynamic allocation schemes were presented by Ramos & Bianchini [21], Yang et al. [20] and Zhao et al. [17].
Recent work by Moulik et al. [24] gives a bilevel proportional dynamic and fair resource allocation strategy to
achieve higher resource usage efficiency within a reasonable thermal threshold. The latest strategy by Akbar et
al. [25] uses cooperative game theory to improve the thermal balance and avoid the data centre hotspots. Work
by Banerjee et al. [16], Abbasi et al. [13] and Ilager et al. [5] proposed temperature aware online schemes. The
proposed work in this paper uses a hybrid approach combining the best of thermal profile based approaches
and resource allocation approaches. In the proposed work, the thermal profile of the data centre under study
is captured using the CFD models accurately and temperature aware online dynamic resource allocation is
performed to optimize energy consumption.

3. TARA design

The problem of reducing the energy consumption of servers in a data centre by optimal resource allocation is
equivalent to the problem of the online bin packing problem. The online bin packing problem aims at optimizing
the assignment of arriving items to a minimum number of bins. Similarly, minimizing the number of servers
used for a given workload minimizes the energy expended primarily by a data centre. Secondarily, selecting
the right servers being aware of energy characteristics for workload assignment further improves the amount
of energy saved. Therefore, minimization of the number of servers used and choosing such servers intelligently
are the two primary strategies upon which the proposed mechanism is designed. The description of the overall
proposed design is organised into three parts, namely: (1) first, we present the mathematical model of the energy
minimization problem. The model formulates the problem of minimizing energy consumption in a data centre
and reduces it to the problem of minimizing the number of bins in the online setting, (2) second, we present
the TARA algorithm in which the CFD model is created and some chosen algorithm parameters are measured.
The measured parameters are used to design an efficient and energy-aware workload assignment algorithm.
The TARA algorithm uses the mathematical model to compute various parameters, (3) thirdly, we present the
description of the online dynamic workload assignment algorithm, namely online dynamic resource allocation
(ODRA), a subroutine of TARA which dynamically assigns workload being aware of the energy consumed by
servers. The workload assignment algorithm greedily minimizes the number of servers used and chooses each
server intelligently being aware of the energy expended in the assignment.

3.1. Mathematical model

Let bi denote each item in the finite set of items or workloads/jobs with size size(bi) ∈ Z+ for each i , let a
positive integer B denote the capacity of a node and let a positive integer N denote the number of nodes or
servers used. Let I be a positive integer that denotes the total number of items in the system. The problem is
to minimize the number of servers by identifying k-partitions of N such that the sum of the sizes of the items
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or jobs assigned to each Nj is almost B . The problem can then be modelled as:

Minimize N =

m∑
j=1

Nj

subject to N ≥ 1,

n∑
i=1

size(bi)Aij ≤ BNj ,∀j ∈ {1, . . . ,m}

m∑
j=1

Aij = 1,∀i ∈ I (1)

Where Nj ∈ {0, 1},∀j ∈ {1, . . . ,m} . Here, Nj = 1 if server j is used and Aij ∈ {0, 1},∀i ∈ I, ∀j ∈ {1, . . . ,m}
where Aij = 1 if item bi is assigned to run in server Nj .

3.2. System setting
The system architecture for energy or thermal aware workload assignment approach is modeled into various
components namely, system model, data centre model, power consumption model, and cooling cost model
representing the functional components of the system setting. The definitions of the symbols used in the model
are listed in Table 1.

Table 1. Definition of symbols.
Symbol Definition
N Number of nodes used
G Number of node groups
Pj Power consumption of node j
TP Total power usage of all nodes
Pbase Base power consumption of node
Pcomputing Power usage of computing nodes
Pcooling Power consumption of CRAC unit

Symbol Definition
Tsupply Supply temperature of the CRAC unit
T j
inlet Inlet temperature of node j

Tredline Redline temperature of the nodes
PIDLE Power usage in IDLE state of the node
PON Power usage in ON state of the node
POFF Power usage in OFF state of the node
PSLEEP Power usage in SLEEP state

3.2.1. System model
This model consists of three components namely, temperature monitor, scheduler and data centre. The
temperature monitor collects the thermal state of each server at the data centre using CFD methods to be
used by the proposed algorithm to group the servers of similar thermal characteristics. A system model in the
chosen data centre setting is shown in Figure 1a with the hot aisle and cold aisle shown in Figure 1b.

3.2.2. Data centre model
The top view of the data centre model and arrangement of racks with homogenous virtualized servers is shown
in Figure 1c. Figure 1d shows the arrangement of racks in rows, chassis, and the air circulation convention.
Each rack is assumed to have five chassis hosted with blade servers and the CRAC unit supplies cold air through
perforated tiles from the underground plenum. The cold air from CRAC is drawn to the inlet of servers by the
chassis fans and gets heated up by the server load. Hot air from the servers exits through the outlet into the
hot aisle which gets removed by the hot air ducts provided in the ceiling of the data centre.
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(a) Model (b) Aisle layout

(c) DC top view (d) Air circulation

Figure 1. System model and data centre layout.

3.2.3. Power model
The power consumption Pj of each node Nj with η blade servers is Pj = b + ηa [4, 11]. The total power
consumption of the data centre denoted as TP is given in Equation (2). Here Pcomputing is the power consumed
by computing and Pcooling denotes the power consumed by cooling. Other sources of energy consumption such
as lighting are assumed to be negligible. The power usage of all the nodes at the data centre denoted by
Pcomputing is given in Equation (3).

TP = Pcomputing + Pcooling (2)

Pcomputing = Pbase +

N∑
j=1

Load%(j) ∗ Pj (3)

3.2.4. Cooling model

The cooling cost of the data centre is based on the supply temperature of the CRAC unit. The efficiency of
CRAC is measured by the coefficient of performance (CoP), defined as the ratio between the amount of heat
extracted to the energy consumed by the CRAC unit. The CoP model used to compute cooling cost is adapted
from [1], where Tsupply is the temperature of cold air supplied by the CRAC unit. The CoP of CRAC unit is
calculated using Equation (4). CoP varies mainly based on physical characteristics such as the layout of the
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server racks, thermodynamic nature of the walls and ceiling.

CoP (Tsupply) = 0.0068T 2
supply + 0.0008Tsupply + 0.458 (4)

Using Equation (4) the cooling power denoted Pcooling is calculated as given in Equation (5).

Pcooling =
Pcomputing

CoP (Tsupply)
(5)

The overall TARA algorithm is depicted in Algorithm 1. It uses the models described in the previous
section to minimize energy usage of servers. Workload placement to the suitable nodes is designed as a bin
packing problem where the servers are bins whose size is the utilization level of the node as given by Equation
(1). The overall working of the algorithm is:

3.3. TARA algorithm

Algorithm 1: Temperature aware online dynamic resource allocation (TARA)
Input: N := {N1, . . . , Nm} servers
Output: G = {Glow, Gmid, Ghigh}
Simulate a data centre in CFD with |N | servers
for row ∈ {1, 2} do

for rack ∈ {1, 2, 3, 4, 5} do
Arrange the servers

end for
end for
for load ∈ {25, 50, 75, 100} do

Measure inlet-temperature, computing cost, and cooling cost
Compute total power cost TP [Nj ] for each server as given in Equation (6)

end for
Sort the servers in ascending order of total power cost {TP [Nj ] : 1 < j < m}
Divide the sorted servers into three groups namely Glow, Gmid, Ghigh such that Glow contains the
first 1/3 of servers from the sorted list, Gmid contains the next 1/3 and the rest in Ghigh

Execute ODRA algorithm for each workload assignment

1. Create a CFD model for a data centre as described in Section 3.2.2.

2. Arrange all the |N | chassis hosted with blade servers in the data centre into rows and racks.

3. Divide the servers into three groups namely G = {Glow, Gmid, Ghigh} such that,

TP [Nj ] : ∀Nj ∈ Glow ≤ TP [Nj ] : ∀Nj ∈ Gmid ≤ TP [Nj ] : ∀Nj ∈ Ghigh

where 1 < j < m , Nj is the jth server among m servers and TP [Nj ] denotes the total power consumed
by node Nj . The computing nodes are classified into three groups based on the energy consumption
computed by the temperature monitor unit, namely low, mid, and high. The set of servers thus grouped
into Glow then would relatively consume the least power and Ghigh consumes the most in the data centre.
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4. The servers will be switched to ON state starting from Glow to Ghigh as workload arrives with just
one spare server kept always in IDLE state while keeping all other servers powered OFF. Total power
consumption of the data centre with 3 groups denoted as TP3 is given in Equation (6)

TP3 = Pbase + α ∗ PIDLE +

N∑
j=1

Load%(j) ∗ PON + Pcooling (6)

Similarly, total power consumption of the data centre with 4 groups with additional group representing
the set of servers which are set to SLEEP state denoted TP4 as given in Equation (7).

TP4 = Pbase + α ∗ PIDLE + β ∗ PSLEEP +

N∑
j=1

Load%(j) ∗ PON + Pcooling (7)

where α is number of IDLE servers running, β is number of SLEEP servers running, PIDLE and PSLEEP

are power consumed in IDLE and SLEEP states respectively.

5. Vary the load in the data centre and measure the inlet temperature (temperature of the nodes). The
computing cost is calculated using Equation (3), the cooling cost using Equation (5) and the total power
consumption by each server as given in Equation (6).

3.4. ODRA algorithm

The online dynamic resource allocation (ODRA) algorithm finds a feasible assignment for dynamically arriving
workload with optimal number of servers. The ODRA being energy aware selects the least power consuming
server available at that instance. This online greedy assignment approximately reduces the energy consumption
for each arrival and thereby effectively reduces the energy expended asymptotically. The ODRA algorithm for
3-group setup is shown in Algorithm 2 and the execution steps are:

1. The servers are grouped into three groups G = {Glow, Gmid, Ghigh} based on system, power, and cooling
models as described in Section 3.3. As the set of servers in the Glow consumes least power while Ghigh

the most, the algorithm initially starts with switching spare servers from Glow and remaining servers
are set to power status OFF. It is assumed that setting of power status by ODRA leads to power being
switched ON, IDLE and OFF in the respective servers.

2. Let each group G has a capacity size(G) =
∑

N∈G size(N) where size(N) is the capacity of server
N . Let GAP (G) denote the current status of the capacity in group G which is the availability of
space for workloads. Similarly, let GAP (N) denote the available space for workloads at server N .
Hence, GAP (G) =

∑
N∈G GAP (N) . These initializations are performed by the subroutine Preprocess() .

The state information GAP (G) and GAP (N) before and after each assignment are maintained by the
algorithm.

3. When a job b arrives at time t , the algorithm invokes the subroutine Packing(b) to determine a feasible
server assignment. Packing() invokes Reclaim(G) on all groups to update the state information and
power status of servers.
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Algorithm 2: Online Dynamic Resource Allocation (ODRA)
Input: Groups G = {Glow, Gmid, Ghigh} , n := |G| number of groups, N := {N1, . . . , N|N |} servers,

ki := |∀Nj ∈ Gi| number of servers in group Gi , size(N) size of server for all N and Q
wait queue

Preprocess()
if b arrives or b← Q then

Packing(b)
end if

Procedure Preprocess()
for i← {1, . . . , n} do
∀Nj ∈ Gi, GAP (Nj) = size(Nj)

size(Gi) =
∑

∀Nj∈Gi
size(Nj)

GAP (Gi) = size(Gi)

end for
POWER(Nj)← OFF : ∀Nj ∈ {Glow, Gmid, Ghigh}
for j ← {1, . . . , lastOpen} do

POWER(Nj)← ON : ∀Nj ∈ Glow

end for
POWER(Nj+1)← IDLE
lastOpen← lastOpen+ 1

Procedure Packing(b)
if ∄Nj : POWER(Nj)← ON ∧GAP (Nj) ≥ Spare then

POWER(NlastOpen+1)← ON : ∃Nj ∈ G

POWER(NlastOpen+2)← IDLE : ∃Nj ∈ G

lastOpen← lastOpen+ 1

end if
y = min{i : Reclaim(Gi), GAP (Gi) ≥ size(b), 1 ≤ i ≤ n}
z = min{j : Nj ∈ Gy ∧GAP(Nj) ≥ size(b)}
if (y, z) ̸= NULL then

GAP (Gy) = GAP (Gy)− size(b)

GAP (Nz) = GAP (Nz)− size(b)

end if
else

if tb > 0 then
Q← Q ∪ (b, tb)

end if
else

Drop b
end if

end if

Procedure Reclaim(Gy )
GAP (Nj)← GAP (Nj) + size(x) : ∀Nj ∈ Gy ∧ x ∈ Nj ∧ STATUS(x) = FINISHED
POWER(Nj)← IDLE : ∀Nj ∈ Gy ∧GAP (Nj) = size(Nj) ∧Gy ∈ Mid
POWER(Nj)← OFF : ∀Nj ∈ Gy ∧GAP (Nj) = size(Nj) ∧Gy ∈ High
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4. Reclaim(G) searches for all finished workloads x whose status STATUS(x) are set to FINISHED upon
completion in servers N ∈ G . When such x in N ∈ G were found, the respective state information
GAP (N) is updated. Also, after updating the state information, sets the power status to IDLE, for all
N ∈ Gmid if GAP (N) equals size(N) and power status to OFF, for all N ∈ Ghigh if GAP (N) equals
size(N) .

5. Packing(b) then finds a group Gy having sufficient GAP (G) for size(b) . If more than one such candidate
groups were found then the group with minimum index value y is preferred.

(a) In other words, Glow is given preference over Gmid and Gmid is given preference over Ghigh . It can
be observed that the preferential order of assignment rule Glow ≫ Gmid ≫ Ghigh being imposed
implicitly resulting in tight packing eventually leading to containment of workload to low power
consuming servers.

(b) Similarly, a Nz ∈ Gy is found with a preference to lower value of z is chosen. A lower value for z

leads to filling of the left bins or servers before another one is opened. This implicitly reduces the
servers being unnecessarily switched ON leading to energy saving at groups especially in Gmid and
Ghigh .

(c) Packing(b) then updates the state variables

6. If Packing(b) fails to find such a group Gy ≥ size(b) then b is added to queue Q with its tolerant time
tb until which the assignment could be postponed. Before expiration of tb or upon next arrival, whichever
is earlier, the queued job is tried repeatedly for feasible assignment. If no assignment could be found the
queued b will be dropped after expiration of tb .

The ODRA shown in Algorithm 2 can be extended to a 4-group setup with the groups temperature or
power consumption arranged in increasing order like G = {Glow, Gmid−low, Gmid−high, Ghigh} . The intuition
behind the working of ODRA is that reclaim procedure when invoked reclaims and frees up space for subsequent
assignments and greedily tries to keep the set of servers switched ON to Glow if not Gmid and so forth. The
reclaim also frees up space in servers in which workload have been completed, implicitly facilitates assignment
to the left most bins which eventually results servers being switched to IDLE and OFF state except spares .
This along with group based first fit behaves like best fit with repacking.

4. Performance analysis

This section describes the experimental results to prove the efficiency of TARA. The algorithm was validated
by conducting simulation experiments using CFD and CloudSim whose setup and experimental results are
presented in this section in three steps as follows: (1) Simulation of the CFD model measurements for a chosen
data centre with servers and MIPS/Servers in TARA algorithm. (2) Simulation of ODRA algorithm in TARA
using CloudSim and CFD data centre thermal profile measurements for same MIPS/Servers or VMs and groups
configuration obtained from the previous step. (3) Using the mathematical model, determine the computing,
cooling, and energy saved for the proposed method.
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4.1. CFD model setup

A typical data centre with two rows (2× 5) of racks with standard 42U sized racks, each row with 5 racks with
7.6m x 7.6m x 3.6m dimension is set up for CFD based simulation. Each rack is set up with five chassis and each
having ten blade servers. Each chassis starting from the bottom of the rack is numbered as 1-5. The CRAC
unit supplies cold air with the flow rate of 8.5m3/s and the cold air enters the racks from the underground
plenum through the perforated tiles. The supply temperature is set to 13◦C and drawn towards the nodes by
the fans. The maximum inlet temperature is set to 35◦C (red line temperature).

The CFD simulation parameters used for data centre simulation are shown in Table 2. The experiments
are performed initially for 3 groups with ON, IDLE, OFF power states and then repeated for 4 groups with ON,
IDLE, SLEEP, and OFF power states. The total power consumed by the nodes is 200 kW with a base power
consumption of 50 kW. Each server utilizes 350W when in ON state, uses 50W in IDLE state, only 20W in
SLEEP state, and 0W in OFF state. The power consumption parameters were chosen similar to Dell PowerEdge
1855 servers. The servers were then divided into groups and states were set based on CFD measurement on
parameters like air velocity and temperature distribution (shown in Figure 2).

Table 2. Simulation parameters.

Parameter Value
Cooling medium Air
Cooling air flow rate 9000 cfm or 8.5 m3

s

Cooling air temperature at inlet vent 13◦C%

Chassis air flow rate 120 cfm
Room pressure Atmospheric
Chassis heat rejection 2 kW
Total heat rejection from all racks 100 kW
Processor load for Uniform 33%
Wall heat transfer 0 kW (adiabatic)

4.2. CFD thermal profile measurements
The chassis inlet air temperature of racks in rows was measured and is shown in Figure 3a and 3b. These
parameters determine the amount of computing cost, cooling cost, and power consumed by the load. This
categorizing or grouping of servers based upon the above parameters into low, mid, and high groups of servers
along with the ODRA algorithm minimizes the load assignments to the mid and high group of servers eventually
leading to energy savings. Based upon these experimental observations, the servers were grouped and the order
of workload assignment was determined for rows.

In the baseline uniform scheme, all nodes were assigned with an equal amount of workload such that each
node has a total workload/number of nodes [1]. In the baseline uniform scheme, the power consumption and
temperature increase linearly with the system utilization. Simulation experiments were performed to compare
the efficiency of the proposed algorithm. It can be observed from Figure 2 and Figure 3 that the temperature
distribution inside the data centre is not uniform even though all the nodes in the data centre were assigned
equal workload. The experiment was performed with a 33% load assigned to all nodes in the data centre in
which changes in temperature distribution for equal workload could be observed because of recirculation of hot
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(a) (b)

(c) (d)

Figure 2. Air velocity and temperature distribution readings from ANSYS Fluent 15.0 (3d, dp, pbns, rke) measured
on March 06, 2019. Velocity vectors colored by velocity magnitude (m/s) - (a) aerial view, (b) side view. Contours of
air temperature - (c) aerial view, (d) side view.
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Figure 3. Chassis inlet air temperature of racks in Row-1 and Row-2.

air. Generally, hot air circulation inside the data centre shows an uneven pattern and depends on the data centre
configuration and arrangement of nodes. The computing and cooling power consumption were then computed
using Equation (2) and Equation (7). The CFD setup is evaluated for three groups (ON, IDLE, OFF) denoted
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as 3-Groups and were then repeated for four groups (ON, IDLE, SLEEP, OFF) denoted as 4-Groups. The
performance of the algorithm for 25% , 50% , 75% of data centre utilization are compared with the uniform
workload. It can be observed from Figure 4a that the inlet temperature of uniform workload is relatively
greater than 3-Groups and 4-Groups because the optimized approach uses thermal condition-based grouping
and workload assignment to reduce heat recirculation. From Figure 4b and 4c it can be observed that 3-Groups
and 4-Groups save energy better than uniform workload. 4-Groups approach can be observed to improve
energy saving in computing and cooling costs. This can be attributed to two main factors: minimization of
inlet temperature and heat recirculation that affect the cooling cost due to the additional power state (SLEEP).
When recirculation is less the cooling supply temperature can be increased to save cooling energy.
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Figure 4. CFD measurements (a,b,c).

4.3. TARA parameters setup and results
The TARA algorithm, particularly the ODRA subroutine was implemented using the CloudSim simulator and
the setup parameters are shown in Table 3. When jobs or cloudlets arrive online, TARA dynamically selects
a VM and assigns the workload being temperature aware such that energy consumption is optimized. The
parameters like the number of VMs used for varying numbers of jobs were observed during the simulation and
the results obtained are shown in Figure 5a - 5d. It can be observed that the number of nodes or VMs used
by TARA is less compared to other schemes. A practical batched reclaim scheme is assumed for comparison in
which the space allotted for completed workloads is reclaimed on a scheduled basis in batches. A batch reclaim
scheme is better compared to uniform or round-robin-based workload assignment. It can be observed that the
number of servers used, cooling cost, computing cost and energy saved are better relative to the batch reclaim
scheme.

5. Discussion
In this study, the temperature-aware workload assignment schemes are analysed to optimize the computing and
cooling power consumption of the cloud data centre. CFD simulation is used to obtain the thermal state of the
data centre and grouping while the CloudSim tool was used to analyse the total workload assignment schemes
in the cloud data centre environment for energy optimization. The cooling cost, computing cost, and energy
saved are observed from the above setup.

A small-scale data centre was modelled using the CFD tool to monitor and obtain the thermal state
of the data centre accurately. The variation of power consumption and temperature distribution for uniform
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Table 3. CloudSim simulation parameters.

Parameter Value
Cloudlet length 300-2000 MI
Execution mode Space shared
Type of servers Homogenous
Number of VMs 50
Number of cores per VM 1
MIPS/VM 3000 MIPS
Total capacity of data centre 150,000 MIPS
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Figure 5. CloudSim results.

workload for computing nodes simulated were measured for different utilization levels varying for every 10%
increase up to 100% for power consumption and temperature of the nodes was obtained for uniform workload
for the nodes. The air velocity and thermal map were measured and are shown in Figure 2 at the vertical and
horizontal section that passes through the racks as a top view to show the distribution pattern of temperature
dissipated from the outlet of the racks. This shows the generation of hot air and its movement inside the data
centre which is because of hot air recirculation. Figures 3a to 3d show the inlet temperature matrix for 33%
utilization (uniform workload) to all the computing nodes. The observed temperature variation for uniform
workload was due to the heat recirculation. Figures 3a to 3d show energy saving when load assignments are
performed according to the formed 3 groups and 4 groups with the servers ordered based on energy consumption.
Group-based resource allocation reduces the number of switch-on nodes thereby reducing the computing power
consumption. The percentage of reduction in inlet temperature in the proposed schemes compared with the
uniform algorithm is shown in Table 4. This is due to the temperature-aware grouping of nodes and placing
jobs in the nodes which have less inlet temperature reduce the hot air circulation which consequently reduces
the inlet temperature of the nodes.

The TARA approach with dynamic reclaim performs better than the batched reclaim approach and
uniform algorithm which can be observed from Figures 5a to 5d. The dynamic algorithm reclaims the used
space dynamically on completion and reuses the reclaimed space for further assignment of the jobs. Whereas,
the batched algorithm is set to reclaim after every 50 jobs. The computing cost, cooling cost, and energy saved
by TARA relative batched reclaim are summarized in Table 5. The proposed scheme shows better energy-saving
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even for increased data centre utilization due to grouping and dynamic reclaim. New nodes were not switched
on further, the assignment was made within some nodes in the low energy consumption group itself and thereby
saving computing energy which eventually, saves cooling power consumption as well.

Table 4. % Cost saved by 3 groupsa and 4 groupsb

(relative to uniform).

Parameter 25% 50% 75%
Computing cost saveda 28 11 0.3
Computing cost savedb 37 17 4.6
Cooling cost saveda 27 10 1
Cooling cost savedb 37 16 4
Reduction in Tinlet

a 31 30 5
Reduction in Tinlet

b 31 30 12

Table 5. % Energy saved by TARA (relative to batched
reclaim).

Parameter 25% 50% 75% 100%
Computing cost saved 24 32 26 26
Cooling cost saved 24 33 27 27
Energy saved 24.3 32 26 26

6. Conclusion
Energy efficiency and environmental sustainability of data centres can be improved significantly through the
design of efficient holistic algorithms. Particularly, the proposed algorithm for dynamic resource allocation will
result in the establishment of energy-efficient cloud data centres. The online dynamic resource allocation problem
can be reduced to the bin packing problem which is proved to be computationally intractable. This paper
provides a solution to this problem, by proposing the TARA algorithm. TARA utilizes thermal information
of the servers obtained from the CFD tool. It groups the servers considering their thermal condition, heat
recirculation and energy-saving states of the servers. Based on server groups identified using TARA, the
subroutine ODRA assigns workload to the appropriate server using the concept of server consolidation. Due to
this, the maximum inlet temperature at the data centre is reduced which eventually reduces thermal hotspots.
This helps to efficiently reduce the computing and cooling energy consumption of the data centre. The empirical
analysis shows that TARA saves about 24% energy when the data centre is utilized at 25%, 32% when the data
centre utilization is 50%, 26% when the data centre utilization is 75%, and 26% when the data centre utilization
is 100% compared to batched reclaim. Therefore, the efficient temperature-aware dynamic workload placement
strategy as demonstrated through TARA is essential in creating green cloud data centres and a sustainable
green environment.
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