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Abstract: In this article, a multiuser (MU) multiinput multioutput (MIMO) system is considered, which is essential
to support a huge number of subscribers without consuming extra bandwidth or power. Dirty paper coding (DPC) for
MU MIMO channel achieves the peak sum-rate for the MU multiple antenna system at the cost of high computational
complexity. Both user and antenna scheduling with a population based meta-heuristic algorithm, i.e. binary flower
pollination algorithm (binary FPA) has been demonstrated in this article to achieve system sum-rate comparable to DPC
with very less computational complexity and time complexity. Moreover, binary FPA shows a significant improvement in
system throughput/sum-rate performance as compared to other population based meta-heuristic algorithms like binary
bat algorithm (binary BA) and binary genetic algorithm (binary GA). Furthermore, the proposed binary FPA algorithm
successfully achieves higher system sum-rate as compared to random search scheme and different existing suboptimal
scheduling algorithms from literature as well. The binary FPA has also better convergence rate and searching ability than
both binary BA and binary GA techniques. The percentage deviation achieved by the proposed binary FPA algorithm
is quite less than that of binary BA, binary GA, random search method, and existing suboptimal scheduling algorithms
from the literature. The efficiency of binary FPA in all these fronts is verified using exhaustive simulation studies.

Key words: Binary flower pollination algorithm, multiuser MIMO, antenna/user scheduling, dirty paper coding,
computation complexity, time complexity

1. Introduction
A lot of interest has already been poured to the multiple-input multiple-output (MIMO) smart network in the
recent past by different researchers [1]. This is because of its promise to achieve tremendous increase in data
capacity due to spatial multiplexing benefit that can be achieved by conveying separate streams of data over
each transmit-receive antenna pair at the very same time period [2, 3]. It has been observed that the channel
capacity of MIMO systems increases linearly with S = min{M,N} , where M and N are the number of base
station (BS) transmitting antennas and the number of receiving antennas present at the user end to receive data
respectively [4–6]. Moreover, MIMO systems deliver high reliability to the users due to spatial diversity benefit
along with the tremendous increase in data capacity (which is achieved due to spatial multiplexing benefit) [7].
Furthermore, the MIMO systems delivering services to various users is referred as multi-user MIMO systems
∗Correspondence: prabina.pattanayak@ieee.org
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(MU MIMO) in the literature. These MU MIMO systems exploit a special kind of advantage due to the existence
of multiple users known as multiuser diversity (MUD) [8].

In the cellular context, there can be two ways of communications possible as downlink/broadcast commu-
nications (communications from BS to users) and uplink communications (communications from users to BS).
In this paper, the downlink communications of the MU MIMO systems are considered and analyzed. Multiple
users are getting their services from the BS as per the MU MIMO broadcast communications. The dirty paper
coding (DPC) [9] is considered to be the optimum scheme for MIMO communications. As per the DPC, the
BS provides services to M number of best users simultaneously instead of providing services to all the users
simultaneously [10]. Therefore, selection of M best users among all the K present users is vital for achieving the
best data rate for the system. This process is popularly known as scheduling. Specifically selection of best users
and antennas are termed as user scheduling and antenna scheduling respectively. First of all, user scheduling
needs to be performed where the best set of users are going to be selected for data communications. After
the user scheduling, the best antenna of the selected users needs to be selected as per the antenna scheduling
method. The DPC is regarded as the optimum user scheduling scheme for MU MIMO downlink scenario [11].
However, the computational complexity associated with DPC is tremendously high [12]. Thus, the practical
implementation of DPC is not quite feasible. Therefore, a number of suboptimal scheduling algorithms have
been suggested for MU MIMO downlink transmission in [11, 13–17]. However, most of these schemes rely
mainly on time division multiple access (TDMA) in which the BS only sends data to a single person in a time
slot. Consequently, it was concluded that the highest possible sum-rate by making use of TDMA for the MU
MIMO broadcast network is a small percentage of the total achievable throughput of the MU MIMO broadcast
systems [18, 19].

The MU MIMO broadcast system’s near optimum performance is accomplished by assigning several users
using a process called DPC, which is an interference precancellation technique [9]. DPC has established itself
as one of the best approaches to achieve MIMO broadcast channel (MIMO BC) system capacity by providing
data communications to multiple users simultaneously [20, 21]. This process involves the precoding of users
serially at the transmitter side and involves the process of decoding of users in the reverse manner at the
receiver section. By this process the interference of the users are precancelled. Moreover, for such interference
cancellation technique, the transmitter (BS) should have the full information regarding the channel states (CSI,
i.e. channel state information) of all the users. This full CSI requires high feedback load in the uplink direction.
This full feedback of CSI from the end users to the BS is very complex and cumbersome. Therefore, limited
feedback scheduling algorithms have been considered widely in the recent past [11, 15, 17, 19, 22].

From the computational complexity perspective, the implementation of DPC is regarded as the exhaustive
search algorithm (ESA), which finds the best set of users by exploring all the possible combinations of users.
Therefore, the DPC process is regarded as the ESA for the user scheduling of MU MIMO BC. A total number
of possible ordered selections is represented by

NOrderedUsers =

M∑
k=1

(k!)

(
K

k

)
(1)

It would not be feasible to run this many number of ordered selections during few coherence time period of
the advanced packet data communication systems [23]. It is also not possible to search such high dimensional
search space in the span of a usual scheduling interval (few coherence time periods). Recently meta-heuristic
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soft computing techniques are implemented for various multiantenna system models [24–26]. This motivates us
to explore the possibilities of implementing an evolutionary algorithm to achieve this task.

In the search of some efficient evolutionary algorithms for solving the scheduling problem of MU MIMO
broadcast scenario, bat algorithm (BA) [27], flower pollination algorithm (FPA) [28], and genetic algorithm (GA)
[29, 30] are being considered in this paper due to the various advantages associated with these soft computing
schemes. Futher, the binary versions of BA, FPA, and GA are considered for various comparisons. In [30],
authors used GA for downlink scheduling scenario for multiuser single-carrier and multicarrier multiantenna
systems. This binary GA is based on the performances of genes to find out the best solution for any objective
optimization function. BA is inspired by echo locative characteristics of bats. This algorithm affects search
process by the use of artificial bats as searching agents imitating the natural emission rate and pulse loudness
of real bats. The binary version of BA is known as binary bat algorithm (binary BA). It uses the navigating
and hunting capabilities of artificial bats in binary search spaces by alternating their positions from 0 to 1 [27].
FPA is a good candidate to solve multiobjective optimization problems [31]. FPA is inspired by the pollination
process of flowering plants. FPA depends on the flowering plants’ characteristics and some pollinating insects.
In [32], the authors have verified that the binary FPA finds the optimal comprehensive solutions very swiftly.
Moreover, an analytical study regarding the computational complexity of MIMO uplink networkers is presented
in [33]. Authors in the study in [24] have used ant colony optimization (ACO) and grey wolf optimization
(GWO) algorithms to solve the user and antenna scheduling jointly for multiuser multiantenna systems.

Suboptimal antenna and user scheduling algorithms with less complexity and minimal feedback are
suggested as a substitute for DPC in literature [20, 22, 23]. We focus on performance analysis of system
sum-rate by applying binary FPA, binary BA, random search and ESA. As seen from the results, binary FPA
achieves output near optimal to DPC in a very less computation time and complexity. Furthermore, two
existing sub-optimal scheduling algorithms which are based on the present system model have been considered
for various comparative studies in this paper. These two suboptimal scheduling algorithms are

• the full feedback scheduling scheme of [11], where all the users feedback their CSI to the BS for the
completion of the scheduling process. This algorithm is referred as suboptimal algorithm 1 throughout
this paper.

• the two-bit quantized scheduling scheme discussed in [4], where all the users feedback the two bits (used
to quantize their CSI) to the BS for accomplishing the scheduling task. This algorithm is referred as the
suboptimal algorithm 2 throughout the paper.

Moreover, it is shown in this paper that the binary FPA outperforms the techniques of binary BA, binary GA,
random search, and both the suboptimal algorithms in achieving higher system sum-rate capacity.

In the recent past various works have been proposed in the area of wireless communications using different
meta-heuristic soft computing techniques. Few of them are discussed here. The concentric circular array antenna
produces very good directivity gain. However, there exists problem of high sidelobes levels. To address this
problem of concentric circular array antenna, authors in [34], have discussed a new approach of quantum particle
swarm optimization (QPSO). This new approach of QPSO minimizes the sidelobe levels of circular antenna array
with concentric rings. Different multi objective problems are successfully solved by decomposition based multi
objective evolutionary algorithm (DMOEA) [35]. Authors in [35] have used DMOEA to reduce the maximum
sidelobe level. DMOEA method outperforms the firefly algorithm, cuckoo search, PSO, nondominated sorting
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genetic algorithm-II, and nondominated sorting genetic algorithm-III. A compact triband antipodal Vivaldi
antenna with frequency selective surface structures are designed by using the global and local optimization
processes [36]. Authors in [36] have used honey bee mating optimization technique and differential evolutionary
(DE) technique as the global optimizer and local optimizer respectively. A hybrid DE technique is proposed by
the authors in [37]. This hybrid DE technique combines the advantages of numerical algorithm and evolutionary
algorithm. This hybrid DE technique is used for antenna array pattern synthesis [37]. Three grey wolf inspired
optimization algorithms are used for designing a single transistor low noise amplifier [38]. Authors in [24] have
used ACO and GWO algorithms to solve the user and antenna scheduling jointly for multiuser multiantenna
uplink systems. Invasive weed optimization (IWO) technique has been used in [39]. Authors in [39] have used
IWO technique to design multilayer lenses to enhance the gain of a traditional horn antenna upto 2.9 dB.

The remaining parts of this study are configured as follows, section 2 describes the system model. Section
3 includes the user scheduling in MU MIMO BC using binary FPA. Further section 4 describes the effects of
the experiment and simulation results. Binary FPA’s system sum-rate performance is discussed and compared
with that of binary BA, random search as well as DPC (ESA). Moreover, both the computational complexity
and time complexity are analyzed with that of DPC. Finally, a brief interpretation of the various simulation
results is given in section 5 as the conclusion of this paper.

2. System Model

In this article, we suggest MU-MIMO networks comprising of a BS with M transmitting antennas to the K

number of subscribers (users/user terminals (UTs)) on the receiving end. Each user has a N number of receive
antennas. This paper considers M > 1 , N > 1 , M ≥ N and K >> M . The system model is depicted in
Figure 1.
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Figure 1. The MU MIMO system model for downlink transmission with M transmit antennas, K users each with N
receive antennas.
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The expression of the received signal of user k at time slot t is denoted as

Yt
k =

√
ℜkHt

kXt + Wt
k, k = 1, . . . ,K, (2)

where Y t
k is a received signal vector of the kth user at tth time slot having dimension N × 1 . Xt shows the

transmission signal vector of dimension M × 1 at time slot t and W t
k is the N × 1 additive noise vector of

user k with zero mean and unit variance. Ht
k is a complex functional channel matrix of dimension N × M .

Each feature of this matrix is a complex channel gain coefficient from the transmit antenna m to the receive
antenna n of the user k .

√
ℜk models the attenuation of power due to shadowing effect and path loss. The

data transmission from all M antenna arrays of the BS is given by Xt at the time slot t which is the vector of
the size M×1. The additive white Gaussian noise is wt

k . All wt
k components are independent and identically

distributed (i.i.d) Gaussian complex with zero mean and variance N0 . The expected received signal at nth

antenna of the user k is denoted as:

yk(n) =
√
ℜk

M∑
m=1

hk(n,m)x(m) + wk(n), (3)

where wk(n) is the additive white Gaussian noise for user k with receive antenna n . From this point on wards,
the time slot parameter t is being suppressed for the simplicity of the analysis. Here x(m) is assumed to be the
desired signal for the kth user. Then other signal x(m′) is the interference signal with the condition m′ ̸= m .
The signal to interference noise ratio (SINR) at the kth receiver for yk(n) is given by:

SINRk
m,n =

|hk(n,m)|2{(
M
ρk

)
+
∑

m′ ̸=m |hk(n,m′)|2
} (4)

where ρk = (ℜk/N0) is the average signal to noise ratio (SNR) of user k . We consider ρk = ρ , for users
k = 1, ...,K . We consider that no interference cancellation is performed at the receiver terminal. We can define
the sum-rate capacity of the system with the upper bound as,

Csum (H1, . . . , HK) ≤

E

[
M∑

m=1

log2

(
1 + max

1≤k≤K,1≤n≤N
SINRk

m,n

)]
, (5)

where Csum is the upper bound of the achievable system capacity and H1, ..., HK are the channel matrices of
all the users. We can alternately write the system capacity of K users having finite M value with maximum
feedback of SINR as [11]

Csum (H1, . . . , HK) =

M∑
m=1

log2

(
1 + max

1≤k≤K,1≤n≤N
SINRk

m,n

)
(6)

3. Scheduling using binary flower Pollination algoritm
In this section, the DPC scheduling process is elaborated in subsection 3.1, where the process of scheduling
using DPC is explained. Then, the general process of FPA, binary FPA are described in subsection 3.2 and 3.3
respectively. The process of user scheduling using binary FPA is discussed and explained in subsection 3.4.
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3.1. DPC scheduling
In DPC, M users are receiving service through BS simultaneously. The scheduler is responsible to select best M

users in K UTs. It means that from N ×K number receiving antennas, only M number of receiving antennas
from different UTs should be selected. At the BS, DPC relies upon sequencing of user encoding. Selection of M
number users have unique encoding order and is presented in Eq. (1), that is considered in the period of couple
milliseconds. In today’s world of communication system, for computing complex multiplications and additions,
BS takes the help of DSP processors and if any complexity is noted, the operation is moved to the algorithm
which is implemented by BS. Therefore, we put forward to assess a subset of collection of user sequences by
citing below mentioned limitations:

◦ There is a relaxation in the systematization of user sequences, i.e. unique M users will be combined and
examined at a time.

◦ There is no repetition in the user sequence and the user sequence has different users, i.e. data streams
which are independent with regards to distinct users are sent by transmit antennas.

◦ Transmitting antennas should always be active and hence, every transmit antenna should assign one
unique user.

Here the number of feasible unique user sequences is less than Eq. (1) and is represented by

NUniqueUserSequence =

(
K

M

)
(7)

It indicates that if we increase the transmitting antennas as well as users, then there will be increase in
the user sequence number. Thus, this study describes the best way to decrease the computational complexity
through using the procedure of binary FPA. Let us say that ϕ denotes a specific order of the number of M

users out of the existing K active users. ϕ is a subset of a bigger set, i.e. the array of all possible unique user
sequences as shown in Eq. (7), i.e.ϕ ∈ Θ and ϕi =

{
ϕ1
i , ϕ

2
i , ϕ

3
i , ...., ϕ

M
i

}
, 1 ≤ i ≤ |Θ| , where |B| denotes set B

set’s cardinality. Then, the sum-rate capacity of the framework reached by a given selected user set is

Csum (θ,H1, . . . , HK) =

M∑
m=1

log2

(
1 + max

k∈θ,1≤n≤N
SINRk

m,n

)
(8)

The set of user antennas of the current user set (θ ) resulting from the highest SINR for each of the
BS antennas are stored as Ni = {n1

i , n
2
i , . . . , n

M
i } . The current problem of scheduling receiving antennas with

transmitting antennas is a combinatorial optimization problem, i.e.

max
θ∈Θ

M∑
m=1

log2

(
1 + max

1≤k≤K,1≤n≤N
SINRk

m,n

)
(9)

The optimal user sequence is represented as θopt = argmaxθ∈Θ Csum (θ,H1, . . . , HK) . The set of user antennas
selected for the users in θopt can be denoted as: Nopt = {N i=1

θi=1
opt

, . . . , N i=M
θi=M
opt

} ,

where N i
θi
opt

= argmax1≤n≤N SINR
(θi

opt)

i,n .
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ESA evaluates all the possible combinations to maximize Eq. (9). Though scheduling is optimal, it needs
to be completed within a time frame of a few ms. As such, ESA becomes computationally expensive and is
inefficient in light of the requirements of the scheduling. The binary FPA has lesser computational complexity
and reaches near optimum at a relatively faster rate as compared to DPC and binary BA. Thus, it becomes
suitable for current scheduling problems of MU MIMO broadcast scenario.

3.2. Flower pollination algorithm (FPA)

Flower pollination algorithm is a nature motivated algorithm based on the phenomenon of flower pollination.
It solves the multi objective optimization problem with multiple criteria. In consideration with the above
characteristics Xin-She established a flower pollination algorithm and highlighted four basic rules for its easy
utilization [28].

(Rule1) : The global pollination process includes cross and biotic-pollination and these pollinators carrying pollen
moves such that it obeys Levy flights.

(Rule2) : Local pollination utilizes self and abiotic-pollination.

(Rule3) : Insects produce flower constancy and such pollinators are similar to the probability of reproduction, which
is further proportional to the presence of two flowers.

(Rule4) : A switch probability would control the interaction between global and local pollination with some incli-
nation on local pollination where p ∈ [0, 1] .

For rule 1, by converting the rule global pollination and flower constancy where the pollinators transfer
the pollen gametes over a far of distance and move through Levy flight method; a mathematical expression can
be represented as:

X
(t+1)
i = X

(t)
i + αL(g∗ −X

(t)
i ) (10)

where

L =
λ.Γ(λ). sin(πλ/2)

π
.

1

S1+λ
, S >> S0 > 0. (11)

X
(t)
i is the solution vector (pollen i) at iteration t and g∗ indicates recent best solution amongst all

solutions. The scaling factor controlling the step size is α . L denotes step size for Levy flights that signifies
the strength of pollination. Γ(λ) represents gamma function and the step size is denoted by S . As insects with
various distance steps can fly over long distances, a Levy flight can be used to effectively copy this attribute.

Rule 2 and 3 may be expressed for local pollination as

X
(t+1)
i = X

(t)
i + ϵ(X

(t)
j −X

(t)
k ), (12)

where X
(t)
j and X

(t)
k represent the pollen from distinct flower j and k of the same species of plant. ϵ is chosen

from a uniform distribution of [0,1].
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3.3. Binary flower pollination algorithm (binary FPA)

In the regular FPA, the approaches are modified towards real valued locations in the problem space. However,
the sear space is modeled as a d -dimensional binary lattice in the conceptual binary FPA, for which the answers
are modified around the edges of a hypercube [28]. Here, the local and global pollination are done in a continuous
manner. Here, a sigmoid normalization function is being used, which is expressed as:

S(Xj
i (t)) =

1

1 + e−Xj
i (t)

, (13)

Moreover, as the solution is only binary values, the new solution is being updated by the following expression:

Xj
i (t) =

{
1 if S(Xj

i (t)) > σ,

0 otherwise
(14)

where σ ∼ U(0, 1) . Figure 2 shows the main framework of binary FPA.

Initialize the Binary population, 

iteration, switch probability (p).

Compute fitness function

Calculate new solution

Update if better solution found

Increment Count

Rand < pGlobal 

pollination

Local 

pollinationNo

Yes

Count < 

Max_itr 

Yes

Figure 2. Framework of binary FPA.

3.4. Binary FPA for user scheduling
Various parameters and movements employed in binary FPA are shown below:

• Z is referred as the utility function which is represented in Eq. (9).

• Pop_size denotes the population size.

• P is the proximity probability in [0,1].
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• D includes the binary representation of the scheduled users and of length M × [log2K] .

• L is a parameter which denotes step size and drawn from a Levy distribution.

• Max_itr is the iteration number.

• SelectedUT is a M size row vector that stores the M users to be served selected by BS.

• Selectedreceivedantenna is always a size M vector that holds the receive antennas selected by the selected
UTs present in SelectedUT .

⋄ Step 0:

1. Initialize the population which is created randomly in D dimensional search spaces with binary
values.

2. The initial solutions are generated by Eq. (14) in the proposed binary FPA.

3. A set of θ represents each row and those are represented as binary string µ .

4. The binary depiction of the user arbitrarily selected to be aided by mth antenna for transmission is
present in the mthlog2K bits of µ .

5. For instance, a case with K = 15, N = 3 and M = 4. Suppose that the 6th user, 12th user,13th
and 3rd user are randomly chosen to be served by four BS transmission antennas. Then, number
of bits require to represent each user = [log215] = 4 . Then, the user sequence (θ ) reflecting to this
collection will be

[

6th user︷ ︸︸ ︷
0, 1, 1, 0,1, 1, 0, 0,︸ ︷︷ ︸

12th user

13th user︷ ︸︸ ︷
1, 1, 0, 1,

3rd user︷ ︸︸ ︷
0, 0, 1, 1,] .

⋄ Step 1:

For better binary FPA efficiency, a set of constraints is given below:

1. The transmitting antenna must send different streams of data to various user, i.e. there should be
no redundant user index in any of the population rows.

2. Each population rows should be identical, i.e. different user configurations should be tested in less
time.

3. No user index should be negative or greater than the number of users by some amount, i.e. K .

If any pollen gamete breaks any constraint, so certain bits must be randomly toggled and this process can
be continued until none of the above limitations are broken.

⋄ Step 2:

1. Compute Θ with the current population number.

2. Update each pollen’s fitness by assessing Eq. (9).
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3. In the decreasing order of their fitness, the pollen are sorted.

4. Update SelectedUT = θopt as well as
selectedreceivedantenna = Nopt .

⋄ Step 3:

1. In this article, it is assumed that the value of p is 0.8.

2. For each iteration and each dimension, calculate a D-dimensional step vector L for all flowers in the
population which obey a Levy distribution by using Eq. (11).

3. Update global best position via Eq. (10).

⋄ Step 4:

1. If count < max_itr and random value(rand) < p , find random flowers in the neighbourhood and
update local best position based on Eq. (12). Go to Step 2 and follow all the steps again.

2. Increase the count by 1.

3. Evaluate Θ with the new population.

4. The throughput of the system will be the main objective of fitness which is calculated by Eq. (9).

5. Update SelectedUT = θopt as well as
selectedreceivedantenna = Nopt .

6. Based on the above, calculate user index, best user, and best receiving antenna index.

4. Results and Discussions
In this section, we analyze the simulation results which are obtained for different conditions and performance
comparison of binary FPA, binary BA, binary GA, ESA (DPC), two existing suboptimal scheduling algorithms,
and random search method. We have presented a comparison of system sum-rate for binary FPA along with
binary BA, binary GA, suboptimal algorithm 1 and 2, random search, and ESA to emphasize the benefits of
these methods. As per the presented simulation results in this section (afterwards) the binary FPA outperforms
the binary BA, binary GA, both the suboptimal algorithms, and random search method in ascertaining
better achievable system sum-rate/throughput for the MU MIMO BC systems. Further, the meta-heuristic
performances of binary FPA are also presented and discussed in this section. For showcasing the meta-heuristic
nature of the binary FPA, the simulation results have been presented later which depicts that the achievable
system sum-rate of different MU MIMO BC systems increase with an increase of population size (i.e. Pop_size)
and number of generations/iterations (i.e. Max_itr ). These results are as per the meta-heuristic approach.
In this section, the deviation achieved by different algorithms (viz. binary GA/BA/FPA, suboptimal algorithm
1 and 2, random search) as compared to the ESA (DPC) is also discussed and presented for various system
scenarios. Moreover, the per-generation performance of binary FPA, binary BA, and binary GA are also
studied to showcase the convergence ability of these three meta-heuristic algorithms/approaches for MU MIMO
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broadcast scenario. This has been showcased in the later part of this section that the convergence performance
of binary FPA is better than that of binary BA and binary GA. Futhermore, in subsection 4.1, the complexity
analysis has been performed for various algorithms. This complexity analysis highlights the advantages of
binary FPA as compared to ESA (DPC) with respect to both computational and timing complexity. Also, the
computational complexity has also been analyzed in the context of number of evaluations of the objective/cost
function expressed in Eq. (9).

To correlate the findings, we picked two examples such as (K , N , M , Pop_size , Max_itr ) =
(20,4,6,20,30), and (25,5,7,25,30), which are demonstrated in Figures 3a and 3b, respectively. In a random
search process, the user series is chosen randomly. From the graphs, it can be seen that binary FPA shows a
better and near optimal performance as compared to binary BA, binary GA, suboptimal algorithms 1 and 2,
and random search method. The probability of crossover and probability of mutation used in this paper for
the binary GA are 1.0 and 0.1, respectively [30]. Therefore, the results obtained by the binary FPA scheme is
compared thoroughly with that of ESA (DPC) for the rest of the results presented in this paper. Performance
of random search scheme is much less than the other scheduling schemes. It is clearly observed from the
Figures 3a and 3b that for the same number of Pop_size and Max_itr , the binary FPA achieves higher
system throughput than binary BA and binary GA. This emphasizes that the binary FPA is a better searching
algorithm than the binary BA and binary GA. However, the binary BA outperforms the binary GA in achieving
higher system sum-rate.Therefore, for the scheduling process of MU MIMO broadcast scenarios, the binary FPA
is a better meta-heuristic approach than the binary BA and binary GA.
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Figure 3. Comparative analysis of the sum-rate among ESA(DPC), suboptimal algorithm 1 and 2, random search,
binary BA, binar BA, binary FPA for MU MIMO devices with different values of K , N , M , Pop_size and Max_itr .
Every point means an average of over 1000 runs of independent simulation process.

It is ascertained that binary FPA accomplishes optimal system capacity as a DPC for a diverse variety
of system SNR values. Every point in these estimates is an average of 1000 separate runs. Each run channel
matrices of all users (i.e. H1, . . . , Hk ) is independently produced.

Now, the meta-heuristic nature of binary FPA is being evaluated for the below mentioned two scenarios as:
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• For increasing the population size (i.e. Pop_size)

• For increasing the number of generations (i.e. Max_itr )

The performance/behavior of the binary FPA is presented in Figures 4a and 4b, where the system sum-rate is
presented for different values of system SNR (i.e. 0 dB, 5 dB, 10 dB, 15 dB, 20 dB, 25 dB, and 30 dB). In Figure
4a, the other system parameters considered are K = 30, N = 6, M = 8, Max_itr = 10, and Pop_size = 5,
15, and 30. Three population size (Pop_size = 5, 15, and 30) have been observed. It is observed from Figure
4a that the system sum-rate capacity of the MU MIMO broadcast system obtained by binary FPA increases
with an increase of the population size. This is as per the meta-heuristic characteristics. Similarly, in Figure
4b the performance of the binary FPA is evaluated for an increase in the number of generations/iterations
(Max_itr ). The various system parameters taken into account for the Figure 4b are K = 30, N = 6, M = 8,
Pop_size = 5, and Max_itr = 3, 7, and 15. Three generation numbers (Max_itr = 3, 7, and 15) have been
inspected. The attainable system sum-rate capacity by the binary FPA for the MU MIMO broadcast system
increases with an increase of generation/iteration numbers as shown in Figure 4b. This observation/behavior
depicted in Figure 4b also complies the meta-heuristic algorithms’ characteristics.
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Figure 4. Characteristics of meta-heuristic algorithms are verified for binary FPA algorithms for MU MIMO broadcast
scenarios. Every point means an average of over 1000 runs of independent simulation process.

Figures 5a and 5b show two cases where (K , N , M , Pop_size , and Max_itr ) values are (10, 2, 4,
10, 30) and (12, 3, 5, 12, 30), respectively. Here, we find that binary FPA has a performance which is much
similar to that of ESA, but in a very less amount of time (discussed in subsection 4.1). The binary FPA attains
system sum-rate which is quite higher than that of random search algorithm, binary GA, binary BA, and both
the suboptimal algorithms 1 and 2. The suboptimal algorithm 1 and 2 performs better than the random search
algorithm. Binary GA performs better than suboptimal algorithm 2 and suboptimal algorithm 1 performs better
than binary GA. Binary BA attains better system sum-rate than binary GA for the current system model.
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Figure 5. Comparative analysis of the sum-rate among ESA(DPC), suboptimal algorithm 1 and 2, random search,
binary BA, binary GA, and binary FPA for MU MIMO devices with different values of K , N , M , Pop_size and
Max_itr . Every point means an average of over 1000 runs of independent simulation process.

The outcome of the ESA (DPC) is considered to be the optimum value for the calculation of the output
variable of the various approaches [25]. We determined the percentage deviation from ESA (PDESA) for random
search, binary BA and binary FPA. The percentage deviation from ESA is formulated as:

PDESA(ϕ) =

(
(CESA

sum )− Cϕ
sum

CESA
sum

)
× 100, (15)

where CESA
sum is the ESA’s sum-rate capacity and Cϕ

sum is optimal algorithm’s sum-rate capacity. (ϕ can be
binary FPA, binary BA, binary GA, suboptimal algorithm 1 and 2, or random search).The PDESA is seen in
Figures 6a to 6b for two scenarios. It is fair to conclude that binary FPA contains the lowest PDESA (very
near to 0) and is better than random search, binary BA, binary GA, and suboptimal algorithm 1 and 2 across
a large variety of system SNR values. However, the random search method has very high PDESA values. Each
point in these figures is also an estimate of 1000 independent runs. From these figures, it is observed that the
PDESA achieved by binary FPA is in the interval of 0% to 1%, the PDESA achieved by binary BA and binary
GA lies in the interval of 2% to 4% and 4% to 9%, respectively. The PDESA achieved by the random search
algorithm lies in the range of 21% to 30%. The PDESA achieved by the suboptimal algorithms 1 and 2 lie in
the range of 5% to 8% and 9% to 25%, respectively.Therefore, among all different schemes, the PDESA attained
by binary FPA is very close to 0%, which is preferable for MIMO systems.

Figures 7a to 7b demonstrate the per-generation performance (i.e. the convergence ability) of binary FPA,
binary GA, and binary BA for various MU MIMO broadcast scenarios. Performance improvement is observed
in these two scenarios (K , N , M , Pop_size , Max_itr ) = (10, 3, 4, 10, 10) and (15, 3, 5, 15, 10) with two
different SNR values 10 dB and 15 dB respectively. These results also indicate that the binary FPA has a better
system sum-rate values for different generations as compared to binary BA and binary GA. The per-generation
performance of binary FPA is quite better than that of binary BA and binary GA. Therefore, the binary
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Figure 6. Comparative evaluation of PDESA among random search, binary BA, binary GA, suboptimal algorithm 1
and 2, and binary FPA for MU MIMO system with different values of K , N , M , Pop_size , and Max_itr . Growing
level displays the average output of 1000 individual simulation tests.

FPA outperforms the binary BA and binary GA with respect to the convergence ability parameter. In all the
scenarios presented in Figures 7a to 7b, the binary FPA always attains higher system sum-rate capacity during
the initial generations/iterations as compared to the both binary BA and GA algorithms. Moreover, the binary
FPA sustains/withstands this increment in the achievable system sum-rate for rest of the generations/iterations.
Therefore, the binary FPA has higher hand over the binary BA and binary GA in the context of per-generation
performance for MU MIMO broadcast scenarios. Moreover, binary BA performs better than binary GA in the
context of per-generation performance/convergence performance.

The generation wise performance of binary FPA, binary BA, and binary GA is also presented in a tabular
format in Tables 1 and 2 for the better understanding of the readers. By referring both the tables, we can observe
that the rate of increase of the achievable system sum-rate by binary FPA is greater than binary BA and binary
GA. Moreover, it can be observed that the rate of increase of the achievable system sum-rate by binary BA
is greater than binary GA. Furthermore, the rate of increase of the achievable system sum-rate by binary GA
is the slowest one. Therefore, either more number of generations or larger population size is required by the
binary GA to achieve the optimal system sum-rate value. The binary FPA is clearly observed to be better than
both the binary BA and binary GA methods.

4.1. Complexity analysis

This subsection presents a comparison of the computational complexity between binary FPA and DPC. By
the number of times the utility function is calculated, the computational complexity is measured. The total
number of complex additions and multiplications (CAM) accomplished by the various algorithms is regarded as
a measure of computational complexity which has been discussed in [25, 40]. It may be seen from Eq. (4) that
the number of CAMs required for calculating SINR is 2M . Total SINR terms existing with the user is N ×M .
Hence for the one user 2M2N number of CAMs are required for Eq. (6). Each unique sequence of M users
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Table 1. Generation wise sum-rate performance comparison of binary FPA, binary BA, and binary GA. The values of
the parameters are K = 10, N = 3, M = 4, Pop_size = 10, Max_itr = 10, and SNR = 10 dB.

Generation
Number

Binary FPA
(b\s\Hz)

Binary BA
(b\s\Hz)

Binary GA
(b\s\Hz)

1st 5.8209 5.7726 5.7409
2nd 5.8943 5.8526 5.7409
3rd 5.9362 5.9001 5.7437
4th 5.9649 5.9285 5.7445
5th 5.9879 5.9484 5.7445
6th 6.0082 5.9615 5.7467
7th 6.0221 5.9739 5.7578
8th 6.0352 5.9833 5.7599
9th 6.0449 5.9907 5.7618
10th 6.0515 5.9977 5.7626

Table 2. Generation wise sum-rate performance comparison of binary FPA, binary BA, and binary GA. The values of
the parameters are K = 15, N = 3, M = 5, Pop_size = 15, Max_itr = 10, and SNR = 15 dB.

Generation
Number

Binary FPA
(b\s\Hz)

Binary BA
(b\s\Hz)

Binary GA
(b\s\Hz)

1st 6.8277 6.5707 6.5246
2nd 6.9231 6.7233 6.5296
3rd 6.9808 6.7976 6.5352
4th 7.0272 6.8322 6.5396
5th 7.0525 6.8606 6.5451
6th 7.0733 6.8809 6.5498
7th 7.0955 6.8968 6.5548
8th 7.1122 6.9092 6.5600
9th 7.1249 6.9204 6.5668
10th 7.1375 6.9340 6.5740

requires 2M3N number of CAM. The possible number of user sequences for DPC is indicated in Eq. (7).

Thus, ESA requires
[
2M3N

(
K

M

)]
number of CAM. Binary FPA requires

[
2M3N × Pop_size×Max_itr

]
number of CAM. To achieve this, special multicore DSP processor, e.g., Texas instruments DSP processor
66AK2Ex is taken into account by modern day data communication as discussed in [23, 25]. This has been
discussed in Table 3. From the table we can conclude that, the computational time required by binary FPA is
very much less as compared to ESA. However, as mentioned in previous graphs/plots, binary FPA has almost
similar achievable system sum-rate capacity performance as that of ESA (DPC). The time frame for binary FPA
and binary BA is almost the same. However, the achievable system sum-rate capacity performance showcased
by binary FPA is quite better than that of binary BA.

The time complexity of these algorithms, i.e the binary FPA and ESA (DPC) is also showcased in Table
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Figure 7. Per generation efficiency analysis of binary FPA, binary GA, and binary BA for MU MIMO network with
different values of K , N , M ,Pop_size ,Max_itr and SNR versus iteration number. Growing level displays the average
output of 1000 individual simulation tests.

3. It is clearly observed that the time required for accomplishing the number of CAMs required by ESA (DPC)
for higher number of users is spanning multiple coherence time period (a coherence time period is of few ms).
However, the time required for accomplishing the number of CAMs required by binary FPA for higher number
of users is spanning fraction of ms time. This is well within a coherence time period. This observation is crucial
for wireless communication applications since the channel parameters (channel statistics/CSI) between the BS
transmit antennas and the receive antennas of all users are assumed to be block fading and quasistatic. As per
this assumption the CSI is valid for only a few ms. After a few ms, the CSI of the system changes. Therefore,
the user and antenna scheduling done for one block time (the fading coefficients are assumed to be constant)
will not be valid for the next block time. Hence, the binary FPA is preferable over ESA (DPC) for having very
less time complexity.

Table 3. Computational complexity comparison between ESA (DPC) and the proposed Binary FPA for MU-MIMO
BC.

Parameters ESA (DPC) Binary FPA
[K, N , M
Pop_size,Max_itr]

CAM Time (ms) CAM Time (ms)

[10, 2, 4, 10, 30] 76800 0.2482 53760 0.0271
[15, 3, 5, 18, 30] 2252250 1.5008 405000 0.0539
[20, 4, 6, 22, 30] 11628000 49.6833 1140480 0.2680
[25, 5, 7, 25, 30] 16488010000 931.3815 2572500 0.3143

The Texas instruments 66AK2Ex DSP processor can perform up to 44.8 Giga multiply-accumulate per s
(GMACS). The time complexity computed is concerning this capacity of the DSP processor. The computational
complexity can also be expressed in terms of the number of evaluation of the objective/cost function. The
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objective/cost function for the current system model is expressed in Eq. (9). The number of the objective
function computation for the ESA scheme (DPC) is expressed in Eq. (1). Moreover, the number of the objective
function computation for any population based meta-heuristic algorithm depends on the population size and
number of generations required. Therefore, the number of the objective function evaluation/computation for
any population based meta-heuristic algorithms like binary GA, binary BA, and binary FPA is expressed as:

NMeta−heuristicAlgorithm = Pop_size×Max_itr, (16)

where the Pop_size is the population size and Max_itr is the number of generations or iterations. The
computational complexity (expressed as the number of evaluation of the objective function) associated with the
different population based meta-heuristic algorithms considered in this paper and ESA (DPC) is presented in
Table 4.

Table 4. Computational complexity comparison in terms of the number of evaluation of the objective function expressed
in Eq. (9).

Parameters
[K, N , M
Pop_size,Max_itr]

ESA (DPC) Eq.
(1), i.e.,[∑M

k=1(k!)
(
K
k

)]
Binary
FPA/BA/GA Eq.
[Pop_size×Max_itr]

[10, 2, 4, 10, 30] 5860 300
[15, 3, 5, 18, 30] 396075 540
[20, 4, 6, 22, 30] 29891200 660
[25, 5, 7, 25, 30] 2556933625 750

5. Conclusion

In this paper, we have explored the implementation of binary FPA for efficient antenna and user scheduling for
MU MIMO broadcast channel. It has been found that binary FPA achieves a significant higher sum-rate which is
quite close to that obtained by ESA (DPC) with quite low time complexity as well as computational complexity.
Also, when we compared the binary FPA with binary BA, binary GA, the binary FPA showed significant higher
system throughput than the other two meta-heuristic schemes. Morevoer, the proposed binary FPA algorithm
also attains higher system throughput than some of the existing counterpart suboptimal scheduling algorithms.
Simulation results verify these findings. The proposed binary FPA algorithm attains a solution very near to
the optimal value quite fast and much within the coherence period for modern wireless data communications as
compared to binary BA, binary GA, random search, and some of the existing suboptimal scheduling algorithms
from literature. The number of evaluation/computation of the objective/cost function for the binary FPA is
quite less than that of ESA (DPC). Both the computational complexity and time complexity of the binary FPA
is quite less than that of ESA (DPC). Furthermore, the generation wise performance of the proposed binary
FPA technique is also quite better than binary BA and binary GA. Moreover, the binary FPA also depicts the
behavior of meta-heuristic algorithms. As per the various findings of this paper, binary FPA can be a prospect
candidate for implementing efficient user and antenna scheduling for MU MIMO broadcast scenarios.
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