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Abstract: Today, thanks to the rapid development of technology, the importance of digital images is increasing. However,
sensor errors that may occur during the acquisition, interruptions in the transmission of images and errors in storage
cause noise that degrades data quality. Salt and pepper noise, a common impulse noise, is one of the most well-known
types of noise in digital images. This noise negatively affects the detailed analysis of the image. It is very important
that pixels affected by noise are restored without loss of image fine details, especially at high level of noise density.
Although many filtering algorithms have been proposed to remove noise, the enhancement of images with high noise
levels is still complex, not efficient or requires very long runtime. In this paper, we propose an effective denoising filter
that can restore the image effectively in terms of quality and speed with less complexity for high density noise level. In
the experimental studies, we compare the denoising results of the proposed method with other state-of-the-art methods
and the proposed algorithm is quantitatively and visually comparable to these algorithms when the noise intensity is up
to 90%.
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1. Introduction
With the increasing speed and data storage capacity of computers and other signal processors, the interest in
image processing research is increasing day by day. However, digital images are exposed to impulse noise, which
affects the detail properties of the image and visually reduces its quality during acquisition through sensors,
wired or wireless transmission, and storage. Salt and pepper noise (SPN), a common impulse noise, is the
random presence of pixels with an extreme value (minimum or maximum) in an image [1]. Even at low noise
density, SPN can significantly degrade the visual quality of the image. It is not only degrading the visual
quality, but also the performance of subsequent image processing such as edge detection [2], classification [3],
segmentation [4], and recognition [5]. Repairing damaged pixels before analysis of the image is an essential
research task of digital image processing. Hence, noise removing is a preliminary step for enhancing degraded
images, and its main purpose is to preserve detailed features such as edges, points, textures and other properties
on images while reducing noise.

In cases where the noise type is nonadditive, linear filters do not provide sufficient performance, while
nonlinear methods are proven to be more successful. The standard median filter (MF) [6], which forms the basis
of nonlinear methods, is widely used due to its performance in reducing low-density noise, high computational
efficiency, and simplicity. The noisy intensity value of the center pixel of the window is removed by replacing
∗Correspondence: canerozcan@karabuk.edu.tr
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the calculated median intensity value of the pixels inside the window. While it can effectively reduce SPN at
low densities of noise, it performs poorly at higher densities of noise. Pixels without noise can also be considered
noise, as MF applies the same treatment to all pixels in the image. In addition, larger sized windows should
be used for images with high-density noise. Such situations cause the MF filter to eliminate desirable features
such as edges and textures.

To eliminate these drawbacks, improved versions of the median filter have been proposed, such as adaptive
median filter (AMF) [7], weighted median filter (WMF) [8], center-weighted mean filter (CWMF) [9], and
decision-based filtering algorithm [10] are proposed. In these methods, variable window size and different
weight values for each neighborhood are used to reconstruct the gray level of the middle pixel in the window
of all pixels in an image. Therefore, these filters can achieve a better restoration result than SMF. Another
variant of the MF filter [11] is also effective at low intensity noise. While applying the filter, firstly, the pixels
affected by the noise are determined with the adaptive median filter, and then a special regularization process
is applied to these pixels. Although these variations and improvements offered better performance than MF at
low intensity noises, they did not provide adequate performance for high intensity noises.

Switching filters, which is one of the important uses of the median filter, divides the filtering process
into two steps as noise detection and filtering. Since these methods use the thresholding, only the value of
the noisy pixel changes, while no change is made in the nonnoisy pixels. If the difference is greater than a
certain threshold, the central pixel will be considered a noisy pixel. In this way, the method ensures that the
image details are protected successfully. The basis of these methods is switching median filter (SMF) [12]. New
versions of this filter were presented with the improved studies carried out later such as progressive switching
median filter [13], modified switching median filter (MSMF) [14], adaptive switching median filter (ASMF)
[15], adaptive switching weighted median filter (ASWMF) [16] and switching-based adaptive weighted mean
filter (SAWMF) [17]. In these methods, besides using a direction difference-dependent noise detector to locate
noisy pixels, denoised pixel value is obtained by replacing each corrupted pixel with the uncorrupted neighbor
weighted average in the filter window. Although significant efficiencies regarding noise detection, image noise
removal, and computational efficiency are achieved, the selection of thresholds is very random depending on the
image and noise density, and when the noise density is high, image details and edges cannot be fully preserved.

The state-of-the-art MF filters have been also provided for obtaining better denoising performance.
Among many other SPN reducing methods, directional weighted median filter [18], the improved median filter
[19], adaptive weighted mean filter (AWMF) [20], improved adaptive median filters [21] are implemented. Later,
the modified directional weighted median filter [22] is proposed, which replaces only the distorted pixels in the
image and replaces the neighborhood information of each pixel with the median of the pixel values in all four
main directions. A modified decision-based unsymmetric trimmed MF [23] has been proposed to remove the salt
and pepper noise, which detects pixels degraded by noise due to excessive gray level. It is provided adaptively
to replace the noisy pixel with the mean or median value according to the number of excessive gray levels in
the filtering window. Although modified decision-based unsymmetric trimmed MF provides improved image
quality at low noise, it causes greater error at higher noise density.

Lately, a new filtering algorithm BPDF [24] that takes pixel density into account has been proposed for
the degraded image that can only be used efficiently for lower-density and medium-density SPN. In this filter,
high level of noise causes a raindrop effect and distorts the image properties. Besides these, algorithms [25, 26]
based on fuzzy sets improved the detection accuracy by setting fuzzy threshold values. The noise adaptive fuzzy
SMF [27] provides a fuzzy function which decides the positions and the values to fill the noisy pixels. A new
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adaptive Type-2 fuzzy filter (FDS) is defined by categorizing pixels based on their primary membership function
values in the given window [28]. The fuzzy directional median filter [26] performs the detection of smooth and
nonsmooth regions as a preliminary step and tries to detect noisy pixels in these regions. It works by using the
smallest standard deviation value for the detection of regions. However, this filter is not sufficient to eliminate
the noise above the medium level.

In addition to the filters mentioned above, filters that are useful at high noise intensities and in situations
with many noisy pixels in the window are also proposed. Adaptive switching nonlocal filter (ASNLF) [29] is
proposed by addressing the limitations of adaptive switching and nonlocal-based algorithms. A simple and
efficient filter [30], which is a union of the median and the mean filter, provided a high rate of noise removal
success at high-density noises but unsuccessful at lower levels. The probabilistic decision-based filter [31] is
presented to decrease noise applying patch else trimmed median by combining two algorithms. In another
study, a different applied MF [32] is proposed considering the value of neighboring pixels and the adaptive
window. An adaptive decision-based kriging interpolation technique (ADKIF) is proposed [33] by replacing a
value that is interpolated using the weights calculated using semivariance between the noisy and the nonnoisy
pixels in a defined neighborhood.

Adaptive Riesz mean filter (ARmF) [34], adaptive Cesáro mean filter (ACmF) [35], improved adaptive
weighted mean filter (IAWMF) [36] and different adaptive modified Riesz mean filter (DAMRmF) [37] which
employ special weighted means for salt and pepper image are proposed. Besides these filters, adaptive frequency
median filter (AFMF) [38] is applied using frequency median to restore gray values of the corrupted pixels.
These proposed filters have successfully reduced SPN at different intensities. In recent years, regularization-
based approaches [39, 40] have been also proposed. The results obtained in TVL1 [40] show that the proposed
approach significantly reduces noise in images with intense noise, while successfully preserving the edges and
fine properties of the original image. Few studies are presented that address the issue of noise reduction related
to SPN using a deep learning approach [41, 42]. Thanks to the preprocessing step, the presence of high-density
noise is reduced, resulting in high-quality noise-free images.

Based on the above studies, noise removal at high densities while preserving image detail characteristics
is still a very challenging task. Existing restoration filters are not capable of producing higher quality denoised
images from distorted images at higher density of noise and large window size, as observed in recent studies
[43, 44]. Due to these drawbacks, we try to propose an effective denoising filter for high density SPN reduction
with high performance. As the details are given in the second section, our novelty in this new method is to
generate a new pixel value over the mean and median information by using a small 3x3 window between the
uncorrupted neighbor pixels of the noisy pixel. Keeping the window size especially small brings along significant
gains in processing times. When we compare the proposed method with other algorithms in the literature, it
stands out with its lower complexity and running time. The proposed algorithm has the characteristics of
being easily applicable in different noise removal applications with performance requirements, as it has an
uncomplicated flow and is simple in terms of coding. The results of extensive experimental studies show that
the reconstruction quality of our algorithm is comparable to other state-of-the-art algorithms, both visually and
based on PSNR and SSIM metrics, even when the noise density is up to 90%. In addition, it is clearly seen that
the proposed method makes a significant contribution to the literature in terms of processing time.

The rest of this paper is organized as follows. The second part introduces the salt and pepper noise with
some statistical parameters and provides an overview of the proposed method. The third part describes the
experimental results in detail, and performance of the proposed algorithm is discussed. In the last part, we
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shared the conclusions to summarize the study.

2. Proposed approach
In this section, we first explained the statistical properties of salt and pepper noise in images, and then explained
the details of our proposed method.

2.1. Characteristics of noise
Many degradations can occur during the capture, transmission, or compression of a picture, generating parasitic
information that might deteriorate the image. We term this information “noise”. Images are employed in a
wide variety of areas, including medical, manufacturing, photography, and so on. It is useful to understand the
many types and sources of noise in order to avoid or remove it. There are three sorts of noise in general.

• Additive noise: g(x, y) = f(x, y) + b(x, y) ;

• Multiplicative noise: g(x, y) = f(x, y) x b(x, y);

• Convolutional noise: g(x, y) = f(x, y) * b(x, y).

where: g (x, y): the noisy image, f (x, y): the original image, b (x, y): the noise.
The additive noise is the most common noise in image processing. In salt and pepper noise, random

bright (with maximum value) and dark (with minimum value) pixels in the image data occur where sharp and
sudden distortions (from image sensor and circuitry of a scanner or digital camera etc.) are seen in the image
signal. Generally, we characterize the noise according to the probability density function (PDF) which is given
as follows [1]:

P (z) =

Pa if z = a
Pb if z = b
0 otherwise

(1)

where z is gray level and if b>a then b is light dot (255) and a is dark dot (0). If either Pa or Pb is zero,
it is unipolar impulse noise, otherwise it is bipolar impulse noise. The noise properties are given in Figure 1.

In this model, if the value of a is smaller than the value of b on the z axis, the gray level a will appear
as a dark spot in the image. Again in this case, the gray level b will appear as a lighter point. If any of the
densities a and b are zero, the noise is unipolar. In the case where the probabilities are not equal to zero, but
equal, the noise type will be randomly scattered in the image. In cases where the noise is nonunipolar, that is,
bipolar, impulse noise is considered salt and pepper noise.

2.2. Proposed denoising algorithm
In this section, we provide some basic concepts that we used while describing our algorithm. Then, the pseudo-
code and flow diagram of our algorithm for the proposed algorithm is given and it is explained how noise removal
is achieved. Our algorithm uses fixed window size. The center pixel of the window is considered noisy if its value
is equal to the salt or the pepper; otherwise, it is a noise-free pixel. The proposed algorithm generates a new
pixel value using the mean and median information between the uncorrupted neighbor pixels of the noisy pixel.
In this study, salt and pepper noise, which is a variant of impulse noise assumed to be randomly distributed.
Salt and pepper effect are seen on an 8-bit image with equal probability.
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Figure 1. The properties of impulse noise: (a) power density function of salt and pepper noise, (b) example of salt and
pepper noise with histogram

Definition 2.1 Assume A := [aij ]mxn is an image and aij is an unsigned integer number between 0 and
255. Here, m is the number of rows and n is the number of columns in image A .

∀ i = [1, 2, .....m] , j = [1, 2, .....n] ⇒ aij ∈ [0, 255] (2)

Definition 2.2 aij is called as noisy pixel of A if aij = 0 or aij = 255 ; otherwise, aij is called as
nonnoisy pixel of A .



a1,1 a1,2 a1,3 . . . . . . a1,n−1 a1,n
a2,1 . . . . . . a2,n−1 a2,n

... . . . ...

... . . . ...
am−1,1 . . . · · · am−1,n

am,1 am,2 · · · . . . am,n−1 am,n


(3)

Example 2.1 Let A matrix as



49 51 50 49 49 49 48 49
52 51 49 47 49 49 48 48
52 51 48 48 51 49 49 49
51 50 49 49 51 50 49 49
52 51 50 50 49 49 49 49
52 50 52 51 51 50 50 48
50 50 51 51 52 50 48 47
50 49 50 50 49 49 49 47


Definition 2.3 Let window w sized 3 × 3 denoted by w(i − 1 : i + 1, j − 1 : j + 1) ; w can be shifted
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horizontally by j + 1 and vertically by i+ 1 .

w =

 A(i− 1, j − 1) A(i− 1, j) A(i− 1, j + 1)
A(i, j − 1) A(i, j) A(i, j + 1)

A(i+ 1, j − 1) A(i+ 1, j) A(i+ 1, j + 1)

 (4)

Example 2.2 Example of w is shifting horizontally



49 51 50 49 49 49 48 49
52 51 49 47 49 49 48 48

52 51
−−−−−−−−−→
48 48 5149 49 49

51 50
−−−−−−−−−→
49 49 5150 49 49

52 51
−−−−−−−−−→
50 50 4949 49 49

52 50 52 51 51 50 50 48
50 50 51 51 52 50 48 47
50 49 50 50 49 49 49 47


In the proposed algorithm, we use two simple statistical parameters for removing the noise: mean value

and median value. Let A be an Im and window size is (2k + 1)× (2k + 1) , the function defined for the mean
value is as follows:

f1 (x, y) =
1

(2k + 1)2

k∑
i=−k

k∑
j=−k

Im (x− i, y − j) (5)

The coefficient in front of the equation attributes uniform weight to each pixel. Thanks to the sum
operations, the loop operates all pixels in the neighborhood around image pixel Im(i, j) . We denoted (2k+ 1)

as the size of selected window and (2k + 1) is odd and symmetrical. In our case where k = 1 ,

f1 (x, y) =
1

9
[Im (x− 1, y − 1) + Im (x− 1, y) + Im (x− 1, y + 1) + Im (x, y − 1)+

Im (x, y) + Im (x, y + 1) + Im (x+ 1, y − 1) + Im (x+ 1, y) + Im (x+ 1, y + 1)]. (6)

For the median value, we identify the function f2(x, y) described as:

f2 (x, y) = median [Im (x− i, y − j)] i, j = [−k, k] (7)

The median represents middle of a sorted list of numbers, and it is calculated by arranging to the data values
from the lowest to the highest value; in this case the median will be the data value in the middle of the set.
The flowchart of our algorithm is given in Figure 2 and its main steps are as follows:

In our proposed algorithm, we first apply the detection step to identify the possible noise in the image and
then the correction step to remove this noise. As we mentioned in the introduction part, we use the window size
as 3× 3 in our method. Especially keeping the window size small in this way makes a significant contribution
to our algorithm in the processing time. Different sizes of the window can be also used, for example, 5 × 5 ,
7× 7 , etc. However, a smaller sized window creates a lower blur effect, while a larger sized window produces a
high blur effect.

In the first three steps of the proposed algorithm, reading the noisy image, converting the image to
fractional for fractional operations, and performing the initialization of the output image as the input image,
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Algorithm 1 Proposed Algorithm Steps
Step 1. Read the noisy image I in
Step 2. Convert I in from uint8 to double
Step 3. Initialize Iout=I in and set the size of w to 3×3
Step 4. Repeat

Select window w((i-1):(i+1),(j-1):(j+1))
If (w(i,j)==0 ∥ w(i,j)==255)

If (all other pixels in w == (0∥255))
Iout (i,j)= median(w((i-1):(i+1),(j-1):(j+1)))

Else
Iout (i,j)= mean(rest of pixels in w which ̸= (0∥255))

Until Each pixel in I in visited
Step 5. Convert Iout from double to uint8

Figure 2. Flowchart of the proposed algorithm.

respectively. In the fourth step of the algorithm, a loop is created that will visit all pixels in the image. In
this loop, a window is first created for the 3× 3 neighborhood of the relevant central pixel. Then it is checked
whether the center pixel has salt (equal to 255) or pepper noise (equal to 0). If the center pixel value is not salt
or pepper, the value of the new pixel in the output image is equal to the value of this center. Otherwise, all
pixels in the existing window are controlled. If all other pixels in the window are salt or pepper, the new pixel
value is found by calculating the median of all pixels in this window. In the else case, the new pixel value is
found by calculating the average of all pixels in the window that are not salt or pepper. After all the pixels in
the image are visited, the creation of the new image is completed, and in the last step, the image is converted
from double to integer, and the processes are completed.

3. Experimental studies

There are many evaluation parameters that can be used to certify the obtained results. In our simulation results,
first peak signal-to-noise ratio (PSNR) and second structural similarity index measure (SSIM) is obtained. PSNR
acts as an image quality estimator between two images and calculates the peak signal to noise ratio. It is most
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commonly used to estimate the efficiency of image quality between the distorted and the original image. A high
PSNR value indicates a low degree of image degradation [45]. For the mathematical notations of PSNR and
SSIM, let X = [xij ] be the original image and Y = [yij ] be the denoised image. We can define PSNR as:

PSNR= 10.log10

(
2552

MSE(X,Y )

)
(8)

MSE is the cumulative squared error which measures the average of the squares of the errors between
the original and the denoised image. The lower the MSE obtained, the higher the accuracy.

MSE(X,Y )=
1

mn

m∑
i=1

n∑
j=1

(xij − yij)
2 (9)

The SSIM calculates the degradation of structural information between two images on grayscale image. If
the result tends towards 1, this indicates that the image has a good quality. The overall index is a multiplicative
combination of the three terms [45].

SSIM(X,Y ) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(10)

µx is the mean of x , µy is the mean of y , σ2
x is the variance of x , σ2

y is the variance of y , σxy is

the covariance of x and y , C1=(k1L)
2 with k1= 0.01 , C2=(k2L)

2 with k2= 0.03 and L: is the pixel-values
between 0-255.

For the experimental studies, we firstly used standard test images such as Lena, Peppers, Plane, Boat,
and Goldhill with sized 512 × 512 , in the gray level (8-bit encoding), window sized 3 × 3 , and with different
noise densities. Various sizes of the window such as 5 × 5, 7 × 7 can be used, but a smaller window is preferred
because it produces less blur effect. Using these images, the performance of the proposed method was evaluated
and a comparison was made with other existing methods. The numerical results are represented as shown
below using SSIM and PSNR as given in equations 8 and 10. Our results were compared with standard median
filter (MF) [6], decision-based algorithm (DBA) [10], progressive switching median filter (PSMF) [13], modified
decision-based unsymmetric trimmed median filter (MDBUTMF) [23], different applied median filter (DAMF)
[32] and noise adaptive fuzzy switching median filter (NAFSMF) [25] as shown below. The obtained results
represent the mean value of ten iterations with random noise. According to Tables 1–3, the proposed algorithm
produced better results in Lena, Peppers, and Plane images for each metric.

Figures 3–5 show graphical illustrations of the proposed method with different noise densities for each
test images. Noise densities were chosen as 50%, 70%, and 90%, respectively, for the generation of visual results.

According to the obtained results, the proposed method gives effective results for the possible noise
intensities for the different input images used. It has been observed that the qualitative performance of the
proposed algorithm on the test images is particularly good at the intense noise level.

In addition, we performed studies on 20 traditional images (Baboon, Barbara, Blonde Woman, Boat,
Bridge, Cameraman, Dark-Haired Woman, Einstein, Elaine, Flintstones, Flower, Hill, House, Lake, Lena, Living
Room, Parrot, Peppers, Pirate, and Plane) and 40 test images in TESTIMAGES Database [46] to show the
performance of our algorithm in detail. In Tables 4 and 5, PSNR (dB) and SSIM results are given for different
levels of noise removal using state-of-the-art methods in the literature.
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Table 1. Simulation results of different filters based on PSNR (dB)/SSIM for Lena image.

Noise (%) MF DBA PSMF MDBUTMF NAFSMF DAMF Proposed
10 33.02/0.98 30.22/0.97 36.4/0.98 37.91/0.95 38.93/0.98 42.98/0.99 42.45/0.99
20 28.74/0.93 28.39/0.94 32.9/0.96 34.78/0.86 35.65/0.96 39.24/0.97 39.57/0.99
30 23.54/0.78 25.52/0.89 30.15/0.91 32.29/0.84 33.66/0.94 36.68/0.96 37.08/0.99
40 18.94/0.52 22.49/0.83 28.49/0.78 30.32/0.84 32.39/0.92 34.95/0.95 35.39/0.98
50 15.23/0.31 19.31/0.75 26.41/0.56 28.18/0.82 30.96/0.90 33.24/0.93 33.81/0.98
60 12.35/0.18 12.10/0.66 24.83/0.11 26.43/0.81 29.91/0.88 31.76/0.90 32.20/0.97
70 10.01/0.10 9.84/0.56 22.64/0.05 24.30/0.75 28.72/0.84 30.32/0.87 30.60/0.95
80 8.14/0.05 8.02/0.44 20.32/0.02 21.70/0.73 27.14/0.80 28.47/0.83 28.78/0.93
90 6.64/0.02 6.57/0.34 17.14/0.01 18.40/0.33 23.62/0.68 26.04/0.76 26.36/0.88

Table 2. Simulation results of different filters based on PSNR (dB)/SSIM for Peppers image.

Noise (%) MF DBA PSMF MDBUTMF NAFSMF DAMF Proposed
10 32.82/0.97 36.75/0.95 36.18/0.96 35.88/0.94 39.48/0.97 41.41/0.98 43.67/0.99
20 28.71/0.93 32.87/0.91 31.32/0.92 33.30/0.89 36.32/0.95 37.99/0.96 40.39/0.99
30 23.46/0.78 29.36/0.85 27.71/0.85 31.24/0.82 34.36/0.93 35.56/0.93 38.22/0.99
40 18.84/0.53 26.89/0.78 24.57/0.74 31.01/0.81 32.81/0.90 33.86/0.91 36.44/0.99
50 15.13/0.31 24.30/0.70 15.06/0.24 30.56/0.79 31.69/0.88 32.53/0.88 34.81/0.98
60 12.23/0.18 21.48/0.61 12.17/0.11 29.25/0.76 30.41/0.85 31.19/0.85 33.14/0.98
70 9.89/0.10 18.51/0.50 9.78/0.05 28.71/0.73 29.00/0.81 29.80/0.81 31.47/0.97
80 8.01/0.05 15.18/0.38 7.96/0.02 24.29/0.70 27.43/0.76 28.29/0.77 29.54/0.95
90 6.49/0.02 12.18/0.28 6.49/0.01 15.61/0.34 23.69/0.65 26.04/0.70 26.81/0.90

Table 3. Simulation results of different filters based on PSNR (dB)/SSIM for Plane image.

Noise (%) MF DBA PSMF MDBUTMF NAFSMF DAMF Proposed
10 31.91/0.98 36.25/0.98 33.79/0.96 34.28/0.94 36.68/0.98 42.40/0.99 42.80/0.99
20 27.65/0.93 31.81/0.95 29.36/0.91 32.68/0.87 33.55/0.94 38.36/0.98 39.39/0.99
30 22.71/0.78 28.24/0.91 26.05/0.83 30.21/0.83 31.81/0.95 35.99/0.97 37.18/0.99
40 18.23/0.52 25.40/0.85 22.77/0.68 30.01/0.81 30.26/0.93 33.83/0.96 35.31/0.99
50 14.61/0.31 22.91/0.77 19.26/0.48 29.32/0.78 28.86/0.91 32.17/0.95 33.58/0.99
60 11.74/0.19 20.43/0.69 11.59/0.12 28.75/0.78 27.92/0.89 30.63/0.93 31.82/0.98
70 9.43/0.11 18.12/0.59 9.34/0.06 27.04/0.76 26.78/0.86 28.96/0.90 30.02/0.97
80 7.56/0.06 15.84/0.51 7.50/0.03 22.25/0.71 25.31/0.81 27.16/0.87 27.97/0.94
90 6.07/0.02 13.43/0.43 6.07/0.01 12.88/0.28 22.34/0.70 24.56/0.80 25.10/0.89

All the results given in the tables were obtained using original Matlab codes of comparison methods on the
same noisy images. According to the average PSNR/SSIM results in Tables 4 and 5, we can say that while the
proposed method provides better success at different noise levels than MF, DBA, PSMF, ASNLF, MDBUTMF,
NAFSMF, DAMF, TVL1, FDS, BPDF, AFMF, AWMF, ACmF, ADKIF (PA) methods, it provides similar
results with methods such as ARmF, IAWMF, and DAMRmF. When the average results given for each method
are evaluated, we can say that our proposed method is more successful than other methods.
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Figure 3. Results of the proposed method for Lena image.

Figure 4. Results of the proposed method for Boat image.

As another analysis, the performances of the proposed method and other median-based filters for different
noise intensities on the Goldhill and Boat image are shown in Figure 6. It shows the visual improvement
achieved by our algorithm, moving from low noise density starting from 10% to high noise density ending with
90%. According to the simulation results, the proposed strategy uses a simple concept that yields visually and
numerically good results. The average processing times of the proposed and other methods are given in Table
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Figure 5. Results of the proposed method for Goldhill image.

Table 4. Average PSNR/SSIM results of the methods for the 20 test images.

Methods 20% 40% 60% 80% 90% Mean
MF 27.52/0.8405 18.42/0.4592 12.40/0.1300 8.92/0.0301 6.51/0.0131 14.75/0.2945
DBA 34.95/0.9692 29.49/0.8279 25.68/0.6880 23.41/0.5275 19.08/0.5254 26.52/0.7076
PSMF 31.25/0.9348 24.89/0.7621 22.56/0.7124 19.20/0.6520 12.47/0.3136 19.78/0.6750
ASNLF 29.72/0.8602 26.03/0.7592 24.03/0.7504 21.42/0.7312 15.27/0.6529 23.29/0.7509
MDBUTMF 33.22/0.9207 29.15/0.8012 28.40/0.7470 23.56/0.7146 22.40/0.6424 27.35/0.7652
NAFSMF 34.01/0.9510 30.52/0.9017 27.34/0.8297 25.94/0.7410 22.39/0.6229 28.04/0.8092
DAMF 36.45/0.9692 32.79/0.9372 29.70/0.8820 25.92/0.7937 24.43/0.7084 29.86/0.8581
TVL1 29.32/0.8214 27.42/0.7721 24.72/0.6841 21.42/0.5845 15.73/0.3522 23.72/0.6429
FDS 33.42/0.9397 30.50/0.9106 26.28/0.7996 21.90/0.6329 12.48/0.2984 24.91/0.7162
BPDF 33.40/0.9421 31.22/0.8992 28.03/0.8346 25.62/0.7420 10.72/0.2706 25.80/0.7377
AFMF 34.03/0.9445 31.64/0.9172 28.92/0.8612 25.93/0.7610 20.96/0.6263 28.30/0.8220
AWMF 35.19/0.9645 32.78/0.9421 30.05/0.8940 26.72/0.7958 24.71/0.7145 29.89/0.8621
ACmF 36.40/0.9773 33.21/0.9408 30.12/0.8895 26.91/0.8021 24.74/0.7152 30.28/0.8650
ADKIF(PA) 36.78/0.9775 33.24/0.9417 30.08/0.8902 26.95/0.8110 23.96/0.7258 30.20/0.8692
ARmF 37.11/0.9729 33.49/0.9490 30.31/0.8892 27.12/0.8015 24.78/0.7186 30.56/0.8661
IAWMF 36.95/0.9810 33.41/0.9521 30.34/0.8954 27.14/0.8134 25.28/0.7353 30.62/0.8754
DAMRmF 37.18/0.9802 33.18/0.9567 30.78/0.8960 27.51/0.8145 25.38/0.7384 30.81/0.8772
Proposed 37.13/0.9917 33.53/0.9688 30.81/0.9061 27.41/0.8427 25.41/0.7429 30.86/0.8904

6. Here, we use the computer with Windows 10, 64-bit, Intel Core i5-8250U CPU, 4GB memory and MATLAB
R2019a version. According to the results obtained, it is seen that the higher the noise density, the more noisy
pixels will be processed, thus increasing the total processing time. It is seen that the proposed method generally
has a shorter processing time at different noise intensities.
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Table 5. Average PSNR/SSIM results of the methods for the 40 test images.

Methods 20% 40% 60% 80% 90% Mean
MF 28.32/0.8914 18.49/0.5254 12.30/0.1520 7.63/0.0421 6.04/0.0161 14.55/0.3254
DBA 34.94/0.9690 29.41/0.9021 25.82/0.7967 18.41/0.6597 17.43/0.5181 25.20/0.7691
PSMF 31.24/0.9121 24.46/0.7519 15.40/0.2959 8.05/0.0521 6.03/0.0167 17.04/0.4057
ASNLF 27.03/0.8018 23.51/0.7276 21.92/0.7020 24.90/0.7432 18.27/0.6513 23.13/0.7252
MDBUTMF 34.05/0.9239 28.20/0.7810 26.26/0.8792 23.75/0.7690 21.00/0.6837 26.65/0.8074
NAFSMF 33.10/0.9641 29.49/0.9212 26.43/0.8729 24.35/0.7913 16.03/0.3168 25.88/0.7733
DAMF 37.08/0.9801 32.62/0.9518 29.55/0.9124 26.28/0.8372 23.65/0.7572 29.84/0.8877
TVL1 31.14/0.8824 29.61/0.8392 25.29/0.7580 21.12/0.6245 12.32/0.3107 23.89/0.6830
FDS 34.37/0.9580 30.21/0.9339 26.02/0.8429 21.29/0.6546 18.49/0.5768 26.08/0.7932
BPDF 33.08/0.9602 30.42/0.9125 28.61/0.8722 24.91/0.7904 8.76/0.2041 25.16/0.7479
AFMF 32.82/0.9708 30.19/0.9431 27.48/0.8991 25.20/0.8170 19.85/0.6593 27.11/0.8579
AWMF 36.72/0.9734 34.43/0.9587 31.24/0.9218 27.69/0.8511 24.88/0.7675 30.99/0.8945
ACmF 38.88/0.9829 34.93/0.9614 31.43/0.9256 27.68/0.8517 24.87/0.7678 31.56/0.8979
ADKIF(PA) 38.40/0.9811 34.20/0.9590 30.93/0.9279 27.59/0.8523 25.92/0.7724 31.41/0.8985
ARmF 39.52/0.9852 35.40/0.9653 31.77/0.9299 27.79/0.8556 24.89/0.7702 31.87/0.9013
IAWMF 39.28/0.9851 35.16/0.9660 31.82/0.9319 28.21/0.8654 25.50/0.7871 31.99/0.9071
DAMRmF 35.41/0.9812 32.87/0.9619 30.94/0.9300 28.12/0.8647 25,46/0.7894 30.56/0.9054
Proposed 39.30/0.9874 35.21/0.9669 31.60/0.9262 28.86/0.8685 26.04/0.7886 32.20/0.9075

Figure 6. PSNR graphs of Goldhill and Boat images.

4. Conclusions
Salt and pepper noise adversely affects the detailed analysis of the image. For this, it is very important that
pixels affected by noise are restored without losing image fine details, especially at high noise density. The
proposed algorithm uses a simple concept of detection based on values that can be taken in salt and pepper
noise. However, if the original image already has black or white regions, our algorithm solves this problem by
selecting the common pixel using the concept of median to restore the corrupted one (in the absence of noiseless
pixels). In the second scenario we use a simple averaging filter that produces a pixel very close to the original
(in case of noisy pixel detection with no noise pixels). Our concept does not use a variable size window with
many parameters to control in the selected window (minimum, maximum and median) used for detection and
correction, making the filtration process really simple. Also, the use of larger windows creates a blur effect and
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Table 6. Average processing times comparisons for 20 traditional images with other methods (in second).

Noise (%) TVL1 BPDF ARmF ACmF AWMF DAMRmF NAFSM DAMF Proposed
10 13.08 8.04 1.27 1.81 16.39 6.06 3.25 1.91 1.04
20 12.98 12.93 2.16 3.41 17.09 10.62 5.74 3.39 2.03
30 13.01 18.22 2.85 4.81 16.27 14.51 8.34 4.72 3.00
40 12.89 23.26 4.19 6.92 16.84 19.02 10.89 6.28 3.94
50 12.98 28.53 4.91 7.86 17.07 22.66 13.31 7.71 5.08
60 12.91 34.26 6.10 9.80 17.88 27.83 15.84 9.33 5.89
70 13.04 39.12 8.39 11.81 18.37 37.84 18.07 11.05 6.88
80 12.86 44.16 9.97 14.75 17.77 41.13 20.61 12.31 8.19
90 13.02 49.62 12.07 17.57 18.29 52.82 23.49 13.60 10.12

produces pixels with a density slightly off the original ones, especially at the edges. In this study, we propose
an effective noise removal filter for high density noise level, which can effectively restore the image in terms
of quality and speed with less complexity. As a result of experimental studies, it is seen that the proposed
algorithm gives successful results without causing any blurring, especially at high noise densities. However, an
algorithm can be designed to run in parallel to improve the working time of the proposed method, especially
in the preservation of fine details, in images where the noise density is even more intense. Therefore, future
studies may focus on parallel design of the algorithm.
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