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Abstract: With the increase in prosperity level and industrialization, energy need continues to overgrow in many
countries. To meet the rapidly increasing energy needs, countries attach great importance to using limited natural
resources rationally, diversifying their energy production using novel technologies, improving the efficiency of existing
technologies, and implementing policies and strategies toward alternative energy sources. In particular, individual energy
prosumers (someone that both produces and consumes energy) head toward smart home energy management systems
(SHEMS) that include renewable energy sources in their homes. By integrating PV solar panels into houses, there is
a need to optimize home energy production/consumption scenarios by consumer behavior. In this study, an intelligent
residential energy management architecture and algorithm to manage residential energy production/consumption are
proposed. The algorithm controls the energy flow in the home according to real-time potential solar power estimation,
demanded energy estimation, electricity consumption price, and battery state-of-charge (SoC). The fuzzy logic algorithm
has been developed to determine the estimated comfort and cost-effectiveness ratios in the near future. The simulated
annealing algorithm, a meta-heuristic algorithm, is performed to obtain the best operating point decision of the battery
using the comfort and cost-effectiveness ratios. Energy flow direction and battery SoC are optimized using simulated
annealing based on the comfort and cost-effectiveness ratio (comparison of alternatives with respect to multiple criteria of
different levels of importance for energy usage). The focus is to generate maximum profit from energy sales for monthly
profit to be achieved. Prototyped hardware and software are implemented and tested in real-time. The test results show
that the 20% reduces energy consumption, and a monthly gain of $89.2 is obtained from energy sales using the proposed
method. Therefore, the test results reveal the effectiveness of the proposed architecture and algorithm.

Key words: Smart grid, renewable energy, fuzzy logic controller, simulated annealing, weather forecast, intelligent
residential energy management

∗Correspondence: cihan.kivanc@okan.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License. 1539

https://orcid.org/0000-0003-0880-134X
https://orcid.org/0000-0002-9726-1340
https://orcid.org/0000-0003-2231-875X 
https://orcid.org/0000-0001-8322-4066
https://orcid.org/0000-0002-1963-480X


KIVANÇ et al./Turk J Elec Eng & Comp Sci

1. Introduction

As a result of the integration of renewable energy sources into homes, the increase in the number of smart devices
in daily life, and the strengthening of smart grid infrastructure, the use of smart home energy management
systems (SHEMS) has become widespread [1], [2]. In particular, reducing the cost of energy consumption and
the demand for the grid during peak hours is one of the most essential benefits of SHEMSs [3]. Moreover,
providing personal energy management and determination of energy consumption/production scenario by the
consumer make SHEMSs attractive [4], [5]. On the other hand, the proliferation of electric vehicles (EVs) requires
intense demand for charging. In a time when household energy consumption for 2020 accounts for 38% of total
consumption in the United States [6], it is estimated that with the integration of EVs into household charging
stations, grids will suffer high demand [7]. SHEMSs regulate the entire energy flow of a home together with
photovoltaic (PV) panels in a scenario where the demand for peak time is reduced [8]. Published studies have
shown that 23.1% may reduce the cost of energy and the demand for peak load by 29.6% [9]. In other respects,
the progress of communication technologies allows the consumer to access all devices [10]. The consumers are
enabled to plan the working schedules of indoor devices with these systems [11]. However, because the resident
uses a significant part of the house devices in an uncontrolled and arbitrary manner, sudden energy demand
appears, and energy management systems cannot control it [12]. For this reason, academic studies generally
focus on energy flow modeling, weather forecast, consumer behavior estimation, power price change estimation,
and device consumption trend estimation [13]–[16].

A software to simulate the load demand of devices has been reported in [17]. Authors of [17] aim to create
priority load demand and to increase comfort in an apartment. In [18], a ”Global model-based Anticipate –
Building Energy Management System” software is developed to reduce cost by optimizing people’s daily energy
needs based on their habits without compromising their comfort. By the “Markov Decision Process” in [19],
consumption cost is reduced by using real-time price information and consumption curve. The system includes
a central energy management system and a SHEMS. In [20], power consumption and demands of household
appliances and heating systems are monitored in the 22-household model. The authors in [20] aim to provide
an economically optimal solution to the consumer with an algorithm called “Power Matcher” which has a man-
agement system, server, and environmental sensors communicated by IEEE 802.15.4 communication protocol.
In [21], the central server tracks weather information, energy cost, and total usage. The interfaces included in
the system consist of monitoring, prediction information, statistics, and a control menu. In [22], a system that
automatically manages based on grid constraints and consumer priorities is proposed for SHEMS. The proposed
system in [22] is based on an intuitive technique that considers the consumer priority, the power delivered from
the grid, and energy sources distributed for programming the devices. Solutions are presented by dividing the
planning problem of indoor devices into subproblems for different time zones, and an intuitive solution is pre-
sented for each subproblem. In [23], considering the maximum consumption amount in a month, a home energy
management system planning the optimal use of home energy resources to minimize the daily energy cost of a
home with real-time pricing is developed. Authors of [23] develop a NAA (Natural Aggregation Algorithm) as
the solving approach method in the proposed system. In [24], a cost-sharing algorithm is developed based on
the consumption rates of all consumers by taking the highest energy consumption cost ranking of all consumers
in a residential area as a reference. Authors of [24] propose an important solution for the mass housing sector as
a scalable energy/cost-sharing algorithm. In [25], a control strategy based on a genetic algorithm can propose
an optimal balance between increasing consumer comfort and ensuring the maximum provision of consumed
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power by renewable energy sources. In the system, real-time electricity price is achieved by optimizing a com-
prehensive cost function taking into account the most important factors such as energy produced/consumed
by each device, consumer preferences, and battery SoC. In [26], an incentive and its structure for consumption
preferences are developed by taking into account the preferences of residential consumers. In a simulation
performed with a testing system including 1200 residential consumers, 16% demand reduction in peak hours
is performed, and financial benefits to the electricity distribution company and consumers are explained. The
results show that $28.217 is saved in public resources, and a residential consumer saved $9,37 on average for
an hour of demand reduction activity. In the proposed system, achievement has been realized in terms of more
efficient use of public energy resources and reducing the cost of consumers. In [27], a scalable methodology that
focuses on reducing unnecessary domestic energy consumption and replacing low-efficiency refrigerators and
freezers using smart-meter and daily temperature data. An increase in energy efficiency is achieved through
determining baseload points of daily energy consumption by the Sliding Window Linear Regression method
in which smart-meter and temperature data are used. In [28], an optimal estimation algorithm for energy
consumption is developed using K-tool clustering and the Receiver Operating Characteristic Curve. More than
89% F-Score and accuracy have been achieved for high-power loads by the proposed Multitarget Classification
Algorithm. In the study, a comprehensive analysis is used on energy consumption, sensor networks, network
traffic management, and communication protocols for Internet-of-Things (IoT) modules and SHEMS. In [29],
an effective energy management system is proposed for home demand response using Reinforcement Learning
(RL) and Fuzzy Logic (FL) methods. In the proposed method, a decision-making algorithm is developed for
creating the operating program of devices according to the consumer’s energy consumption, electricity price,
and peak hours. An energy management method that reduces cost without compromising consumer comfort by
learning dynamic electricity price and consumption patterns using the Q-learning method is developed. In the
proposed method, electricity cost is reduced by 15%–18.5%. Moreover, optimization of three factors is achieved
by a heuristic algorithm in the “Service-Oriented Architecture” study [30]. A smart home management system
is designed considering comfort, economic, and environmental factors. In [31], 24-h energy usage estimation is
performed using linear and nonlinear learning algorithms. The proposed method stores records of 100 homes
for a year with the iRise data collection software. In [32], an autonomous load balancing system is enhanced.
By the sensors connected to the ZigBee network in the system, energy data are collected at certain periods,
and information is presented to the consumer for changing consumer consumption habits. In [33], an algorithm
based on home energy demand response, peak demand, maximum load estimation, user sampling, budget, and
social-environmental effects is proposed using “Master Energy Controller”. The communication network is in
IEEE 802.15.4 standards, and Bluetooth communication is available. The proposed TinyOS software architec-
ture works with low-cost crossbow TelosB hardware. In the present study, a SHEMS architecture and algorithm
that orchestrate the energy buying/selling of a home are proposed. An algorithm encouraging energy sales, and
maximizing profit from energy sales by an individual consumer is proposed. Studies in the literature are mostly
aimed at optimizing the energy consumption of residents. Studies in the literature are mainly aimed at opti-
mizing the energy consumption of residents. On the other hand, it is aimed to transfer the energy produced
to the grid or the residents according to the weights of calculated cost and comfort effectiveness parameters in
this study. The main contributions of this paper are ”making a maximum profit from energy sales”, ”providing
maximum comfort from energy use”, ”optimal storage of energy produced by the solar system”, and ”developing
suitable hardware and software for smart grid.”

In the proposed algorithm, battery SoC, estimated home load demand, actual consumption data from
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smart plugs, energy amount demanded from the grid, and weather forecast data are used as input of the fuzzy
logic algorithm. The purpose of the inputs is to optimize the energy flow for two outputs which are comfort-
effectiveness and cost-effectiveness ratios and to generate the decision-making controller reference resulting
from the optimization. This optimization is performed by simulated annealing because it guarantees finding an
optimal solution and is easy to code, even for complex problems. To what degree the battery be charged and
at what rate the grid be supported are decided based on the findings of iterations of the simulated annealing
method. As a result of the simulated annealing algorithm, the optimal SoC point of use of the battery is
determined. According to the determined critical battery SoC, the direction of energy flow and the energy
distribution scenario are determined.

The remainder of this paper is organized as follows: The principles of the proposed fuzzy and simulated
annealing integration algorithm are presented in Section 2. The design phase includes the development of
constraints of energy flow and management, fuzzy rules, and simulated annealing parameters. In Section 3,
software and hardware design steps, the control approach, and experimental results of the proposed method are
presented. Additionally, the findings and comparative results are provided in Section 3. Finally, the conclusion
is presented in Section 4. The results indicate the practicability and effectiveness of the proposed method for
home energy management.

2. Proposed fuzzy logic and simulated annealing integration algorithm

The energy production/consumption scenario is determined by solar energy potential, battery SoC, and the
energy amount demanded from the grid. An optimal production/consumption algorithm which is created by
the fuzzy logic and simulated annealing algorithms are shown in Figure 1. The fuzzy logic algorithm has been
developed to determine the estimated comfort and cost effectiveness ratios in the near future. Fuzzy reasoning
is a decision-making model that deals with approximate rather than exact values [35]. A fuzzy inference system
(FIS) provides a mapping from the inputs to the outputs based on a set of fuzzy rules and associated fuzzy
membership functions (MFs) [36]. Mamdani method is used in this paper because it offers a smoother output
[37]. Moreover, the Mamdani method is used in MISO (Multiple Input and Single Output), and MIMO (Multiple
Input and Multiple Output) systems [37].

Fuzzy Logic Controller

Battery State of Charge

Electricity Pricing

Solar Energy Potential Estimation Results

Energy Demand Estimation Results

Comfort Effectiveness Ratio (%) Cost Effectiveness Ratio (%)

Simulated Annealing 

Optimization Algorithm 

Battery Usage Ratio (%)

Grid Usage Ratio (%)

Solar Energy Usage Ratio (%)

Figure 1. Block diagram of the proposed control and optimization algorithm.

The estimated solar power potential (ESPP), estimated energy demand (EED), electricity price (EP),
and battery SoC (BSC) are performed in the fuzzy logic algorithm as inputs and comfort/cost-effectiveness
ratios are determined. The MFs for the input variable “Solar Energy Potential Estimation” shown in Figure 2a
are triangular and labelled as No [0 0.75 1.5] [kW], Low [1.25 2 2.75] [kW], Medium [2.25 3 3.75] [kW], High [3.5

1542



KIVANÇ et al./Turk J Elec Eng & Comp Sci

4.5 5.4] [kW]. The MFs for the input variable “Battery State of Charge” shown in Figure 2b are triangular and
labelled as Low [0% 0% 30%], Medium [25% 50% 75%], High [65% 80% 100%]. The MF’s for the input variable
“Electricity Price” shown in Figure 2c are triangular and labelled as daytime (06:00-17:00) (0.11 $/kWh), peak
demand (17:00-22:00) (0.162 $/kWh), night time (22:00-06:00) (0.069 $/kWh). The MFs for the input variable
“Energy Demand Estimation” shown in Figure 2d are triangular and labelled as Low [0 0.35 0.4] [kWh], Medium-
Low [0.35 0.45 0.5] [kWh], Medium [0.47 0.57 0.65] [kWh], Medium-High [0.6 0.7 0.75] [kWh], High [0.7 0.75 0.8]
[kWh]. The MFs for the output variable “Comfort Effectiveness Ratio (CME)” shown in Figure 3a are triangular
and labelled as Very Low [0% 10% 20%], Low [15% 28% 38%], Low-Medium [35% 45% 55%], Medium [50%
58% 66%], Medium-High [62% 70% 78%], High [75% 83% 90%], Very High [88% 96% 100%]. The MFs for the
output variable “Cost Effectiveness Ratio (CSE)” shown in Figure 3b are triangular and labelled as Very Low
[0% 10% 20%], Low [15% 28% 38%], Low-Medium [35% 45% 55%], Medium [50% 58% 66%], Medium-High
[62% 70% 78%], High [75% 83% 90%], Very High [88% 96% 100%]. Moreover, rules table including 180 rules
are presented in Appendix 1.
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Figure 2. Membership functions of the fuzzy controller.
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Figure 3. Membership functions of the effectiveness ratios

The use of a simulated annealing algorithm in optimization problem solving has been developed as a
result of the similarity between finding an optimal solution and low energy level in the annealing procedure of
solids [38]. The fundamental principle of the annealing simulation algorithm is to accept solutions worse than
the current solution to evade local points in the search space with a certain probability. This is calculated by
the difference between the probability values and the temperature value, and the possibility to accept the worst
solutions is reduced during the search [39]. The most visible advantage of annealing simulation compared to
other methods is its ability to evade the local minimum. The objective function of the simulated annealing
algorithm is to search for the optimum battery charge point. Since there are many objective functions in the
algorithm, the problem is reduced to a single objective function (battery optimum charge point). Comfort and
cost are defined as limiting factors so that the variables used in the optimization problem can take specific
values. The algorithm, which is shown in Figure 4 starts with the selection of the initial solution and the
calculation of the objective function. A new or neighboring solution is randomly generated, and the objective
function is recalculated. The change in the objective function is constantly followed, and the algorithm is run
until the best solution is found. When the stopping criterion (the algorithm runs until the average change in
the value of the objective function) is met, the best battery SoC point is determined according to the solution
value obtained. By obtaining one of the variables, the amount of energy supplied from the grid and provided
to the grid is determined using estimated consumption and estimated solar potential.

The charging points of the battery determined by the central controller are considered. A random initial
solution is generated in the simulated annealing algorithm for the most optimal status, and it is assigned as
the best solution. It is assigned as the specified current temperature value and the initial temperature value.
Based on the best solution, a random neighboring solution is created. Considering the difference between
the initial solution and the neighboring solution produced, the neighboring solution is assigned instead of the
old solution if this value is less than zero. Although the optimization stopping criteria are met, the new
solution is assigned instead of the old solution. Taking the charging points determined based on the comfort
and cost-effectiveness ratios as a reference, the best solution is sought by creating a random initial solution
in the simulated annealing algorithm for optimal battery use, the amount of energy demanded from the grid,
and the solar energy use. Using the comfort-effectiveness, cost-effectiveness ratios, and initial battery status
ratio obtained by the fuzzy logic algorithm, the targeted optimal battery SoC rate is determined. Moreover,
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Figure 4. Simulated annealing algorithm flow chart.

the simulated annealing algorithm is performed to obtain the best operating point decision using the comfort
and cost-effectiveness ratios. Random initial values form the cost-effectiveness ratio, battery SoC, and comfort-
effectiveness ratio matrix. The simulated annealing algorithm is run until the best solution point (junction point
of comfort effectiveness ratio, cost-effectiveness ratio, and battery SoC) of the [100x100x100] three-dimensional
matrix shown in Figure 5 is obtained. The initial temperature, cooling factor, and iteration number for the
process are given as 500 ◦C, 0.98, 400, respectively.

3. Experimental study

The experimental test laboratory is shown in Figure 6. Twenty pieces of 275 W PV panels in the laboratory
have an installed power of 5.4 kW in a 54 m2 area on the southern facade. Considering the Akfirat region
(40.951576 ◦N, 29.392204 ◦E) catches the sun for approximately 7 h, 37.8 kWh total production capacity
is determined. The main controller, shown in Figure 7a consists of a power electronics unit, display, ESP-
WROOM-32, BROADCOM BCM2837, STM32F407, External Input/Outputs, keypad, and antenna modules.
ESP-WROOM-32 and BROADCOM2837 communicate with each other via SPI. The STM32F407 processor is
performed for backup solution purposes. The central controller communicates with the solar hybrid inverter via
the ethernet port and manages to/from the battery and to/from grid options. Smart plugs have unique media
access control addresses and can measure current, voltage, and temperature. Prototyped smart plugs, shown
in Figure 7b, communicate with the central control unit via wireless communication. Moreover, the overall
experimental working principle scheme is presented in Figure 8.

Data collected by smart plugs are presented in Figure 9 for various devices. In Figure 9a, Figure 9b,
Figure 9c, and Figure 9d, power consumption of refrigerator, power consumption of television and modem, power
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Figure 5. Proposed simulated annealing algorithm principle.

consumption of washing machine, power consumption of dishwasher are presented, respectively. The study was
continued for six months (21 December 2019–27 December 2019), and for the sake of brevity, one-week data
is presented in this study. Figure 10a shows the power produced from solar panels, Figure 10b represents the
change in electricity price according to time, Figure 10c shows the measured and estimated air temperature
value, and Figure 10d shows the measured and estimated load demand. As an output of the proposed fuzzy logic
algorithm, comfort and cost-effectiveness ratios are shown in Figure 11. In the simulated annealing approach
shown in Figure 5, the optimal battery SoC is determined using comfort-effectiveness and cost-effectiveness
ratios. The amount of battery usage, battery charging, power supplied from the grid, and electricity sold to
the grid are determined by a simulated annealing algorithm. Solar panel energy production is estimated as
1.298 kWh (assumed to be correlated with temperature variation), consumption is estimated as 0.45 kWh, and
temperature value is estimated as 18.89 °C on 21 December 2019, from 08.00–09.00. Electricity consumption
price measured as $0.7195 and battery SoC as 72.8%. The optimization algorithm according to the estimation
for the next hour and the comfort and cost-effectiveness ratios for the 1380th min are determined as 45% and
70% in Figure 11, respectively. A simulated annealing algorithm is performed, and the optimal consumption-
iteration graph is shown in Figure 12. It is determined that 0.32 kWh of energy is supplied from the battery and
the energy amount to be transferred to the battery is 0.92 kWh. The energy amount demanded from the grid is
determined as 0.13 kWh. Solar panel energy production is estimated as 2.944 kWh, consumption is estimated
as 0.52 kWh, and temperature value is estimated as 19.05 °C on 22 December 2019 at 16.00–17.00. Electricity
consumption price measured as $0.11 and battery SoC as 85%. The optimization algorithm according to the
estimation for the next hour and the comfort and cost-effectiveness ratios for the 2460th min are determined
as 45% and 70% in Figure 11, respectively. A simulated annealing algorithm is performed, and the optimal
consumption-iteration graph is shown in Figure 13. It is determined that 0.36 kWh of energy is supplied from
the battery and the energy amount to be transferred to the battery is 2.5 kWh. The energy amount demanded
from the grid is determined as 0.16 kWh.
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Batteries

Kehua Solar Inverter (5500 W)

House Loads

Intelligent House Energy Management Systems Laboratory

5.4 kW Solar Panels (on the Rooftop)

Figure 6. Experimental test environment.

Solar panel energy production is estimated as 1.794 kWh, consumption is estimated as 0.51 kWh, and
temperature value is estimated as 20.98 °C on 23 December 2019, at 17.00–18.00. Electricity consumption price
measured as $0.162 and battery SoC as 78%. The optimization algorithm according to the estimation for the
next hour and the comfort and cost-effectiveness ratios for the 4000th min are determined as 26.7% and 82.5% in
Figure 11, respectively. A simulated annealing algorithm is performed, and the optimal consumption-iteration
graph is shown in Figure 14. It is determined that 0.47 kWh of energy is supplied from the battery. Also, the
energy amount demanded from the grid is determined as 0.04 kWh. Solar panel energy production is estimated
as 2.882 kWh, consumption is estimated as 0.48 kWh, and temperature value is estimated as 22.76 °C on 24
December 2019, at 16.00–17.00. Electricity consumption price measured as $0.11 and battery SoC as 63%. The
optimization algorithm according to the estimation for the next hour and the comfort and cost-effectiveness
ratios for the 5340th min are determined as 60% and 55% in Figure 11, respectively. A simulated annealing
algorithm is performed, and the optimal consumption-iteration graph is shown in Figure 15. It is determined
that 0.4 kWh of energy is supplied from the battery. The energy amount to the grid is determined as 0.5
kWh. Also, the energy amount demanded from the grid is determined as 0.08 kWh. Solar panel production is
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Figure 9. Smart plug data from home appliances.

estimated as 1.24 kWh, consumption is estimated as 0.39 kWh, and temperature value is estimated as 17.14 °C
on 26 December 2019 at 07.00–07.00. Electricity consumption price measured as $0.11 and battery SoC as 86%.
The optimization algorithm according to the estimation for the next hour and the comfort and cost-effectiveness
ratios for the 7680th min are determined respectively as 64% and 50.5% in Figure 11. A simulated annealing
algorithm is performed, and the optimal consumption-iteration graph is shown in Figure 16. It is determined
that 0.39 kWh of energy is supplied from the battery. The energy amount to the grid is determined as 0.85
kWh.

4. Conclusion
By including estimation of near-future PV potential and consumer load demand in-home energy management
systems, we aim to achieve maximum profit from energy sales without compromising consumer comfort.
The proposed intelligent home energy management architecture and control algorithm optimize the energy
produced/consumed. The estimated solar energy potential, energy demand, electricity price, and battery SoC
are performed in the fuzzy logic algorithm as inputs and comfort/cost-effectiveness ratios are determined. To
achieve optimal battery SoC, the outputs of the fuzzy logic algorithm are optimized in the simulated annealing
algorithm. Energy consumption reduction of 20%, and a monthly gain of $89.2 are obtained from energy sales
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Figure 10. Fuzzy logic controller input variables results.
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using fuzzy logic algorithm.

0 1 0 0 2 0 0 3 0 0 4 0 0
3 2 5
3 5 0
3 7 5
4 0 0

0 1 0 0 2 0 0 3 0 0 4 0 0
9 0 0

1 0 0 0
1 1 0 0
1 2 0 0

0 1 0 0 2 0 0 3 0 0 4 0 0
1 3 0
1 4 0
1 5 0
1 6 0

F r o m  B a t t e r y

 

 

Op
tim

al 
Us

age
 (W

)

T o  B a t t e r y
 

 

Op
tim

al
Us

age
 (W

)

F r o m  G r i d

 
 

Op
tim

al
Us

age
 (W

)

I t e r a t i o n  N u m b e r
Figure 12. Optimal energy usage for 1380th min.

using the proposed method. Experimental data has been collected over six months. A cost calculation based
on one week of data is presented in this paper. Considering one week (21 December 2019–27 December 2019) of
values, 268.726 kWh of solar energy is produced, 84.84 kWh of energy is consumed, and an average temperature
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Figure 13. Optimal energy usage for 2460th min.
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Figure 14. Optimal energy usage for 4000th min.
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Figure 15. Optimal energy usage for 5340th min.
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Figure 16. Optimal energy usage for 7680th min.

of 19.68 °C is estimated. If the proposed architecture and algorithm are not performed, the energy cost for one
week is calculated as $9.367, excluding taxes and deductions. As a result of the comparisons, which is presented
in Table 1, performed with the fuzzy logic-based method [12], it is seen that the proposed approach gives 11%
better results. The feasibility and effectiveness of the proposed algorithm are verified by experimental studies.

Table . Comparison of proposed method and fuzzy controller based SHEMs.

Description Monthly gain Consumption reduction ratio
SHEMS based proposed algorithm $89.2 20%
SHEMS based fuzzy controller $24 9%
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Appendix
Appendix 1. Fuzzy rules for the residential energy management system.

No ESPP EP EED BSC CSE CME No ESPP EP EED BSC CSE CME
1 L H H L VL VH 46 LM H H L VL VH
2 L H H M L H 47 LM H H M L H
3 L H H H L H 48 LM H H H L H
4 L H MH L VL VH 49 LM H MH L L H
5 L H MH M L H 50 LM H MH M LM MH
6 L H MH H LM MH 51 LM H MH H LM MH
7 L H MH L L H 52 LM H M L LM MH
8 L H MH M LM MH 53 LM H M M M M
9 L H MH H M M 54 LM H M H MH M
10 L H LM L L H 55 LM H LM L M M
11 L H LM M M M 56 LM H LM M MH LM
12 L H LM H MH LM 57 LM H LM H H LM
13 L H L L LM MH 58 LM H L L MH LM
14 L H L M MH LM 59 LM H L M H L
15 L H L H H L 60 LM H L H H L
16 L M H L VL VH 61 LM M H L L H
17 L M H M LM MH 62 LM M H M LM MH
18 L M H H M M 63 LM M H H MH LM
19 L M MH L L H 64 LM M MH L LM MH
20 L M MH M M M 65 LM M MH M M M
21 L M MH H MH LM 66 LM M MH H MH LM
22 L M M L L H 67 LM M M L LM MH
23 L M M M M M 68 LM M M M MH LM
24 L M M H MH LM 69 LM M M H H L
25 L M LM L LM MH 70 LM M LM L M M
26 L M LM M M M 71 LM M LM M MH LM
27 L M LM H MH LM 72 LM M LM H VH L
28 L M L L LM MH 73 LM M L L MH LM
29 L M L M MH LM 74 LM M L M H LM
30 L M L H H L 75 LM M L H VH L
31 L L H L LM MH 76 LM L H L LM MH
32 L L H M M M 77 LM L H M M M
33 L L H H MH LM 78 LM L H H MH LM
34 L L MH L LM MH 79 LM L MH L LM MH
35 L L MH M MH LM 80 LM L MH M M LM
36 L L MH H H L 81 LM L MH H MH L
37 L L M L M M 82 LM L M L M M
38 L L M M MH LM 83 LM L M M MH LM
39 L L M H H L 84 LM L M H H L
40 L L LM L MH LM 85 LM L LM L MH LM
41 L L LM M H LM 86 LM L LM M H M
42 L L LM H VH L 87 LM L LM H VH L
43 L L L L H LM 88 LM L L L H LM
44 L L L M H L 89 LM L L M H LM
45 L L L H VH L 90 LM L L H VH L
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No ESPP EP EED BSC CSE CME No ESPP EP EED BSC CSE CME
91 MH H H L LM MH 136 H H H L M M
92 MH H H M LM MH 137 H H H M MH M
93 MH H H H M M 138 H H H H H LM
94 MH H MH L LM MH 139 H H MH L MH M
95 MH H MH M MH M 140 H H MH M MH LM
96 MH H MH H MH LM 141 H H MH H H L
97 MH H M L M M 142 H H M L H M
98 MH H M M MH LM 143 H H M M H LM
99 MH H M H H L 144 H H M H H L
100 MH H LM L MH LM 145 H H LM L H LM
101 MH H LM M H L 146 H H LM M H LM
102 MH H LM H VH VL 147 H H LM H VH L
103 MH H L L H LM 148 H H L L VH LM
104 MH H L M H L 149 H H L M VH L
105 VH H L H VH L 150 H H L H VH VL
106 MH M H L LM MH 151 H M H L M M
107 MH M H M M M 152 H M H M MH L
108 MH M H H MH LM 153 H M H H H L
109 MH M MH L LM MH 154 H M MH L MH LM
110 MH M MH M MH M 155 H M MH M MH LM
111 MH M MH H H L 156 H M MH H H L
112 MH M M L M M 157 H M M L MH LM
113 MH M M M MH LM 158 H M M M H L
114 MH M M H H L 159 H M M H H L
115 MH M LM L MH LM 160 H M LM L MH LM
116 MH M LM M H LM 161 H M LM M H L
117 MH M LM H VH VL 162 H M LM H H L
118 MH M L L H L 163 H M L L H L
119 MH M L M VH L 164 H M L M VH VL
120 MH M L H VH VL 165 H M L H VH VL
121 MH L H L MH M 166 H L H L M M
122 MH L H M H LM 167 H L H M M LM
123 MH L H H VH L 168 H L H H MH L
124 MH L MH L H M 169 H L MH L MH M
125 MH L MH M H L 170 H L MH M H LM
126 MH L MH H VH VL 171 H L MH H H LM
127 MH L M L H LM 172 H L M L MH LM
128 MH L M M H L 173 H L M M H L
129 MH L M H VH L 174 H L M H H L
130 MH L LM L H LM 175 H L H L H L
131 MH L LM M H L 176 H L H M H VL
132 MH L LM H VH VL 177 H L H H VH VL
133 MH L L L VH L 178 H L MH L H L
134 MH L L M VH VL 179 H L MH M VH VL
135 MH L L H VH VL 180 H L MH H VH VL
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