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Abstract: As the number of vehicles in traffic is increasing day by day, the accident rates and driving effort are
significantly raising. For this reason, ensuring safety and driving comfort is becoming more and more important. Driver
assistance systems are the most common systems that are adopted for this purpose. With the development of technology,
lane tracking support and adaptive cruise control systems are now being sold as standard equipment. More advanced
research is being done for fully autonomous driving. One of the most critical parts of autonomous driving is speed profile
planning. In this paper, a curvature-based predictive speed planner is designed using a fuzzy logic strategy. In addition
to the predictive curvature value, lateral error to the planned path is considered for the final decision. With the help of
the proposed predictive nature, which is not included in classical curvature-based planners, the vehicle is able to reduce
the speed before cornering. Similarly, it starts increasing the speed when it is still in a curve but very near to the straight
part of the road. In order to illustrate the efficiency of the proposed method and compare it with other approaches, the
simulations are performed using realistic vehicle dynamics models of CarMaker software. After the comparative analysis,
the designed planner is utilized on a real 1/10 scaled autonomous vehicle platform to show its real-world performance.
The results show that the proposed speed planner is an effective and promising algorithm for both the comfort and path
tracking performance.

Key words: Autonomous driving, speed planning, autonomous vehicles, fuzzy logic, robot operating system

1. Introduction
With the development in computation technology and the decrease of the sensor cost, the vehicles are getting
more intelligent day by day. Driver assistance systems were first seen in commercial vehicles as electronic fuel
control and cruise control (CC) in the 1980s. The driver can keep the vehicle at a certain speed due to CC
which greatly reduces the driving efforts required by the driver. Driver assistance systems continue to develop
rapidly and to increase the acceleration and braking performance of the vehicle such as the antilock braking
system (ABS) in the 1990s. Autonomous vehicles can be widely used today due to systems such as lane tracking
and adaptive cruise control (ACC) that were developed after the 2000s. Additionally, driving support systems
that improve vehicle safety make the travel of passengers much safer.

Autonomous vehicles can mimic driver behavior observing their environment and following the designated
path to the target location. Autonomous driving systems control the vehicle steering angle and gas-brake
positions of the vehicle. For the development of autonomous vehicles, it is important to simulate the system in
∗Correspondence: sezerv@itu.edu.tr
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a virtual environment to save both time and cost. The difficulty of testing in a virtual environment is to achieve
real vehicle outputs in the simulation. Vehicle modelling is highly significant to represent the real behavior
of the vehicle. There are several tools that include reliable vehicle and environment models to obtain realistic
simulation results. In this study, we use CarMaker1 for this purpose.

Speed planning, which directly affects comfort and vehicle safety is a critical part of autonomous vehicles
and robots. Dividing the local planning problem into two groups such as heading and speed planning is a
common approach [1]. The speed planners in the literature are mostly designed by taking into account the
comfort, handling [2] and obstacle avoidance performance [3–5]. In most urban driving scenarios, autonomous
driving systems prefer soft speed profiles to keep passenger comfort high. Speed planners can be classified into
two main groups such as; static and dynamic planners. Static speed planners represent the planning before the
vehicle takes off. Dynamic speed planners are the planners that change the vehicle speed instantly while the
vehicle is on the road [6]. In some applications, velocity planning can be done for fuel consumption minimization
such as in hybrid vehicles [7]. [8] uses the dynamic limits of the vehicle in velocity planning. In [9], the speed
planner considers the curvature of the path, longitudinal acceleration, and jerk parameters. The speed planners
designed in [10] and [11] use curvature value to define upper speed limit. The path is defined as a point array
and the speed is adjusted relative to the slope of the closest point in [12]. These curvature-based methods
use the curvature value of the single actual point on the planned path and there is no consideration of the
future parts. On the other hand, some studies such as [13] mimics the human behavior in autonomous velocity
planning. The experiments with drivers show that drivers tend to slow down while approaching a corner and
speed up while exiting a corner, predictively [14].

This paper proposes a novel predictive speed planner design for autonomous driving by imitating the
driver experience. In the proposed approach, a certain part of the path ahead of the vehicle is considered
to calculate a curvature value and the speed is adjusted accordingly. In addition to the predictive curvature
value, lateral error to the planned path is considered for the final decision. The predictive behavior of this
method provides an optimized speed for the path which increases the path tracking performance and comfort
significantly. The speed planner is designed in Matlab/Simulink environment with the CarMaker integration in
order to get realistic simulation results. The pure pursuit method is used to manage the steering of the vehicle.
Visualization software is designed in Unity Platform to examine the simulations more efficient. Regarding the
favourable simulation results, the tests are established on a real 1/10 scaled autonomous vehicle platform to
verify the validity of the fuzzy speed planner in a real-time application. Finally, the simulation and test results
are analyzed to prove the validity and efficiency of the proposed predictive fuzzy speed planner.

The paper is organized as follows. Section 2 defines the vehicle model and the CarMaker implementation
on the Simulink environment. Section 3 briefly describes the path tracking method. In Section 4, the designed
fuzzy speed planner and parameters are explained. The track where the simulations are carried out, benchmark
metrics, the program developed in Unity platform and analysis of simulations are explained in Section 5. Section
6 explains the real-world implementation by introducing the autonomous vehicle hardware and illustrating the
performance results. Conclusion and future works are provided in Section 7.

2. Vehicle model
The vehicle is basically built on three axes as the longitudinal (x axis), the lateral (y axis) and the vertical
axis (z axis). In order to examine the acceleration and braking of the vehicle along x axis, it is necessary to

1IPG Automotive (2021). IPG Automotive [online]. Website https://ipg-automotive.com [accessed 10 September 2021].
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construct the longitudinal model of the vehicle and to examine the forces generated when the steering angle of
the vehicle is changed, it is necessary to construct the lateral model of the vehicle [15]. For the simulation of
the forces acting on the vehicle from the road, the forces in the vertical axis of should be considered. CarMaker
software, which has realistic vehicle models, is used for simulations with a complete model of the environment.

The IPG CarMaker is a simulation software where a vehicle model can be tested for various scenarios. For
this purpose, multiple criteria can be compromised and be adjoined in the simulation. These can be a detailed
model structure, road patterns or a traffic plan. Within this context, the CarMaker integration and testing
software offer a wide range of flexibility and adaptability. Other simulation tools such as Matlab or Simulink
can be employed simultaneously with this software. The input and output parameters of the CarMaker model
are shown in Figure 1. The vehicle model parameters used in the simulations belong to the Tesla Model S,
which is readily available in CarMaker. Vehicle parameters are shown in Table 1.

Figure 1. Inputs and outputs of CarMaker model.

Table 1. Vehicle parameters.

Parameter Value
Vehicle mass [kg] 1840
Gear ratio 9.73
Effective wheel radius [m] 0.3
Moment of inertia [kgm2] 1451
Distance between COG and front axle [m] 1.45
Distance between COG and rear axle [m] 1.555

Steering angle, gas and brake positions are taken as input parameters. On the other side, the output
parameters consist of the position, orientation and speed of the vehicle. The PI controller is used to determine
the gas and brake positions required for the vehicle to reach the desired speed. The coefficients of the PI
controller is manually tuned (Kp = 0.02, Ki= 0.001) by observing the speed tracking performance and the same
coefficients are used for all simulations.

3. Path tracking
Path tracking algorithms establish the required steering angle to keep the autonomous vehicle on the desired
path. Various path tracking algorithms have been developed over time. The most common ones are the pure
pursuit [16] and Stanley [17] methods. In this study, the pure pursuit method is selected for steering angle
calculation which is briefly explained in this section. The main idea of the pure pursuit algorithm is calculating
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the required steering angle geometrically in order to make the vehicle pass through the target point [16].
Destination point is the point located on the vehicle and facing away from the rear axle of the vehicle. This
geometric relationship is shown in Figure 2. Steering can be calculated when the sine rule is applied as:

δ (t) = atan

(
2Lsin (a (t))

ld

)
. (1)

Figure 2. Pure pursuit geometric explanation.

In order to apply the pure pursuit algorithm to the model, the calculations are made in the following
order:

1. Find the position and the orientation of the vehicle in global coordinates.
2. Find the closest point to the rear axle center of the vehicle on the road.
3. Find the target point (Xla ,Yla ) on the road (where the distance between the rear axle of the vehicle

and the target is equal to ld ).
4. Demean the target point from the global axis to the vehicle axis.
5. Calculate the steering angle using the steering angle equation. Go back to Step 1.
An important parameter of the pure pursuit algorithm is the ld parameter that defines the look ahead

distance. If this amount is kept smaller than the optimum value, the vehicle’s steering wheel angle results with
frequent and sudden changes. This behavior causes the vehicle to oscillate. If the amount of look ahead distance
is greater than the optimum value, the vehicle’s behavior will be smoother, but the road following performance
falls down2. In order to provide a smooth ride and to efficiently track the desired path, the look ahead distance
needs to be set carefully.

A new method is proposed in [18] that selects a look-ahead point heuristically by taking the relation
between a vehicle and a path into consideration. This method becomes very advantageous for the vehicle to be
able to converge to the desired path stably and track the path without engaging the cutting-corner problem.
Based on the results of the simulations using this method, the vehicle is able to track the desired path more
precisely.

2MathWorks Inc. (2021). MATLAB [online]. Website https://www.mathworks.com/help//robotics/ug/pure-pursuit-
controller.html [accessed 10 September 2021].
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4. Speed planning
The speed planner has a critical role in autonomous driving applications. The problem is defined as obtaining
an efficient speed plan in order to track the planned path with minimum error while providing high comfort and
low travel time. The requirements are conflicting (e.g., low travel time decreases comfort) and a new approach
based on predictive curvature calculation is proposed for the solution in the next sections.

4.1. Design of predictive fuzzy speed planner
As it is explained in Section 1, the curvature-based approaches use the actual curvature value of the path for
speed planning. On the other hand, we propose a curvature-based method that is inspired by experienced driver
behavior. While driving on the road, experienced drivers slow down the vehicle when coming across a corner to
be able to take the corner safely. Moreover, they increase the speed just before the end of the curve to decrease
the travel time. Additionally, all drivers consider their lateral error on the path for adjusting the vehicle speed.
Based on these observations, a fuzzy speed planner is proposed considering both the lateral distance of the
vehicle to the road and the amount of predictive curvature value in front of the vehicle. Figure 3 illustrates
the structure of the designed fuzzy speed planner. The average curvature of the road and the lateral distance
between the vehicle and the road, are defined as system inputs. The output of the fuzzy decision maker is the
risk factor. If the risk factor is high, then the desire for slowing down the vehicle is also high.

Figure 3. Designed fuzzy logic speed planner.

For the predictive curvature calculation, “n” number of points with “d” distance interval are considered.
This means, speed is planned by looking up to (n-1)d meters in front of the vehicle. Curvature value Ci for
each point is defined in Equation (2).

Ci = 1/Ri, (2)

where Ri denotes the radius of the circle formed by the intersection of the point in the ith index with
its previous and the next point. For example, in Figure 4, the 2nd and 4th points are used for the radius
information of the 3rd point. Cavg is the average of “n” curvature values for each point ahead.

In order to calculate the average curvature value, it is necessary to have the curvature information of
the points ahead along the path. To find the curvature of any point, the radius of the circle passing through
three points (the point itself and its neighborhoods) must be found. The equation of the circle is described by
Equation (3).

Ax2 +Ay2 +Bx+ Cy +D = 0 (3)
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Figure 4. Curvature calculation.

To describe the circle passing through three points, a set of equations that can be defined by the
determinant is obtained.

X =

∣∣∣∣∣∣∣∣
x2 + y2 x y 1
x1

2 + y1
2 x1 y1 1

x2
2 + y2

2 x2 y2 1
x3

2 + y3
2 x3 y3 1

∣∣∣∣∣∣∣∣ = 0 (4)

If the determinant of Equation (4) is calculated with the help of the cofactor, the coefficients A, B, C
and D are respectively equal to the determinants in the next equation.

X = (x2 + y2) ·A+ x ·B + y · C + 1 ·D
where
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. (5)

The x1:3 and y1:3 are the coordinates of the points which for the related circle. By using the coefficients
in Equation (5), the radius of the circle passing through three points is calculated. Radius calculation is defined
in Equation (6).

r =

√
B2 + C2 − 4AD

4A2
(6)

As an example, the average curvature values of the whole test track which is shown in Section 5.3, are
illustrated in Figure 5.

Figure 5. Average curvature values of the test track.
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4.2. Fuzzy logic rules for the proposed method
The proposed speed planner is designed based on Mamdani-type fuzzy inference system using the ”fuzzy logic
toolbox” in Matlab. There are 3 membership functions for each input and 5 membership functions for the
output as shown in Figure 6a. All inputs are normalized before entering the fuzzy block. The fuzzy surface
after the designed membership functions and the rules is illustrated in Figure 6b.

As it is provided in [19], there is no exact method for choosing the membership functions. The shape of
MFs depends on how one believes in a given linguistic variable. In this paper, triangular membership functions
used since they are enough to reflect the definitions, have the advantage of simplicity and computational time.

Fuzzy rules are defined from human expertise, which makes the system fuzzy expert system (FES)[20].
Drivers always look ahead and make a predictive plan by analyzing the shape of the road (curvature) and
their vehicle’s position in the lane. As a driver for safe driving, if the lateral distance of the vehicle is low and
the curvature ahead is low (straight road), then they increase the vehicle velocity. Similarly, when the lateral
distance is high, or the curvature ahead is high, then they plan for decreasing the velocity. The rules in Table 2
are defined from this strategy. As it is illustrated in the table, the risk factor increases together with the higher
values of curvature and the lateral error. This reduces the speed according to the system structure illustrated
in Figure 3.

Figure 6. a. Fuzzy membership functions. b. Fuzzy rule surface.

Table 2. Fuzzy logic rule base (VL: very low, L: low, M: medium, H: high, VH: very high).

Average Curvature Value
L M H

Lateral L VL M VH
Distance M L H VH

H H VH VH

The upper limit of the lateral distance value is defined using road and vehicle widths. In modern highways,
road width is 3.75 m [21] and vehicle width is taken as 1.8 m. In Figure 7, when the vehicle moves 1 m away
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from the center of the lane, it is seen that it approaches the border of the lane. So, the upper limit value of the
lateral distance is selected as 1 m.

Figure 7. Relationship between road and car position.

The upper limit of the average curvature value is selected using the maximum vehicle cornering velocity.
Vehicles need to slow down, such that they do not exceed a maximum centrifugal acceleration [22]. The
relationship between maximum vehicle velocity and the road curvature is defined in Equation(7).

Vmax <
√

µsRg (7)

Thus,
Vmax

2

µsg
< R (8)

Here, Vmax is the maximum vehicle velocity, R is the curve radius, µs refers to the friction coefficient
between road and tire, and g is the gravitational constant. In simulation maximum vehicle velocity is selected
as 70 km/h (19.45 m/s). The friction coefficient for the dry asphalt is 0.9 [23]. So the minimum radius for
turning without skidding can be found in Equation (9).

19.452

0.9 · 9.81
< R =⇒ R > 42.84 (9)

According to the relation between curvature and turning radius as provided in Equation (2), 42,84 m
radius results with the curvature value of 0.023. For this reason, upper limit of the average curvature is selected
as 0.025 in membership functions.

5. Simulations and analysis
In this section, the track where the simulations are performed, the developed software in Unity platform for
analysis and the benchmark metrics for performance evaluation are explained. Turkish Grand Prix track which
is a motor sports race track with 5.38 km length, is chosen for simulations. The track is chosen since it consists
of sharp corners together with straight road segments and it is used for similar simulations such as in [24]. Using
such kind of track, it is possible to examine the behavior of the autonomous vehicle both on straight and curved
parts.
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5.1. Benchmark metrics
In order to analyze the effect of the proposed speed planner, specific performance evaluation metrics are
developed. The first of these is “tracking metric (TM)” which is designed for measuring the tracking performance
based on vehicle’s distance to the desired path (dp ). Second norm of the (dp ) lateral error values is calculated
for obtaining TM metric as provided in Equation (10).

TM =
∑

(|dp|2)1/2 (10)

The second performance metric is the “comfort metric (CM)”. The comfort metric is affected by the
sudden maneuvers of the vehicle. The longitudinal forces acting on the vehicle chassis are caused by the change
in the speed of the vehicle. Lateral forces are the combination of the change in the steering angle and the
acceleration. Vertical forces and subsequent vibrations are related to the road disturbances.

The comfort metric is based on the resultant acceleration (aw ) of the vehicle which is directly felt by the
people during travel. The aw value is leveled in terms of comfort, according to the ISO standard [25]. As the
acceleration value increases, the vehicle moves from the comfort zone to uncomfortable zone. Comfort levels
based on ISO 2631-1 standard are provided in Table 3.

Table 3. ISO 2631-1 standard comfort levels.

Weighted acceleration (m/s^2) ISO comfort level
<0.315 Not uncomfortable
0.315–0.63 A little uncomfortable
0.5–1 Fairly uncomfortable
0.8–1.6 Uncomfortable
1.25–2.5 Very uncomfortable
2 Extremely uncomfortable

The comfort metric is defined as the ratio of sum of the time intervals (shown as ∆t1 and ∆t2 in Figure 8)
that the resultant acceleration aw pass beyond the limit (alim) to the total simulation time. The alim value
is selected as 2m/s2 which defines “extremely uncomfortable” driving.

Figure 8. The resultant acceleration measured on the vehicle chassis.
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The third metric is the travel time which is directly related to the average speed of the vehicle during
simulation. The designed speed planner is compared with the speed planner which was created by considering
only the lateral distance, ignoring the fixed speeds of 50, 60, 70 km/h and the average curve value of the designed
speed planner. The target speed of the fuzzy speed planner and the lateral speed planner was entered as 60
and 70 km/h. The performance of the speed planner algorithms is calculated based on the comfort, the lateral
distance to the road and the time to complete the runway.

5.2. Unity – car player

A car integrating and testing program is developed in the Unity environment [26] to simultaneously evaluate the
values measured on the vehicle (such as the distance to the road, gas-brake positions) during the ride. Using the
developed program, a great opportunity is achieved to examine data such as where the vehicle is at a specific
time, the vehicle speed, the amount of curvature of the road etc. Figure 9 shows the graphical interface of the
developed program.

Figure 9. Unity – car player software gui.

5.3. Simulation results and analysis
The proposed predictive fuzzy speed planner’s performance is directly related to the prediction distance for the
calculation of curvature. In order to show this effect, we performed simulations with various number of points
(1 to 7) to be considered for predictive curvature calculation as shown in Figure 10. The interval between points
is selected as 7 m and maximum vehicle speed parameter Vmax is set as 70 km/h. One extra simulation is made
for comparison with classical curvature-based speed planning approaches, where the number of prediction points
is 1 (no prediction) without considering the lateral error (green path in Figure 10). According to the results,
it is observed (green and blue paths) that tracking performance increases when the lateral error is considered.
Another result from this simulation is the effect of prediction distance. While considering shorter distance
values decreasing the advantage coming from prediction, very long distances causes inclusion of unnecessarily
far regions in the speed plan. According to the results, when the vehicle considers 5 points ahead (35 m), best
tracking performance is obtained.

When the trajectory of the vehicle is analyzed, it is observed that the proposed speed planner slows down
the vehicle, before entering the corner, as expected. Similarly, it starts increasing the speed even the vehicle
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is still in a curvature part but the straight part is very close. These two predictive behaviors can be seen in
Figure 11. The video of the fuzzy speed planner’s performance prepared by the developed software based on
Unity, can be watched from: https://youtu.be/hKWRgb-oGt4.

Figure 10. Simulation performance of different points into account in fuzzy speed planner.

Figure 11. Unity – car player: vehicle gas-brake information.

In order to make an efficient comparison and analysis, several simulations are performed with different
strategies and results are provided in Table 4. The first method called “fuzzy speed planner – 1P – wo Lateral”
represents the classical nonpredictive curvature-based approach. It uses just the actual point’s curvature without
the lateral tracking error. The other fuzzy planners from 1 point to 7 point shows the performance of different
prediction horizons. And finally, constant speed strategies such as 50 km/h, 60 km/h, and 70 km/h are
illustrated in Table 4. According to the results, the proposed fuzzy planner with 5 prediction points results with
the best performance in terms of tracking metric. Moreover, it is the second best in terms of comfort metric.
The best comfort performance is obtained from 50 km/h constant speed strategy since it is the slowest one. For
this reason, its travel time performance is the worst of all as expected. Figure 12 illustrates the paths of each
strategy.
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Figure 12. Simulation performance of different speed planners on the test track.

Table 4. Performance comparison of simulations.

Speed profile Tracking metric
(TM) (m)

Average speed
(km/h)

Comfort
metric (CM)

Travel time
(s)

Fuzzy speed planner – 1P – wo lateral 285.42 64.35 0.325 302.1
Fuzzy speed planner – 1P 185.14 61.8 0.29 314.6
Fuzzy speed planner – 3P 84.02 59.8 0.256 325.1
Fuzzy speed planner – 5P 65.82 58.15 0.245 334.3
Fuzzy speed planner – 7P 99.81 57.24 0.231 339.6
Constant velocity - 70 km/h 876.72 68.09 0.368 285.5
Constant velocity - 60 km/h 207.25 59.54 0.275 326.5
Constant velocity - 50 km/h 68.57 49.94 0.178 389.3

6. Real-world implementation

In order to show the real time applicability of the propose planner in the real-world, it is implemented on a
1/10 scale RC car and compared with constant speeds. Different constant speeds have success on different
performances. For example, while the path tracking the performance of low constant speed is good, the path
completion time is bad. For real-world tests, a 1/10 scale Traxxas Slash 4x4 RC Car is used. Traxxas is driven
by brushless DC electric motor with its Lithium Polymer battery system. This scaled autonomous vehicle can
be seen in Figure 13a. Main components for autonomous driving are as follows:

• Nvidia jetson TX 2 is the mainboard of the RC car for autonomous driving algorithms.
• Slamtech A2 2D Lidar which is mainly used for mapping, localization and local perception.
• The SparkFun 9 IMU sensor is used as an auxiliary sensor to help the vehicle’s position estimation.
• DC/DC Converter is used for providing required voltage supply for the sensors and the computer.
Figure 13b shows the grid map of the environment which is prepared by using simultaneous localization

and mapping (SLAM) technique with the help of Gmapping library [27]. The vehicle’s global path to be tracked
on the map is shown in blue.
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Figure 13. a. 1/10 Scaled autonomous vehicle. b. Grid map of the test environment.

The software development environment is located in the Ubuntu 18.04.5 Bionic Beaver operating system
running on the Nvidia TX2 computer. All software architecture runs on the robot operating system (ROS).
ROS is an open source metaoperating system [28]. It provides the services that is expected from an operating
system, including hardware abstraction, low-level device control, implementation of commonly used functions,
message passing between processes and package management. It also provides tools and libraries for writing
and running codes on multiple computers. ROS continues growing its community and becoming widespread in
the field of robotics day by day.

Figure 14 illustrates the designed ROS nodes for real application. In order to calculate the target
speed using proposed method, path information, the closest point of the vehicle to the path and the position
information of the vehicle are required. The path is defined as waypoints, prepared in CSV format and is
rendered to be read by ROS. “Find nearest position” node is used to determine the closest point of the path
to the vehicle. The path and the position information of the vehicle are required to find it. For this reason,
“vehicle pose” node is developed, which uses adaptive Monte Carlo localization (AMCL) technique [29] to find
the vehicle position on the map. The “find goal position and speed” node determines the point on the path
which is as far as ”look ahead distance” from the vehicle. It also calculates the target speed using proposed
approach or classical methods. In order to implement fuzzy planners, scikit-fuzzy library is used in python
environment [30]. “Pure pursuit” node calculates the required steering angle and sends it to the vehicle along
with the target speed information.

Figure 14. Designed ROS nodes.
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Since the real platform is a scaled vehicle, Vmax parameter is selected as 1 m/s. Five predictive points
are used and the distance between each point is 7 cm. It is observed that the proposed method operates real-
time without any problem. For comparisons, constant speeds are selected as 0.6 m/s, 0.8 m/s, and 1 m/s.
Figure 15 illustrates the paths of each strategy. For simplicity, just 1 tour is visualized but each method is run
2 tours on the test track. The video of the fuzzy speed planner’s real-world performance can be watched from:
https://youtu.be/jrhpFG6ZKV0.

All results are provided in Table 5 for the real application. The proposed fuzzy planner has the best
“tracking” and second best “travel time” performances. Best travel time performance belongs to the fastest
(constant 1 m/s) strategy, but it loses tracking performance as the worst one. The proposed method has
the second best performance in terms of “comfort” where the best comfort value comes from the slowest
constant speed (0.6 m/s) strategy. On the other hand, this most comfortable strategy has the worst travel
time performance as expected.

Figure 15. Performance of different speed planners on the test track.

Table 5. Performance comparison of real-world experiments.

Speed profile Tracking metric
(TM) (m)

Average
vel. (m/s)

Comfort
metric (CM)

Travel
time (s)

Constant velocity - 0.6 m/s 2.334 0.654 0 51.91
Constant velocity - 0.8 m/s 2.609 0.862 0.087 39.409
Constant velocity - 1 m/s 2.815 1.095 0.122 31.016
Proposed fuzzy planner - 1 m/s 1.738 0.906 0.055 37.488

Although the proposed method does not give the best results for every metric, the efficiency of the
approach is shown when all metrics are considered together.
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7. Conclusion
In this paper, a new predictive speed planner is proposed and analyzed in simulations and real-world tests. The
proposed speed planner calculates the curvature of the road ahead and combines it with the lateral path tracking
error using fuzzy logic. This novel approach improves both the tracking and comfort performance comparing
to classical curvature-based approach and the constant speed strategies. CarMaker software is used to make
reliable simulations and comparisons. According to the simulation results, the proposed fuzzy planner with 5
prediction points results with the best performance in terms of tracking metric. Although the high performance
on path tracking, comfort and travel time contradict each other, the new approach is the second best in terms
of comfort metric without a dramatic increment on travel time. The efficiency of the proposed fuzzy speed
planner is shown in a real application on a 1/10 scaled autonomous vehicle hardware. The results show that
the proposed speed planner is an effective and a promising algorithm for speed planning. Real experiments can
be improved for different types of scaled vehicles such as trucks or buses in further studies. The selection of
the number of prediction points, interval between them, membership functions and the rules can be optimized
according to the path as a future work. We use three levels (low/medium/high) for the inputs to get a more
manageable rule table with a total of 9 rules. It has been seen that it is appropriate to have 5 levels for the
output in order to express the scenarios with sufficient precision in 9 rules. It is always possible to increase
the number of levels for inputs and outputs in a future study. Additional work can be done on the design of
membership functions using tools such as artificial neural networks, for performance improvement.
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