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Abstract: A time series anomaly is a form of anomalous subsequence that indicates future faults will occur. The
development of novel techniques for detecting this type of anomaly is significant for real-time system monitoring. Several
algorithms have been used to classify anomalies successfully. However, the time series anomaly detection algorithm was
not studied well. We use a new bidirectional LSTM and GRU neural networks-based hybrid autoencoder to detect if a
machine is operating normally in this research. An autoencoder is trained on a set of 12 features taken from healthy
operating data gathered promptly after a planned maintenance period using vibration sensors. The features taken from
new data are then reconstructed using the trained model. If the model accurately reconstructs the features, the machine
is in good working order. If the reconstruction exceeds a certain error threshold, the machine is functioning strangely
and needs to be serviced.
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1. Introduction
Anomaly detection in time series is a critical subject in the fields of computer science and data mining [1–4]. It
was widely used in a variety of practical uses, including signal processing, pattern identification [5], mathematical
finance, forecasting the weather [6], and control engineering [7]. It has become a requirement in the industrial
sector, as faults that go undetected can result in a catastrophic tragedy [8]. Industrial systems are subjected
to a great deal of stress daily and are failure-prone, thus detection of anomalies can help to improve system
availability and performance. This has a direct impact on productivity and lowers operating and maintenance
expenses [9]. As a result, several studies in this field may be found in a variety of industries, including automotive
[10], manufacturing [11], energy [12], Sensing networks in the industry [13], or even medicine, which uses a variety
of pictures [14].

A time-series anomaly is described as an out of the ordinary pattern that deviates from predicted
behaviour. There have been three types of categories of time series anomalies: a single point, a context,
and a group [3]. Individual samples that exceed the usual range are referred to as point anomalies and can be
discovered using an ultralimit alert. When the sequences’ context shifts, contextual anomalies develop, which
is always tightly tied to the temporal element. Multiple occurrences of data may constitute an anomaly as
a sequential sequence, however, the individuals in this series may be irrelevant. As a result, it is difficult for
models in detecting anomalies to efficiently capture distinct properties of several abnormalities in a time series.
∗Correspondence: kcpmechcvrce@gmail.com
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As a result of the growth of industry and the Internet of Things (IoT), in recent years, there have
been breakthroughs in spotting anomalies in time series data [15]. Multiple sensors are equipped to capture a
large number of time series, and technology has provided more efficient services to companies and dependable
monitoring systems. Multiple events govern industrial systems, making it difficult to identify characteristics
and particular locations in anomalous time series with several variables. As a result, intricate industrial
systems include diverse sensors, which can have a variety of properties, sizes, and characteristics, as well as
high dimensionality and dependence on space and time [16]. This fact frequently means that data has been
cleaned, valuable features extracted, or the dimensionality of the data has been reduced [17]. This is usually
a time-consuming procedure that necessitates domain knowledge. Aside from these difficulties, there are other
intrinsic problems, like the difficulty to design boundaries between normal and abnormal data, and there is a lot
of noise caused by a faulty sensor or incorrect measurements, which can cause false alarms to occur. Due to the
scarcity of anomalous observations, data imbalance [18] is a prevalent problem in anomaly detection settings,
affecting the models’ robustness in detecting anomalies.

Many researchers have looked into time series modelling, particularly with traditional statistical ap-
proaches like ARIMA [19], HMM [20], and GMM [21]. SVM [22] and Random Forest [23] for example, is a
type of machine learning method. Statistical methods, on the other hand, have a hard time dealing with un-
known statistical traits and data with a lot of dimensions, whereas methods for machine learning necessitate
the generation and pre-processing of time-consuming features. Fortunately, for multitime series modelling, deep
learning has shown promise, and numerous studies have used deep learning methods to solve these difficulties in
the identification of anomalies in multiple time series. [8] provides a CNN and RNN-based supervised anomaly
detection approach, which shows promise on industrial multitime series. To protect information technology
infrastructures from harmful malware attacks, unique statistical analysis and autoencoder are used to create an
intelligent method that has been devised [24]. Hu [25] uses Faster R-CNN to distinguish items in the scene and
trains an enhanced detection using an SVM-based classifiers and locate anomalous behaviours. To anticipate
anomalies in crowd frame sequences, a suggested method [26] leverages a collection of fine-tuned CNN archi-
tectures for training variations of SVM classifiers. To answer the industrial anomaly detection problem, Fan
[27] introduces a unique anomaly detection using a hybrid unsupervised approach that combines convolutional
neural network autoencoder with Gaussian process regression.

Recurrent neural networks, or LSTM networks, have demonstrated anomaly detection and performance
in sequence learning problems that is at the cutting edge [28, 29]. The input pattern is converted into a fixed-
length latent vector representation by a long short-term memory encoder. The decoder, which is another LSTM
network, then reconstructs the input sequence using the latent representation. When compared to autoencoders,
autoencoders based on LSTM achieve even greater results in anomaly detection [30]. However, only complicated
LSTM networks with significant computational complexity and enormous memory requirements may produce
considerable gains in detection accuracy [31]. Intrusion detection using a deep neural network (CNN + Bi-
LSTM) has been suggested by Jiang et al. [32]. Neural networks with gated recurrent units (GRUs) have been
discovered to have simpler architectures and training times faster than LSTM neural networks. Yuan and Tian
[33] developed a GRU neural network-based dynamic process fault detection technique, to extract dynamic
properties and categorise industrial processes, GRU neural networks were used. Afrasiabi et al. [34] used a
differential protection strategy that integrated light-gated recurrent neural networks units and CNNs to identify
inrush current in power transformers caused by an internal fault. However, despite their many advantages, these
data-driven approaches necessitate a significant number of abnormal samples, which can be difficult to get in
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reality. In addition, the detection of aberrant operating conditions in limited samples still has a lot of room for
improvement.

Unsupervised machine intrusion detection system in industry time-series data employing a novel frame-
work, BiLSTM-GRU, is proposed in this research, and several enhancements are given to address those critical
issues. The following are the primary contributions of this work:

• While a model can be trained on raw data, it is often preferable to extract key features for the best
accuracy. After extracting key features from industrial time-series data, we use the t-test, Wilcoxon, and
Bhattacharyya tests to rank them.

• Second, BiLSTM-GRU is offered as a unique framework for anomaly detection in industrial time series.
The use of a sliding window to iteratively update the algorithm’s parameters, which allows for quick
identification of abnormalities, necessitates a constant amount of data, ensuring linear complexity in
space and time.

• In machine anomaly detection, this model can be used to perform regression and classification tasks. This
model will assist to increase model resilience in time series anomaly detection when normal and abnormal
data are imbalanced.

• Lastly, tests on data sets are carried out to verify the efficacy of the proposed frameworks and effectiveness
of a unique threshold-setting technique, with the outcomes demonstrating that our strategy outperforms
comparable models in terms of robustness and performance in detecting anomalies under various imbal-
anced dataset ratios.

• The model combines the memory strength of a linear regression model with the generalisation strength of
a deep GRU neural network model for increased accuracy.

2. Dataset preprocessing

To create the dataset, the test rig Figure 1a consists of a 0.5 hp electric motor attached to the left, driving a shaft
on which two bearings are mounted at both ends. The vibration data was obtained using a 3-axis accelerometer
attached to the housing magnetically through Ch1, Ch2, and Ch3. The data was collected with a sampling rate
of 70,000 samples per second from our test rig before and after scheduled maintenance periods and was processed
using MATLAB. We can presume that all of the ”after” data is healthy because maintenance was completed
appropriately. The ”before” data, on the other hand, is less clear: the machine may have been brought down for
maintenance owing to a fault, but machines are frequently taken offline for scheduled maintenance even when
they are working normally. Let’s view the data before and after maintenance to better comprehend it. We can
observe that the data before and after maintenance Figure 1b looks notably different if we go through each of
the members.

3. Featurization
Feature engineering is critical in every process of machine learning and can have a substantial impact on an
algorithm’s performance. The machine learning algorithm can benefit from feature engineering in identifying the
underlying patterns and so increase the model’s accuracy. Featurization of raw signal data requires extracting
features from raw signals in a variety of domains, including time, time-frequency, and so on. Signals of vibration
from machinery components are regarded as nonstationary in general. The term ”nonstationary signals” refers
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(a) Experimental test rig.
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(b) Visualize data before and after maintenance.

Figure 1. Experimental test rig and data visualization before and after maintenance.

to transmissions whose frequency change over time [35]. To convey the changing nature of the character over
time present in a signal, it is necessary to extract time-domain and time-frequency-domain features. Multiple
temporal and time-frequency domain features were recovered from raw signal data in this paper. Mean, variance,
standard deviation, and root mean square (RMS) are some of the statistical temporal domain traits we glean.
Since these signals are not stationary, features like kurtosis and skewness are retrieved as well. For anomaly, the
kurtosis increases its value, and skewness shifts to the negative or positive side. Dimensionless characteristics
such as the crest factor, shape factor, and impulse factor are also derived in addition to previous statistical
features. The shape factor is influenced by its shape, although it is unaffected by its dimension. Signal to noise
ratio (SNR) is the ratio of fundamental signal amplitude to noise signal amplitude. Total harmonic distortion
(THD) is the ratio of the sum of the fundamental signal component’s harmonics. For characterisation, the
first 5 to 6 harmonic components are usually used. The signal to noise and distortion ratio (SINAD) is the
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proportion of the signal amplitude (in rms) to the sum of the other spectral components (in rms). Its value is
approximately equal to THD + noise. Table 1 lists all 10 features retrieved from the raw signal data, as well as
the mathematical techniques utilised to extract them.

Table 1. The mathematical procedures were utilised to calculate the values of the features.

Feature Formula
Mean Mean = 1

n

∑n
i=1 xi

Peak value PeakValue = max (|xi|)

Variance Var = 1
n

∑n
i=1 (xi − x)

2

Root mean square RMS =
√

1
n

∑n
i=1 x2

i

Impulse factor IF = PeakV alue
1
n

∑n
i=1 |xi|

Clearance factor ClF = PeakValue(
1
N

∑N
i=1

√
|xi|

)2

Shape factor SF = RMS
1
n

∑n
i=1 |xi|

Crest factor CF = PeakV alue
RMS

Kurtosis Kurt =
∑n

i=1 (xi−x)4
n×var2 − 3

Skewness Skw =
1
n

∑n
i=1 (xi−x)3√

1
n

∑n
i=1 (xi−x)2

)3

While a model can be trained on raw data, it is often preferable to extract key features for the best
accuracy. Review and preprocess our data interactively using MATLAB software, establish data label as a
condition variable, then extract time and frequency-domain features and rank them to see which are the most
successful. This is because the data label indicates the machine’s condition: before and after maintenance,
and we can study these datasets individually. The goal is to teach a model to distinguish between these
two scenarios. The distributions divided by labels for various features retrieved from Ch1, Ch2, and Ch3 are
visualized in Figure 2.

When a 3-axis accelerometer is employed, one true radial measurement, one tangential measurement, and
one axial measurement are obtained, depending on the position of the accelerometer. As a result, each channel
is equally important. We need to figure out which features are optimal for each channel. The histogram plot
and feature importance ranking approach are used to find the best features. The figure 2 shows the parameters
that determine the histogram’s content and resolution. The resulting feature differs in Ch1, Ch2, and Ch3
because the vibration amplitude varies in the X, Y, and Z axes. By evaluating which features clearly separate
blue data from orange data, we may get a general notion of which ones are effective. THD, SINAD, and SNR
appear to be effective for channel-3, with relatively minor overlap. SINAD and mean, on the other hand, have a
lot of overlap for channel-1. As a result, these characteristics appear to be ineffective. In addition, as described
in subsection 3.1, we apply feature importance ranking to improve feature selection.

3.1. Feature importance ranking for deep learning

The task of measuring the contributions of individual input features (variables) to the performance of an
unsupervised learning model is known as feature importance ranking (FIR) in deep learning. FIR has become
one of the most powerful instruments in explainable/interpretable AI [36] for facilitating the understanding of a
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Figure 2. Histograms of features retrieved from the raw signal data.

learning system’s decision-making and the discovery of essential features in a certain domain. To rank all of the
features extracted from the raw signal data, we employ the t-test, Wilcoxon rank-sum test, and Bhattacharyya
distance.

A t-test is any statistical hypothesis test in which the test statistic follows a Student’s t-distribution when
the null hypothesis is true. The Wilcoxon rank-sum test is a nonparametric test of the null hypothesis that the
likelihood of X being larger than Y given randomly picked values X and Y from two populations is equal
to the probability of Y being greater than X . For two classes χ1, χ2 the Bayes classifier’s minimal attainable
classification error is expressed as:

Pe =

∫ ∞
−∞

min [P (χi) p (x | χi) , P (χj) p (x | χj)] dx. (1)

In the general case, analytic computation of Equation (1) is not possible. An upper bound, on the other hand,
can be calculated. The inequality serves as the foundation for the derivation.

min [a, b] ≤ asb1−s for a, b ≥ 0, and 0 ≤ s ≤ 1 (2)
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Combining Equation (1) and Equation (2), we get

Pe ≤ P (χi)
s
P (χj)

1−s
∫ ∞
−∞

p (x | χi)
s
p (x | χj)

1−s
dx ≡ CB (3)

CB is recognized as the Chernoff bound. By decreasing CB concerning s , the minimum bound can be found.
The bound results for s =1 /2 in a specific form:

Pe ≤ CB =
√
P (χi)P (χj)

∫ ∞
−∞

√
p (x | χi) p (x | χj)dx. (4)

After a little algebra, the following for Gaussian distributions N (µi,Σi) ,N (µj ,Σj) .

CB =
√

P (χi)P (χj)e
(−B), (5)

where

ϵCB =
√

P (ωi)P (ωj) exp(−B)

B =
1

8

(
µi − µj

)T (
Σi +Σj

2

)−1 (
µi − µj

)
+

1

2
ln

∣∣∣Σi+Σj

2

∣∣∣√
|Σi∥Σj |

(6)

and the determinant of the related matrix is denoted by |�| . The Bhattacharyya distance is a class separability
measure that is defined by the letter B. Based on empirical research involving normal distributions, [37] proposes
an equation that links the optimal Bayesian error with the Bhattacharyya distance. This was then used in [38]
for feature selection.

We may iterate on the features and rank them using the aforesaid feature ranking test. For each channel,
we will use the top four ranking features.

1. Ch1: RMS, crest factor, Std, kurtosis

2. Ch2: Mean, skewness, Std, RMS

3. Ch3: THD, crest factor, SNR, SINAD

The distributions for various features extracted from Ch1, Ch2, and Ch3 are visualised in Figure 3 and
are divided by labels. The X-axis displays the value of the features for the Bhattacharya, Wilcoxon, and t-tests.

4. Background
4.1. Bidirectional LSTM
In 1997, Schuster and Paliwal [39] created the bidirectional recurrent neural network (BRNN), which connects
the recurrent architecture, which has two hidden layers in the opposite direction to generate a result. This
bidirectional tendency boosts the recurrent architecture’s input data versatility. Furthermore, the recurrent
bidirectional network improves inputs for the future state to the existing state’s reachability and does not
necessitate the fixation of input data before the training phase [40].

In this work, the recurrent unit of the bidirectional recurrent architecture was the long short-term
memory (LSTM) because it avoids the problem of vanishing/exploding gradients that occurs in recurrent neural
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Figure 3. Features importance ranking.

networks (RNN). Graves et al. [41] also found that utilising the LSTM in a bidirectional architecture improved
classification accuracy significantly. Figure 4a depicts the LSTM architecture, with ht , Ct , and xt representing
the output of the LSTM at time t, the memory state cell, and input at the moment t. The symbol ⊙ symbolises
the multiplication of elements (Hadamard). The hyperbolic tangent function is tanh , and the logistic sigmoid
function is σ [42]. The values of the LSTM components are determined as follows:

it = σ (Wxixt + Uhiht−1 + bi) (7)

gt = tanh (Wxgxt + Uhght−1 + bg) (8)

ft = σ (Wxfxt + Uhfht−1 + bf ) (9)

Ot = σ (Wxoxt + Uhoht−1 + bo) (10)

Ct = ft ⊙ Ct−1 + it ⊙ gt (11)

ht = tanh (Ct)⊙Ot (12)
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(a) The LSTM architecture block. (b) The BiLSTM architecture is depicted in three-time steps.

(c) Gated recurrent unit (GRU).

Figure 4. The LSTM architecture block attached to BiLSTM architecture and gated recurrent unit (GRU).

The input, forget, and output gates are denoted by it , ft , and ot respectively. The input-update value
is gt . The biases of each gate are bi , ba , bf , and bo . The feedforward weights are W, and the recurrent
weights are U. Update of the input and activation of the output are the two activation units in the model. It is
recommended that you employ the tanh activation function [43]. The activation function tanh is a saturating
activation function. In RNNs, it is commonly employed as the recurrent activation function.

Figure 4b depicts the layout training process with BiLSTM, in which the Bi-LSTM algorithm calculates

two hidden sequences: the −→h hidden layer (ahead) and ←−h the hidden layer (backwards). Iterate the first layer
increasing from time t = 1to t = T and the backward sequence layer decreasing from t = T to t = 1 time to
create the output sequence y [44]. The following formulas are used to calculate the output and forward/backward
sequences:

yt = Wh⃗y

−→
ht +W←−

hy

←−
ht + by (13)

−→
ht = H

(
Wxh⃗xt +Wh⃗h⃗

−−→
ht−1 + bh⃗

)
(14)

←−
ht = H

(
W

x
←−
h
xt +W←−

h
←−
h

←−−
ht+1 + b←−

h

)
(15)

The bidirectional structure takes into account the recurrent system’s temporal dynamics as the model is
fed both forward and backward [39].
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4.2. Gated recurrent unit
In 2014, Cho et al. [45] introduced gated recurrent units (GRUs) as a method for gating recurrent neural
networks. The GRU is akin to a forget gated long short-term memory (LSTM) as seen in Figure 4c, but it
does not have a gate that controls output, so it has limited options. Modelling polyphonic music, modelling of
speech signals, and activities using natural language processing, GRU’s performance was shown to be on par
with that of the LSTM in some circumstances. On datasets that are smaller and less common, GRUs have been
proven to be more effective [46]. The values of the GRU neural network components are determined as follows:

Initially, the output vector for t=0 is h0=0.

zt = σ (Wxixt + Uhiht−1 + bi) (16)

rt = σ (Wxfxt + Uhfht−1 + bf ) (17)

ĥt = tanh (Wxgxt + Uhg (rt ⊙ ht−1) + bg) (18)

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt (19)

Figure 5 depicts the suggested BiLSTM-GRU based anomaly detection model. There are nine layers
in the suggested paradigm. The BiLSTM layer, which consists of 16 hidden units, minimizes the training
parameters, total computational cost, and prevents the training model from overfitting. The GRU components
have 32 hidden units come next, followed by BiLSTM layers. These layers are in charge of figuring out the
network flow’s temporal relationship and changing the temporal dynamics, owing to the GRU recurrent neural
networks bidirectional design.

The loss function for this model autoencoder neural networks is MSE.

LossMSE =
1

n

n∑
i=1

(xi − x̂i)
2 (20)

The loss function error is reduced by adjusting network structure parameters.
The benefit of this strategy over typical autoencoder neural models is that when the current hidden layer

receives hidden info on the state from the prior time ht−1 , it has been added to the present time.
The hidden states are influenced not just by the most recent input xt , but also by the info stored in a

hidden state during the update. The network aids in the re-construction of present input data by retrieving
their temporal features, and the use of timing dependence improves anomalous sample reconstruction accuracy,
allowing for the generation of lengthy sequence abnormal samples.

5. Autoencoder model training
To identify if a machine is operating normally, we train a BiLSTM-GRU autoencoder. An autoencoder is trained
on a set of 12 features taken from healthy operating data gathered promptly after a planned maintenance period
using vibration sensors. MATLABr was used to compute features from raw data. There are two labelled
states in the data: before and after. Data acquired before and after maintenance is referred to as this. We
will presume that the data gathered after maintenance reflects a typical (healthy) working condition. Because
we were performing regular maintenance, we may not be able to claim the same for the previous data; this
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Figure 5. Proposed BiLSTM-GRU hyrbid model.

data could be normal or abnormal. For training, we choose 90% of healthy data out of 17,642 raw data. The
proposed model was implemented on a Ryzen 5-3600 CPU and NVIDIA GTX 1650 super graphic card with
Windows 10 OS. The full Training progress is depicted in Figure 6.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iteration

0

1

2

3

4

5

6

R
M

SE

100 200 300 400 500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iteration

0

5

10

15

20

Lo
ss

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iteration

0

5

10

15

20

Lo
ss

Training Progress

Epoch:                             500
Iterations per epoch:  20
Maximum iterations:  10000
Hardware resource:     Single GPU
Learning rate:                0.001

Elapsed Time:               4 min 25 s

Figure 6. Training vs. validation loss for the proposed BiLSTM-GRU based model.
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6. Experimental results and analysis
When the autoencoder receives data that does not appear to be healthy, it will have a tougher job reconstructing
the signal. This will suggest an anomaly. A sample from the before and after maintenance should be extracted
and visualized as in Figure 7a. Note that the charts below compare the error in each of the 12 characteristics’
values (indicated on the x-axis). We can see that features 10–12 in this sample do not reconstruct adequately
for the anomalous input, resulting in a significant error value. This could be a sign that something isn’t quite
right.

 
(a) Error in before and after maintenance of sampled data. (b) Model error on validation data.

Figure 7. Error in before and after maintenance of sampled data, BiLSTM-GRU model error on validation data.

Figure 7b. shows the extract data of before and after maintenance using our suggested model. The
reconstruction error for the data before maintenance is much higher than the data after maintenance, as seen in
the graph. Because the autoencoder was trained on the data before maintenance, it will be able to reconstruct
similar signals more accurately.

Four standard metrics are used to calculate the recall, precision, accuracy, and F1-score of the proposed
BiLSTM-GRU model for anomaly detection of rotating equipment. Based on the operator’s experience, we will
set a 0.5 threshold limit for our machine. As a result, an anomaly is defined as a point with a reconstruction
error that is 0.5 times larger than the mean across all observations.

Recall =
TP

TP + FN
(21)

Precision =
TP

TP + FP
(22)

Accuracy =
TP + TN

TP + TN + FP + FN
(23)

F1 = 2× Recall × Precision

Recall + Precision
(24)

True positives, true negatives, false negatives, and false positives are represented by TP, TN, FN, and
FP, respectively.
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6.1. Discussion
We compared the performance of our proposed BiLSTM-GRU model to state-of-the-art machine learning models
in detecting rotating machinery abnormalities. The ROC curve of the model is shown in Figure 8a. The receiver
operator characteristic (ROC) curve is a tool for evaluating binary classification issues. It is a probability curve
that compares the TPR (true positive rate) to the FPR (false positive rate) at various threshold values, allowing
the ‘signal’ to be distinguished from the ’noise’. The area under the curve (AUC) is a summary of the ROC
curve that measures a classifier’s ability to distinguish between classes.
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Figure 8. ROC curve and accuracy of the proposed model on 0.5 threshold limit.

The following is a list of additional hyperparameters to consider. The number of epochs is 500, with
a minibatch size of 500. The learning rate starts at 0.001, decays to 0.01, and the models are trained with a
momentum of 0.9 using the adaptive moment estimation (Adam) optimizer. Figure 8b depicts the suggested
model’s confusion matrix and accuracy at the 0.5 threshold limit. The test is performed ten times to demonstrate
that the proposed model is stable. Table 2a shows the average diagnosis performance of all studies. Many studies
on anomaly diagnostic algorithms based on shallow and deep learning have been published in recent years. The
suggested method is compared to recent approaches such as K-means [47], ANN [48], LSTM [49], RF-ET [50],
and BiLSTM-RNN [51] to demonstrate its originality in the field of anomaly diagnosis. The average diagnostic
accuracy of each technique is shown in Table 2b. When the results of the proposed strategy are compared to
the results of other methods, it is obvious that the proposed strategy enhances diagnosis accuracy, proving its
efficacy. Our suggested BiLSTM-GRU based model outperforms state-of-the-art anomaly detection methods,
as shown in Table 2b.

7. Conclusion
For industrial rotating machinery, the suggested BiLSTM-GRU anomaly detection model outperforms state-of-
the-art algorithms. It can also be implemented and used on any industrial machine. It can also be linked to an
alert system that either controls machine anomalies or identifies any irregularities and sends a notification to
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Table 2. The BILSTM-GRU empirical results and compared to other models.

The BILSTM-GRU empirical results.
Metrics Testing outcome
Recall 99.84%
Precision 99.20%
Accuracy 99.66%
F1-score 99.52%
AUC 99.62%
Parameters of training 15,878
Total parameters 17642

Suggested BiLSTM-GRU compared to other models.
Model Model methodology Accuracy
Pahl et al.[47] K-means 96.3%
Diro et al.[48] ANN 98.27%
Azumah et al.[49] LSTM 97.94%
Alrashdi et al.[50] RF-ET 98.01%
McDermott et al.[51] BiLSTM-RNN 98.48%
Our model BiLSTM-GRU 99.66%

permitted members and takes necessary steps to mitigate the existing threat to maintain control of the situation
and to protect their industrial machinery.

A method for ranking all the features extracted from the time-series data from a 3-axis accelerometer was
also proposed. When considering variations in machine wear circumstances, BiLSTM-GRU anomaly detection
model techniques could be used reliably in industrial use. In practice, the machine maker could calibrate
our automatic technique once by upgrading their threshold limits, removing the requirement for continuous
recalibration and hand-tuning by the machine operator. The methods given here were easy to apply to a
real-time monitoring procedure, and the anomalies response was instantaneous.

During training, this model obtains optimal performance in a very short time. The broad component’s
memorising and regularisation capabilities can be increased in the future, allowing it to provide significantly
better accuracy when paired with deep components. New reduction and feature crossing strategies can be
developed to further improve the situation. Future research could include combining other regression models
with additional deep neural network techniques.
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