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Abstract: Bearings are generally used as bearings or turning elements. Bearings are subjected to high loads and
rapid speeds. Furthermore, metal-to-metal contact within the bearing makes it sensitive. In today’s machines, bearing
failures disrupt the operation of the system or completely stop the system. Bearing failures that can occur can cause
enormous damage to the entire system. Therefore, it is necessary to anticipate bearing failures and to carry out a regular
diagnostic examination. Various systems have been developed for fault diagnosis. In recent years, deep transfer learning
(DTL) methods are often preferred in current bearing diagnosis models, as they provide time savings and high success
rates. Deep transfer learning models also improve diagnosis accuracy under certain conditions by greatly reducing human
intervention. Diagnosis at the right time is very important for the sustainability and efficiency of industrial production. A
technique based on continuous wavelet transform (CWT) and two dimensional (2D) convolutional neural networks (CNN)
is presented in this paper to detect fault size from vibration data of various bearing failure types. Time-frequency (TF)
color scalogram images for bearing vibration signals were obtained using the CWT method. Using AlexNet, GoogleNet,
Resnet, VGG16, and VGG19 deep transfer learning methods with scalogram images, fault size prediction from vibration
signals was performed. Five different transfer deep learning models were used for three different data sets. It was
observed that the success rates obtained varied between 96.67% and 100%.

Key words: Bearing faults, fault detection, fault classification, continuous wavelet transform, convolutional neural
networks, transfer learning

1. Introduction
Recent technological advancements have expedited the automation process by minimizing human participation
in the sector and increasing the demand for new gear and equipment. Automation systems perform human-
powered operations in a shorter time and are more stable. The growing usage of automation systems has
expanded both the spare parts business and the maintenance and repair demands for these parts. Thus,
maintenance-repair service has become essential for automation systems in the industry. The bearings, which
are widely used in automation systems in the industry, are one of this equipment. Bearings are widely used in
many machines and industrial applications. Bearings consist of an inner ring, an outer ring, a rolling element,
and a cage. Bearings must be able to withstand immense mechanical stress. There are some cases where the
bearing is damaged and the whole system is adversely affected. A malfunction that may occur in the bearing
affects the whole system. In such cases, great financial losses are experienced in automation systems. For this
reason, it is necessary to diagnose the bearings correctly and in advance. The no-fault operation of the bearing
components is vital for the fault-free operation and life of the machines. A study from Europe shows that 34%
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of the bearings could complete their life, and 66% of them were replaced early for various reasons. If changed
early; it was seen that 16% could not complete their life due to assembly and disassembly errors, 36% could
not complete their life due to lubrication errors, and 14% could not complete their life due to bad working
conditions and pollution.

Faults in bearings are caused by mechanical friction, overheating, excessive or reverse loading, and
contamination during operation. At the same time, the misalignment of the balls during production and
the errors caused by the selection of nondurable materials causes the bearings to malfunction. These types
of errors greatly affect the performance of the machines of which the bearings are a part. Early detection of
bearing failures and taking measures against them have a crucial place in the efficient operation of the machines.
A failure in bearings, which is one of the building blocks of mechanical transmission systems, greatly affects
the stability, precision, and efficiency of the mechanism. If the relatively minor fault is ignored initially and
allowed to grow further, it begins to threaten the safety and life of the mechanism. Therefore, these bearings,
which have a very low cost compared to the mechanism, should be monitored correctly and the bearing must
be replaced by stopping the system in case of failure [1–6].

Deep learning models are frequently preferred today in diagnostic models. On the other hand, deep
learning techniques need a great quantity of labeled data. Because of this disadvantage, researchers prefer
pretrained deep learning models. Therefore, the available features in the pretrained model are transferred to
the transfer learning (TL) models to be used in a new problem. However, given the evolving new operating
conditions in bearing failure analysis, collecting large amounts of labeled data for supervised diagnosis is costly
and time-consuming. Therefore, when previously learned features are used in transfer learning models for a new
problem, the data is not used in the training step and increases the effectiveness of the model in error diagnosis.

In this study, fault size estimation from bearing vibration signals was performed by using continuous
wavelet transform (CWT) based scalogram images with transfer learning methods. 1D vibration signals have
been converted into scalogram images using CWT methods. In the classification phase, transfer deep learning
methods such as AlexNet, GoogleNET, Resnet, VGG16, and VGG19 were employed. Scalogram images are
submitted as input to transfer methods. Using AlexNet, GoogleNet, Resnet, VGG16, and VGG19 deep transfer
learning methods with scalogram images, fault size prediction from vibration signals was performed. Five
different transfer deep learning was used for three different data sets. It was observed that the success rates
obtained varied between 96.67% and 100%. Considering the obtained results, one can conclude that successful
results were obtained with the proposed approach. The most essential contributions of this manuscript; the
first are 3 original data sets of bearing vibration signals taken in different scenarios are used. The second one
is that vibration signals are converted to scalogram images using CWT and these images are used as inputs to
transfer deep learning methods. According to the results, it was observed that the proposed method provides a
stable approach for detection bearing failures from vibration signals.

2. Literature studies
For many years, bearing fault analyses have been found worthy to research. Information about the bearing
failure status can be obtained by collecting vibration signals in certain periods and analyzing these signals with
an intelligent model. Many studies based on vibration signals of bearings were carried out using computer-based
machine learning methods.

Arslan et al. [7] formed a theoretical model for the system by analyzing the regional surface defects in
radial ball bearings using the vibration method and developed a computer program simulating the system due
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to this model. McInerny and Dai [8] have performed signal envelope analysis, and the link between bearing
failure frequencies and amplitude modulation/demodulation was explained. Orhan et al. [9] investigated the
vibration behavior of a faulty bearing in a real system. Wang et al. developed a novel hybrid technique of
the random forest classifier for rolling bearing diagnostics. The defect feature parameters were retrieved using
wavelet packet decomposition, and the optimum primary wavelet set for signal preprocessing was defined using
signal-to-noise ratio and mean square error values. Researchers stated that distinguish normal, inner, outer,
and ball faulty bearings with an accuracy of 88.23% with the proposed method in the comparative experiment
results [10]. Yan et al. proposed a new fault classification algorithm based on optimized SVM with multidomain
features, including three phases (i.e. multidomain feature extraction, feature selection, and multidomain feature
extraction). The researchers used three techniques (statistical analysis, fast Fourier transform (FFT), and
variational mode decomposition (VMD)) independently in the first step to extract fault feature information
from the multidomain direction (e.g., time domain, frequency domain, and time-frequency domain). They
carried out feature selection with the Laplace score algorithm. Using the support vector machine classification
model based on particle swarm optimization (PSO-SVM) to employ the detection of the bearings’ various failure
states, according to the results of the experiments, multidomain features give greater diagnostic accuracy than
single-domain features [11]. Kuncan obtained bearing vibration signals from a special test setup and the signals
were transferred to the 1D-LBP domain by applying this method to the vibration signals. Statistical features
were obtained from the signals in the 1D-LBP domain and the vibration signals were classified by gray relational
analysis (GRA) using these features [12].

Deep learning models, which are used in various fields in the literature, have started to show their
effectiveness in bearing fault diagnosis studies. In this context, many researchers have started to study deep
learning models for bearing land diagnoses. The fact that traditional methods take more processing time and
the lack of a standard model has caused researchers to use transfer learning models more widely. Wang & Gao
[13] first transformed the bearing vibration data into spectrum images with Morlet-based wavelet transform.
Later, researchers classified the bearings as normal, inner, outer ring, ball defective bearing with the VGG19
transfer learning model. They achieved 93.9% success with this method. Mao et al. realized the classification
of the normal, initial stage, and heavy faulty bearings by using the VGG16 transfer learning model. The
researchers created a three-channel data set by combining TF domain information. Original vibration data,
Hilbert–Huang transform (HHT), and fast Fourier transform (FFT) transformations of vibration data were
merged to form a 3D dataset. They stated that the model they created determined the starting point of the
bearing failure without any errors. In addition, comparative studies have shown the superiority of the transfer
learning model over traditional methods [14]. Shao et al. used the VGG16 model in three datasets containing
faults in induction motors, gearboxes, and bearings. First, they converted the data set they obtained from these
three experimental sets into TF images. Later, they classified these images using the VGG16 model. In the
data set of induction motor, the authors achieved to classify the data set consisting of normal motor, stator
winding faulty motor, unbalanced rotor motor, bearing defective motor, broken bar motor, inclined rotor motor
with 100% accuracy. They achieved 99.31% success in the classification of the gearbox dataset (worn, missing
parts, welding faulty, surface faulty types). For the last dataset of bearing, they succeed 99.82% accuracy in
the classification of normal, outer ring, inner ring, ball defective ball bearing, and both inner and outer ring
faulty bearings [15]. Wang et al. converted vibration data into spectrogram images using FFT. In their studies,
researchers obtained low-level properties of ResNet-50 by using the Resnet-50 model and created a new feature
set by replacing the last two layers of the model with the multiscale feature extractor. They tested their models
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using the public data set (Case Western Reserve University–CWRU) bearing data set and the data set which
created by them in their test setup. In the CWRU dataset, the researchers achieved the highest success in
the classification of IRF, ORF, and BF defective bearings under different operating conditions, 99.80%, and
in the datasets, 99.23% in the classification of IRF, ORF, and BF defective bearings. Ma et al. transformed
the vibration data obtained from the CWRU data set into 2D images with three different methods. These
images are obtained by frequency slice, wavelet transforms, continuous wavelet transform, and reconstructed
image methods, respectively. They distinguished the types of bearing faults using the Alexnet architecture
and applied t-distributed stochastic neighbor embedding (t-SNE) to visualize the feature learning process. The
researchers achieved a 99.19% success rate with this model which was developed by them [16]. Lu et al. used
Alexnet to identify the different types of bearing failure in the CWRU dataset. To test the effectiveness of
the suggested approach, they choose five bearing faults obtained under two different motor loads and speeds.
Then, the researchers transformed the vibration signals into spectrogram images with the nonuniform FFT
method and they could distinguish the bearing faults types with a 99.7% success rate [17]. Wen et al. used the
ResNet-50 model with 51 convolutional layer depth for fault diagnosis in their studies. Firstly, they converted
the vibration signals into gray images. They tested the model they presented in three different data sets. They
stated that they achieved 98.95% success for the Paderborn KAT bearing data set, 99.99% for the CWRU data
set, and 99.20% for the self-priming centrifugal pump data set [18]. As a conclusion of the studies discussed,
the researchers have usually obtained prominent results for diagnosing bearing faults based on deep learning
techniques.

3. Datasets
In this study, 3 data sets taken in different scenarios are used. Information about the data sets is given below.
Data Set 1 (DS1): It consists of the signals obtained at the same speed (2100 rpm) test setup of the bearings
with fault-free (0 mm), 0.25 mm outer ring fault, 0.5 mm outer ring fault, and 0.75 mm outer ring fault. The
data obtained in this data set were obtained by running the fault types of different fault sizes at 2100 rpm in a
certain time period in the experimental setup.
Data Set 2 (DS2): This dataset consists of the signals obtained at the same speed (2100 rpm) test setup of
bearings with a fault-free (0 mm), 0.25 mm inner ring fault, 0.5 mm inner ring fault, and 0.75 mm inner ring
fault. The data obtained in this data set were obtained by running the error types of different error sizes at
2100 rpm in a certain time period in the experimental setup.
Data Set 3 (DS3): The dataset consists of 3 faults (0 mm), 0.25 mm ball fault, 0.5 mm ball fault, and
0.75 mm ball fault, obtained from the same speed (2100 rpm) test setup. The data obtained in this data set
were obtained by running the error types of different error sizes at 2100 rpm in a certain time period in the
experimental setup.

Figure 1 shows the setup of the study. In this setup, the servo motor from which the data will be taken,
the accelerometer sensors that serve as an acceleration measurement, as well as the bearing holding mechanism
in the servo motor, the tool kit for various mechanical disassembly operations, the computer that provides the
analysis and processing of the data, the valve and the radial valve in the system that provides the movement
of the piston load. In addition, there is the I/O driver that performs the opening and closing operations of the
system and the DAQ Card unit that collects the data.

The working principle of this system is to follow the resulting scenarios by sending artificial errors to the
servo motor. Based on these scenarios, a precautionary mechanism can be created against errors.

1854



KUNCAN et al./Turk J Elec Eng & Comp Sci

Figure 1. Setup and components.

4. Methods
4.1. Continuous wavelet transform
In the frequency and time domains, the wavelet transform is suitable for representing temporal characteristics
locally. A wavelet transform is a function that combines a wavelet with a time series of a function. Continuous
wavelet transform (CWT) is used to generate a frequency and time function scalogram to achieve better time
localization for short duration high-frequency events and better frequency localization for low-frequency long-
duration events. A scalogram is the absolute value of the coefficients obtained using CWTs of a signal. It
depicts how much each frequency band component contributes to the energy of the signal over time intervals
[19–20].

CWT helps to distinguish noise from signals by having TF representation. It is difficult to distinguish
noise from signals simply by the time domain. Wavelets are useful in analyzing such signals. The wavelet
transform is excellent at representing temporal properties locally in both time and frequency domains. Wavelet
transform is a joint function of wavelet and time series of a function. CWT is used to produce fine and common
TF analysis and to help localize frequency information.

The TF diagram is obtained from the analysis of signals whose frequency varies according to time with
CWT. The method chosen for TF domain transformation is crucial in pattern recognition applications. Wavelet
transform is a suitable method for such applications. Literature has shown that CWT is an effective method
for nonstationary signals such as EEG, EMG, and ECG. In wavelet transformation, wavelet functions such
as Daubechies, Morlet, Symlets, and Gaussian are employed. In this study, Morlet wavelet transform, which
is widely used, was preferred. It is known that the wavelet is a small wave-like function of limited duration.
The family of ψ(s,τ) (t) functions is defined as the version of a single main wavelet function ψ(t)ϵL2 (R)
transformation parameter (τϵR) and expansion parameter (sϵR) [21].

ψs,τ (t) =
1√
s

∫
ψ(
t− τ

s
) (1)
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Here ψ(s,τ) (t) denotes the one-dimensional signal being converted. τ is the wavelet function; s is the
transform parameter and ψ is the main wavelet function. When the scale parameter (s) is large, it expands
the signal and is used at low frequencies; the small-scale parameter (s) compresses the signal and is used at
high frequencies. Here, (1/

√
|s|) normalization states that ∥ ψ(s,τ)(t) ∥ is independent of s and τ parameters.

Wavelet functions are usually normalized to have a unit (∥ ψ(s,τ)(t) ∥= 1) . The CWT is calculated as an
inner product of x(t)ϵL2(R) with the translation and expansion of normalized wavelets as 1√

s
ψ( t−τs ) . With

the CWT, the coefficients of the signals are calculated with the following equation [22–24].

Wψ
x (s, τ) = ⟨x(t), ψs,τ ⟩

∞∫
−∞

x(t)ψ∗(
t− τ

s
)dt (2)

The wavelet transform coefficients are generated by associating the normalized wavelet function at various
scales and sliding over the data at any point in time. CWT not only affects the expansion of the mother wavelets
but also the amplitude. When the parameter s is high, the wavelet amplitude is low, and when s is low, the
wavelet amplitude is high. The wavelet function scans the input signal x based on the transformation parameter
� for a value of a given scale parameter, and this process is repeated for each value of a parameter. The scalogram
images utilized in the study are a measure of the energy distribution in the signal’s time shift (�) and scaling
factor (s).

A scalogram is the absolute value of the coefficients obtained using CWTs of a signal. It shows how much
each component of the frequency domain contributes to the energy of the signal over time intervals. The energy
formula is defined by the following equation [22,24].

Energycwt(τ, s) =
∑
τ

∑
s

(Xcwt(τ, s))
2 (3)

4.2. Convolutional neural network (CNN)

Convolutional neural network (CNN) was motivated by the biological regulation of the visual cortex with
simple and complex cells [25–26]. Convolutional neural network has three major characteristics that make
them appropriate for extracting features from pictures. Local receptive fields, weight sharing, and spatial
subsampling are all essential aspects [27]. Convolutional neural network is a multilayer feedforward NN that
includes different layer types with convolution layers, ReLU layer, pooling layers, feature extraction layers
with batch normalization, and fully connected output layers. Convolutional neural network (CNN) is designed
to recognize micro-macro features, including edges and shapes in images. The layers in convolutional neural
network (CNN) are briefly summarized below. The first layer is the input layer to a convolutional neural network
(CNN) that accepts M × N × 3. The convolution layer is the initial layer that extracts information from an
input image by convolutional an image with a filter or kernel.

Convolutional neural network (CNN) employs a filter with particular parameters with the same depth
as the input picture, which is then merged with the image. The filter represents a curve or shape that joins
the input image. The shape resembling the curve in the input image represented by the filter reaches higher
values because of convolution. A 3D feature map in the size of ( a−c

stride +1)x( b−d
stride +1)x(n) is obtained when n

filters (f) of size (c × d × 1) are applied to an a × b × 1 gray image (I). When the number of steps (stride) is
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1 (one), then the output will be (a–c+1) × (b–d+1) × (n). The convolution process between filter vectors can
be described mathematically as follows [28]:

X l
j = ϑ(

∑
c

X l−1
i ∗ f lcd + blj). (4)

Here ϑ is the activation function, f is the filter matrix and l is the lth layer in the network [28].
Pooling layer: When images are too large, pooling layers can be used to reduce the number of parameters.

Pooling is the process of grouping matrix data into various segments and replacing the entire segment with a
single value, resulting in a reduction in the amount of metric data. Some of the popular pooling functions are
max pooling and average pooling. When e × f × 1 filter is applied to the image whose output is (a–c + 1) ×
(b–d + 1) × (n) of the convolution layer, the image is ((a–c + 1) – e + 1) × ((b–d + 1) – f + 1) transforms into
an image of size x(n). The depth of the image is preserved. However, there is a decrease in the two dimensions
of the image. Mathematically, the pooling process can be defined as follows:

xlj = ϑ(βljdown(z
l−1
i + blj). (5)

Rectified linear unit (RELU) Layer: Values less than zero in this layer are set to zero. It can be
mathematically expressed as follows [21]:

f(z) =

{
z z ≥ 0

0 z < 0
(6)

Batch normalization layer: The main function of this layer is to normalize along each input channel. This
layer is provided to increase training speed and reduce sensitivity to network startup.

Fully connected layer (FCL): The output of the pooling layer is converted to a one-dimensional vector
and then given to the FCL. An FCL connects all output from the previous layer to the next layer of the network,
as is usually the case with a traditional neural network. The input to this layer is multiplied by a weight matrix
and summed by the threshold value.

Softmax layer: This layer is the activation function layer. The softmax function transforms the preceding
layers’ input into a probability for classes with a total of one. As a result, this layer is essential in the output
since the projected output is the class with the max. probability for the given input data [21].

Classification output layer: Cross-entropy loss values are calculated in this layer. The layer estimates the
number of classes based on the preceding layer’s output size. This layer takes the softmax function input and
collectively assigns each input to one of its classes using the cross-entropy loss function, which is theoretically
described by the following equation.

loss =

Nu∑
v=1

C∑
w=1

svwlnyvw (7)

Here Nu is the sample size and C is the number of classes. Svw is an indicator to define the vth instance
belongs to the wth class. Yvw is output for example v for class w.

By combining the aforementioned layers in various ways, many distinct deep learning methods are formed
[22, 29, 30].
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4.3. Deep transfer learning methods

The convolution neural network is rarely trained from the ground up. Instead, it is standard practice to utilize
a pretrained model trained on big datasets such as ImageNet and then apply the pretrained weights to the
situation at hand. The pretrained network may be used as a fixed feature extractor from the input image, or it
can be used to fine-tune the entire network or a part of it. The pretrained model is employed as a fixed feature
extractor when the dataset is small and similar to the ImageNet dataset. When the dataset is big and similar to
the ImageNet dataset, not only is the final layer of the network eliminated but the weights of the whole network
(or portion of the network) are changed using the backpropagation technique to improve accuracy. When the
dataset is big and does not match the ImageNet dataset, the whole network is trained from scratch or using the
ImageNet classifier’s pretrained weights. AlexNet, ResNet, GoogleNEt, Vgg16, and Vgg19 are some pretrained
convolutional neural network (CNN) architectures for transfer learning [21].

Transfer deep network models will be used in this study. Although these networks have been pretrained to
classify pictures, we can use transfer learning to adapt them to match our classification problem by changing the
needed parameters. The weights taken from pretrained deep convolutional neural network (CNN) models are
used in TL. The structure of the TL technique used to detect the scalogram images obtained for the vibration
signals of different fault sizes is given in Figure 2. Firstly, 1D vibration signals are transformed into scalogram
images. These images are submitted as input to these pretrained deep learning models. The weights and
hyperparameters of the pretrained model are transferred from the pretrained model, and the network or group
of networks added to the end of the model is trained using the specified hyperparameters. Training of the entire
model is obtained after these procedures [22].

Figure 2. Structure of the transfer deep learning method for fault size prediction.
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4.3.1. Vgg16 and Vgg19

Simonyan and Zisserman proposed similar Vgg16 and Vgg19 methods in 2014 [31]. The most crucial feature of
these models was to utilize only small convolution filters (3 × 3). With the capability of the GPU cluster, it
was possible to expand the depth of the network to 16 and 19 layers. Because of its simple design and strong
generalization capabilities, the VGG model is now regarded as one of the finest TL approaches used in image
recognition applications. The VGG-16 model comprises around 134 million parameters and 16 trainable layers,
which include convolutional and fully connected, maximum pooling, and dropout layers. VGG-19 contains 144
million parameters and 19 trainable layers.

4.3.2. ResNet
Transfer methods are developed on the ImageNet dataset. And new models are emerging with more layer
structures. Thus, the depth of models increases. However, as the model deepens, it gets intricate to train.
Common problems that arose are breakdown and gradients that disappear (at some point the accuracy saturates
and then drops rapidly). A residual learning framework in deep learning networks aids in the maintenance of
excellent outcomes via a neural network with several layers. ResNet is made up of layers that are stacked on
top of each other. This design is differentiated by the usage of a shortcut in each layer to connect the input
straight to the output [32]. The layer is now referred to as a block as a result of this shortcut. This network has
shown to be the most effective model. for the classification problem organized for the ImageNet dataset in 2015,
offering 152 layered models. Despite being eight times deeper than the VGG-19, it still has lower complexity.

4.3.3. GoogleNet

Szegedy et al. granted the inception architecture. This example is called as GoogLeNet [33]. It performed
significantly better than the VGG-19 while having 12 times fewer parameters. The objective (and the most
obvious way to improve the performance of the network) was to increase its size in terms of both depth and
width. However, this simple method has serious drawbacks, such as the possibility of memorization and, more
critically, the enormous increase in processing resources required. The proposed method was to transition from
fully connected to sparsely connected systems. As a result, the Inception model’s primary principle is to combine
multiple layers into one sort of block in parallel rather than stacking them on top of each other. It was assumed
that a network using such an approach would select the most useful layers that increase their weight and at the
same time reduce useless layers. In addition, 1 × 1 convolution filters are used to help reduce the size of the
feature maps and global average pooling.

4.3.4. AlexNet
This architecture, designed by Alex Krizhevsky, is one of the first networks to make ImageNet classification
accuracy a significant step forward compared to traditional methods. This model was introduced in 2012 and
showed better performance than the previous latest technology solutions. It benefited from the GPU to make
the convolution process more rapid and more efficient [30]. Because computational resources are the major
constraint, the architecture has been optimized to utilize two current GPUs for parallel computations. AlexNet
is a basic model that consists of five convolutional layers followed by maximum pooling layers, which are utilized
together for feature extraction. The network employs three fully linked layers with Softmax activation for the
classification process. For improved training performance, nonsaturating ReLU activation functions are utilized.
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5. Experimental results

Wavelet transform methods like CWT only work at a single scale, that is, neither time nor frequency. It works
as a multiscale transformation that splits the signal into multiple scales. A scalogram utilized in this study,
which is represented by the absolute values of the signal’s CWT and may be displayed as a function of both
frequency and time. One-dimensional vibration signals are converted into images through CWT using a set of
filters. These images contain the TF and amplitude information of the signal. The filter set specifies the CWT
parameters to be applied to the given signal. In this study, filter parameters are kept constant for CWT. Since
the wavelet used for CWT has better TF localization, the analytical Morse wavelet has been used [34]. Deep
neural networks use convolutional neural network (CNN) for feature recognition. With CWT, vibration signals
are transformed into equivalent images and made suitable for training deep networks. The image after CWT
includes time, scale, and amplitude information. The produced 2-D picture is rescaled in the last preprocessing
phase according to the input requirement of the specific deep web, for example, Alexnet has an input size of 224
x 224 pixels. As a result, the image was scaled to 224 x 224 pixels before being put into Alexnet for transfer
learning. While smaller data sets are sufficient for training traditional artificial neural networks, deep networks
require a large sample size for training. For this purpose, transfer deep networks are preferred for modeling
small data sets. Because transfer deep networks are pretrained networks [35–39]. When these networks are
used in small data sets trained for different large data sets, only some layers of these networks are retrained.
Transfer deep learning methods are designed to classify images. To classify the vibration signals, the signals
must be converted into images beforehand. In this study, vibration signals were transformed into images called
scalograms with CWT. GoogleNet, AlexNet, ResNet50, Vgg16, and Vgg19 deep transfer methods were used for
the classification of the images. Each of the deep networks used has a size requirement for the input image.
The images are resized according to the model used. In this investigation, three separate data sets were used.
Each data set includes vibration signals for various faults. These signals have been converted into images. A
total of 3800 images were obtained for each data set. There are four classes for each data set. Seventy percent
of each data set was used for training (2660 images) and 30% (1140 images) for testing. The model parameters
for all networks are kept constant. The training process was carried out with the same parameter values. To
avoid memorization problems, the number of epochs was allowed to reach a maximum of 25. The learning rate
was used as 0.0001. In the trials, the Adam optimizer and the categorical cross-entropy loss function were used.
Scalogram images were created by using sample signals in 3 different data sets. Images of these sample signals
are given in Figures 3–5. As can be seen from the figures, it is seen that the scalogram images differ from each
other for each data set. Transfer deep learning success rates of data sets are given in Table 1.

Five different transfer deep learning methods were used for training-test data sets of 3 data sets. A high
success rate of 100% was achieved for DS2 and DS3. The lowest success rate for DS3 is 99.11% with GoogleNet.
For DS2, the lowest success rates were obtained with GoogleNet and AlexNet as 98.21%. Lower success rates
were observed for DS1 compared to other DS3 and DS2 data sets. For this data set, the highest success rates
were obtained with VGG16 and VGG19 as 99.12%. The lowest success rate with GoogleNet was 96.67%.

Since 100% success rates are generally observed for DS2 and DS3, the success and loss values of GoogleNet
for the DS1 data set are given in Figure 6. The model with the lowest performance for all data sets was observed
as GoogleNet. Confusion matrices of GoogleNet for DS1, DS2, and DS3 are shown in Figure 7.

Some studies for bearing failure prediction are given in Table 2. The performances of the studies were
compared with the results obtained in this study. Looking at the table, it is understood that an acceptable
result is achieved with the proposed approach.
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Figure 3. Scalogram displays of sample signals for DS1.

Figure 4. Scalogram displays of sample signals for DS2.

Figure 5. Scalogram displays of sample signals for DS3.
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Table 1. Classification accuracy using the test data set.

Data set Model Accuracy (%) Kappa score
Dataset 1 GoogleNet 96.67 0.9556

AlexNet 98.21 0.9761
ResNet50 98.25 0.9767
Vgg16 99.12 0.9883
Vgg19 99.12 0.9883

Dataset 2 GoogleNet 98.21 0.9761
AlexNet 98.21 0.9761
ResNet50 100 1
Vgg16 100 1
Vgg19 100 1

Dataset 3 GoogleNet 99.11 0.9881
AlexNet 100 1
ResNet50 100 1
Vgg16 100 1
Vgg19 100 1

Figure 6. Accuracy and Loss Values for DS1with GoogleNet.

6. Discussion
In the machines used in today’s automation systems, the movement is mostly carried out by rotational force.
Bearings are rolling machine parts that are frequently utilized in motor systems that produce this rotating
motion. Various faults may occur on the bearing parts during manufacturing or assembly, and the continuous
mechanical friction of the bearings will make it inevitable to wear over time. Machine operating conditions
and ambient structure may potentially result in bearing failures. When a faulty bearing is not replaced in
time, it can cause irreversible damage to the workpiece or the system to which it is attached. The bearing
replaced prematurely causes to stop production unnecessarily. It is undesirable to stop production because of
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Figure 7. Confusion Matrices for accuracy 96.67% for DS1, 98.21% for DS2 and 99.11% for DS3 using GoogleNet.

both malfunction and faulty fault detection. For this reason, bearing faults must be detected before they reach
a dangerous level and necessary precautions must be taken.

Information about the bearing failure status can be obtained by collecting vibration signals in certain
periods and analyzing these signals with an intelligent model. Bearing fault analysis has been an area of interest
for researchers for many years. In particular, analysis studies of vibration signals of bearings were carried out
using computer-based machine learning methods. Deep learning models, which are used in various fields in the
literature, have started to show their effectiveness in bearing fault diagnosis studies. Recently, many researchers
have started to study deep learning models for bearing fault diagnoses. High success rates can be observed in
transfer deep learning methods even if the data set is limited. The only disadvantage of such methods is that
the training process is longer than traditional methods. However, after the models are trained, the classification
process will be fast.

In this study, a method based on continuous wavelet transform (CWT) and two-dimensional (2D)
convolutional neural networks (CNN) is proposed to determine fault size from vibration signals of different
fault types in bearings. A deep learning-based method was used that uses the TF spectrum of bearing vibration
signals automatically and uses single-channel vibration signals without the requirement for extraction of features.
TF color scalogram images for bearing vibration signals were obtained using the CWT method. Using AlexNet,
GoogleNet, Resnet, VGG16, and VGG19 deep transfer learning methods with scalogram images, fault size
prediction from vibration signals was carried out. Five different transfer deep learning was used for three
different data sets. It was observed that the success rates obtained varied between 96.67% and 100%. In our
future studies, different feature extraction approaches or classification methods will be used in the classification
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Table 2. Comparison of the proposed approach with studies in the literature.

Author/Year Method DataSet Fault type Accuracies (%)
Ke Li et al., 2017 [40] - Kernel extreme

learning machine
(KELM) - PSO-
KELM

- Authors’s setup - EFB, ORF, IRF,
and BF

80%–95%

Ju et al., 2018 [41] - Improved multi
scale entropy
(IMSE)

- Case Western
Reserve University
(CWRU) Bearing
Data Center

- Error free bearing
(EFB), inner ring
fault (IRF), outer
ring fault (ORF), and
ball fault (BF)

95%–98.57%

Ge et al., 2019 [42] - Kernel principal
component analysis
(KPCA)

- CWRU Bearing
Data Center

- Error free bearing
(EFB), inner ring
fault (IRF), outer
ring fault (ORF), and
ball fault (BF)

78.75%–95%

Zhu et al., 2019 [43] - Multiscale fuzzy
measure entropy
(MFME)

- CWRU Bearing
Data Center

- Error free bearing
(EFB), inner ring
fault (IRF), outer
ring fault (ORF), and
ball fault (BF)

90.95%–100%

Kuncan, 2020 [12] - 1D-LBP+GRA - Author’s setup - Error free bearing
(EFB), inner ring
fault (IRF), outer
ring fault (ORF), and
ball fault (BF)

99%–100%

Shao et al., 2018 [15] - Deep transfer
learning

- CWRU Bearing
Data Center

- Error free bearing
(EFB), inner ring
fault (IRF), outer
ring fault (ORF), and
ball fault (BF)

94.8% - 99.64%

Wang et al., 2020 [13] -Deep learning (DL) - CWRU Bearing
Data Center

Fault type
-Normal, inner-race,
outer-race, and ball
Fault severity (defect
size, mm)
- 0, 0.18, 0.36, and
0.54

93%

Wang et al., 2020 [16] - Multiscale deep
intraclass transfer
learning

- CWRU Bearing
Data Center

- Error free bearing
(EFB), inner ring
fault (IRF), outer
ring fault (ORF), and
ball fault (BF)

99%

Wen et al., 2020 [18] - ResNet-50 - CWRU Bearing
Data Center

- Error free bearing
(EFB), inner ring
fault (IRF), outer
ring fault (ORF), and
ball fault (BF)

98.95%–
99.99%
and 99.20%

This Study CWT+Transfer
deep learning
methods

Authors’s setup - EFB, ORF, IRF, BF 96.67%–100%

of bearing vibration signs or in fault detection. Bearing vibration signals will be obtained at different speeds,
failures in different regions, and different failure rates, and experiments will be carried out.
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