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Abstract: The agglutinative nature of the Turkish language has a complex morphological structure, and there are
generally more than one parse for a given word. Before further processing, morphological disambiguation is required to
determine the correct morphological analysis of a word. Morphological disambiguation is one of the first and crucial steps
in natural language processing since its success determines later analyses. In our proposed morphological disambiguation
method, we used a transformer-based sequence-to-sequence neural network architecture. Transformers are commonly
used in various NLP tasks, and they produce state-of-the-art results in machine translation. However, to the best of our
knowledge, transformer-based encoder-decoders have not been studied in morphological disambiguation. In this study, in
addition to character level tokenization, three input subword representations are evaluated, which are unigram, bytepair,
and wordpiece tokenization methods. We have achieved the best accuracy with character input representation which
is 96.25%. Although the proposed model is developed for Turkish language, it is not language-dependent, so it can be

applied to a larger set of languages.

Key words: Natural language analysis, agglutinative languages, machine learning methods, morphological disambigua-
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1. Introduction

Morphologically rich languages have posed significant challenges in natural language processing (NLP) research,
the most significant of which is data sparseness. The morphological analysis enhances NLP systems by decreasing
the lexicon size and the impacts of data sparsity. Moreover, many applications such as syntactic parsing, text-
to-speech synthesis, word sense disambiguation, and spelling correction rely on correct word analyses.

The morphological disambiguation is an essential first step for higher level analysis of agglutinative
languages such as Turkish, Hungarian, Finnish and Czech. On the other side, languages with less morphology
than Turkish, like German and French, can also benefit from it. If the morphology of the words is considered,
more accuracy in NLP tasks such as part-of-speech (POS) tagging, dependency parsing [1] and named entity
recognition [2, 3] can be achieved. However, due to the enormous number of tags, morphosyntactic tagging is
more challenging in agglutinative languages.

Turkish is an agglutinative language, meaning that morphemes are appended to the end of root words. A
word’s morphological analysis can be defined as a series of tags that corresponds to the morphemes. Because of
the complex morphology and ambiguity of Turkish, there are usually several potential analyses for a particular
word. Each of them is regarded as a unique interpretation of a specific word with a distinct morpheme sequence.

For example, the Turkish word ”dolar” has five different analyses as presented in Table 1. In morphological
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analysis column of the table, the morphological features are listed. The first element at each row is the root
of the word. The root is followed by the root part of speech which are "Noun” and "Verb” in these analysis.
”A3sg” and "A3P1” indicate number/person agreement and "Pnon” indicates nonpossessive agreement. "Pos”
is a polarity feature and Nom is a case feature. "Aor” is a marker that is used with verbs and indicates its
tense. DB is the derivational boundary which means a new word is derived with the following part of speech

feature "Adj” at the last example. ”"AorPart” is used with adjectives and Aorist is a participle feature.

Table 1. Five parses of the Turkish word ”dolar” are presented.

Morphologic analysis Meaning

dolar + Noun + A3sg + Pnon + Nom dollar

do + Noun + A3pl + Pnon + Nom C, third note of the musical alphabet
dol + Verb + Pos + Aor + A3sg it fills

dola + Verb + Pos 4+ Aor + A3sg she wraps

dola 4+ Verb + Pos "DB + Adj + AorPart | wrapper

Computational linguists usually handle the problem by morphological disambiguation (MD). MD can
be defined as the process of determining the contextually accurate morphological parse of a word in a text in
which all potential parses are given. MD systems use the context to identify the correct parse from a set of
potential parses for a given word provided by an analyzer. MD generates semantic and syntactic information
about a word, such as polarity, tense, its POS tag, and whether it is possessive, accusative, or genitive. While
this information is crucial for certain NLP tasks, such as semantic role labeling and dependency parsing, other
tasks such as named entity recognition [4], topic modeling, and machine translation [5] can also take advantage

of this information.
Turkish words can accept a number of derivational and inflectional suffixes when used in a sentence. It is

very common to generate words that nearly equate to a phrase in English like “git+ ebil + ecek + se + k — if
we will be able to go”. Moreover, many derivations can be found in a single word. In running text, however, a
word’s average number of morphemes is approximately three. Furthermore, each word has around two unique
morphological analyses on average.

Turkish’s agglutinative morphology allows for an extremely wide vocabulary, because of highly generative
derivational processes. The morphological ambiguity results because of the following reasons without considering

the context.

e The root of the word may be ambiguous in terms of its part of speech.
e Homograph morphemes that have numerous interpretations.

o Because of the variety of root forms and morphographemic processes that result in similar surface struc-

tures, it is possible to segment word forms in a number of different ways.

In [6], a large corpus is created composed of Turkish text of 500 million words derived from news articles
and some statistics presented based on this dataset. Almost 4.1M distinct words are identified, with the most
common 50K /300K word forms comprising 89%/97% of them, respectively. The number of distinct morpheme
combinations in 360M words is reported as 46K, which surpasses the number of distinct stems, and this results

in nearly infinite vocabulary size and various challenges in most of the tasks. As a result, the morphological
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disambiguation in Turkish language is a difficult task because of the high number of potential word forms and
various morphological parses required to catch them all.

In NLP tasks, a large vocabulary causes many problems. One of them is sparseness. In language
modeling, using sublexical units rather than words is one technique to reduce the vocabulary size and overcome
data sparsity. Morphological analyzers provide sublexical units that enhance the statistical language model
coverage and performance.

Traditionally, morphologically complex languages have been analyzed in two stages: (i) A finite-state
transducer-based morphological analyzer creates all possible morphological analyses for a word; (ii) A statistical
disambiguation model determines the proper analysis for each word depending on its context. Developing state
machines for morphological analysis that are designed to capture the grammatical rules of a language is not an
easy task that requires significant effort and linguistic knowledge. The proposed MD model in this study does
not require a morphological analyzer and accomplishes morphological analysis and disambiguation in one step.

The recent morphological disambiguation studies are mostly based on the recurrent neural network
(RNN)[7] architectures. Although they have shown good performances on the morphological disambiguation
task [3, 8-12], RNN architecture is composed of memory units that allow storing data to model short-term
dependencies. Usually, RNNs are not sufficient to capture long term dependencies. The character positions of
the input and output sequences are used to factor computation in recurrence models. The longer the distance,
the more difficult it is to learn the symbol dependencies. Moreover, parallel training is not possible with RNN
architectures since the output of the previous state is required to compute the next state. This is again a
problem for longer sequences, especially when there are memory restrictions. Large memory requirements with
longer sequences end up with limiting the batch size, which can affect the performance of the model.

The transformer model is introduced in [13] which achieved state-of-the-art results in many sequence-to-
sequence tasks. The attention mechanism, which is the fundamental building block of the transformer, handles
long range dependencies with ease. Attention mechanism highly improves the sequence-to-sequence models
allowing the model to focus on the relevant part of the input sequence and this prevents performance drops
caused by the long dependencies. The transformer is solely an attention-based network exempt from recurrence.
This enables the model to capture the context for any position of the input sequence. The sentence is processed
as a whole and the context that gives meaning to each word in the phrase can be detected. Moreover, the
transformer model is more parallelizable compared to RNNs. Context is an important factor in selecting the
correct morphological parse of the word. Especially the sentential context can be helpful in disambiguation
of the word. A better context representation can improve the disambiguation performance. The capability of
transformers on morphological disambiguation has not been studied yet. We used transformers with a character
based input representation which also helps the model to handle rare or unseen words better.

We aim to make the following contributions to the literature in this study:

e We proposed TransMorph, a transformer-based neural network for the morphological analysis and dis-
ambiguation tasks, and showed that TransMorph is comparable to the current state-of-the-art models by

verifying its effectiveness with comprehensive experiments.

o We automatically created an unambiguous dataset which is composed of sentences with only unambiguous

words. When it is used together with an ambiguous dataset, the model accuracy is enhanced.

o We investigated the performance of the character representation and various other subword representations

of sentences as the input to transformer-based encoder-decoder architecture.
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In the following section, the previous studies on morphological analysis and disambiguation are summarized.
Section 3 presents a transformer-based morphological disambiguator. Lastly, in Section 4, the experiments and

their results are discussed.

2. Related work

The morphological structure of natural language sentences is decomposed by using morphological analyzers
[14, 15]. The finite-state automata (FSA) and transducers (FST) are used to encode morphological grammars
and analyzers. As most computational morphological approaches, these methods are rule-based and hand
crafted. A list of handwritten rules needs to be implemented in a certain order for each word of the sentence.
The process is costly and requires a savant for each particular language in order to define the handcrafted
rules. Statistical approaches are also utilized for morphological analysis [16], and they are of importance to
avoid domain-specific rules. These methods use a training corpus, and an algorithm is run to compute the
probability of cooccurrence of all ordered tag pairs. Both of the approaches share the same objective; to achieve

morphological decomposition.

2.1. Morphological analyzers

Although it is not the first one, Koskenniemi’s two-level morphology model [14] was the most well-known and
successful rule-based model ever. It used standard machinery that consists of a finite-state transducer in which
language-specific morphotactics are embedded. A large set of morphological rules, a lexicon and morphemes
are required to implement rule-based models. PC-KIMMO is introduced as a two-level morphological analyzer
in which users can build their own rule sets, and lexicons [17].

The first two-level analyzer in Turkish is developed by Oflazer on PC-KIMMO based on a root lexicon
consisting of 23,000 root words [15]. The phonetic rules of Turkish are encoded with 22 two-level rules and
morphotactics as a finite state machine in this study. In [18] an affix driven approach is used instead of root
driven approach. The affixes of the word are determined at first, and then the stem is determined without
using any lexicon. In [19] a freely available Turkish morphological analyzer was developed: TrMorph. Another
two-level freely available morphological analyzer is [20], and it consists of morphotactic and morphophonological
rules. Lastly, there are two open source Turkish morphological analyzers [21, 22].

Since it was time-consuming to identify the morphotactic and morphophonological rules, statistical
methods emerged. The rule-based morphological implementations can be improved with weighted and statistical

Finite State Transducers (FSTs). Sak developed a stochastic Finite-State morphological parser[16].

2.2. Morphological disambiguator
The number of possible parses for a selected word is usually more than one in Turkish due to the complex
morphology and ambiguity. Each parse is regarded as a distinct interpretation of a single word that has a
different sequence of morphemes. There are two different approaches to the solution of this problem. While
some computational linguists handle the problem as POS tagging [23] others consider this as a morphological
disambiguation problem. The morphological disambiguation is much harder than POS tagging because it
requires all roots, suffixes and the corresponding tags to be identified in addition to the POS tag.

The rule-based morphological disambiguation algorithms are composed of a list of handwritten rules
that needs to be applied in a particular order to each word in the text. The statistical ones (also referred

as Stochastic model) employ a training corpus to compute the probability of all ordered tag pairs that are
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co-occurring. There are also hybrid models that use both rule-based and probabilistic methods. Recently deep
learning methods have emerged which have competitive results. The traditional morphological disambiguators
require a morphological analyzer to generate candidate morphological parses, and then the disambiguator makes
a selection among these parses. The recent methods, especially the deep learning models, do not need these

prerequisite steps and can accomplish morphological analysis and disambiguation in one stage.

2.2.1. Rule based models

The first morphological disambiguation model for Turkish is a rule-based disambiguator developed by Oflazer
et al. [24] and enables one to write rules in the form Cy : A;; Cy @ Ag; ..C, @ A,. where each C; is a
constraint in lexical form that should be satisfied for the corresponding action A; to be executed. These rules
are used after all words in the sentence are morphologically analyzed. The constraints can be morphological
features (such as case, part of speech of the word or agreement) or positional features of the word. The actions
are deleting the matching parse, assigning the matching parse, composing a new parse or null action. After
rule based approach they combined hand-crafted rules with statistical and learned rules that are extracted in
an unsupervised manner from a training corpus [25]. Also, in [26], a pure rule-based disambiguation model is
developed. Although these early models claimed to have high accuracy (97%—98%), they all utilize very small
corpora and they are based on handmade rules. Therefore, it is difficult to claim that the reported performance

can be achieved for the general case.

2.2.2. Statistical models

The first Turkish statistical morphological disambiguator is proposed in [27]. In this study, n-gram language
models are utilized using inflection groups for morphological disambiguation. Using smaller units for data
sparseness is found helpful, and the best performing model obtained is the trigram model with 93.95% accuracy.
In [19], three models are compared for disambiguation and the model that ignores the root word and considers

only the frequency of the sequence of suffixes has the best result with 94% accuracy.

2.2.3. Machine learning and deep learning models

Machine learning and deep learning approaches are commonly applied for Turkish MD problem, as well. In [28],
a rule-based approach utilizing decision lists is used, named as the Greedy prepend algorithm. The features of
surface form of the ambiguous words are used in the method together with the preceding and following words,
and this approach achieved 91.23% accuracy without the help of a morphological analyzer and 95.82% accuracy
when the morphological analysis is carried out by an external morphological analyzer. In [29] the MD problem is
approached as a classification problem. Ten different classification algorithms are experimented, and the highest
result is 95.61% accuracy with J48 Tree algorithm. Sak et al.[30], used the previous work in [27] which is the
baseline statistical trigram model that obtains the n-best list candidates of morphological parses. A perceptron
algorithm using 23 features is used to rerank candidate parse lists. The perceptron algorithm increased the
baseline model’s accuracy from 93.95% to 96.80% in MD.

Shen et al. [8] used bidirectional long short-term memory (LSTM)[31] networks separately to obtain
stem, morphological tag and context representations. Using these embeddings, each morphological analysis is
scored using CRF and the Viterbi algorithm. In [9], the Turkish morphological analysis and disambiguation
problems are solved jointly in one step with a character based encoder-decoder model based on LSTMs. The key

contribution is the sequence decoder that takes the word related features and context information as input and
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creates root characters and morphological tags as a sequence one at a time with 97.67% accuracy. [10] shows
a joint contextual lemmatizer and morphological tagger. They represented word representations using LSTM
over character vectors and used bidirectional LSTMs to learn context representations from word embeddings
with a lemma decoder which is designed to estimate the fewest edit operations between lemmata and surface
words. They measured the F1 score as 93.71% which is calculated over the predicted and actual individual
morphological tags. In [11], a deep neural architecture is applied with the Viterbi algorithm to the MD problem.
In order to get better representations, the root of the words are trained with the Skip-gram algorithm [32] which
improved the results presented by 85% accuracy on the test set. In [12], Turkish morphological segmentation is
considered as a character sequence-to-sequence learning problem, and an attention-based neural network model
is proposed to solve it. A bidirectional LSTM is used as encoder to encode the input sentence and an attention
mechanism is used in the decoder to guide the morphological segmentation model focus on certain contexts of
the current character to be tagged. A total of 92.6% accuracy on Turkish morphological tagging is achieved.
In [33] a vector-space model is proposed for MD that accomplishes morphological ambiguity by locating the
correct candidates of ambiguous words near to the unambiguous neighbors. The model named learning word-
vector quantization achieved 98.4% accuracy in their own dataset. [34] a special type of sequence-to-sequence
networks, pointer networks[35] are used for MD task and 96.6% F1 score is achieved in Universal Dependencies
v2.2 dataset[36].

3. Materials and methods
Developing a model that converts an input symbol sequence to a target symbol sequence is the challenge of the
sequence-to-sequence problem. Each input symbol is assumed to be encoded into a vector representation and

the input sequence is expressed as a series of input vectors:
X1 ={21,...,2n} (1)

The solution is to discover a transformation function that converts an input sequence of n vectors Xi.,
to a series of m target vectors Y7.,,, where the number of target vectors m is not known at the beginning and
relies on the input.

f=X1n—Y1im (2)

We defined the MD problem as a sequence-to-sequence problem and defined a mapping of input sentence
as sequence of characters Xi., to output morphological analysis of sentence Y7.,, of variable length m. Given
an input sequence Xi.,, a conditional probability distribution of target vectors Yi., is established by using

the transformer-based encoder-decoder model.

peencgedcc( Yiim | Ximn ) (3)

The input sentence Xi., is encoded by the encoders to the sequence of context vectors )A(lm creating a
mapping:
fGEnc = Xi.p = Xiin. (4)

Then, the decoder component computes the conditional probability distribution of sequence of target

vectors Y7.,, given the sequence of encoded context vectors )?1;”.
Pogec(Yiim | K1) (5)
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The distribution can be factored down to a product of conditional distributions of the target vector y;,

given all prior target vectors Yj.;—1 and the encoded context vectors X 1.n, applying Bayes’ rule [37].

n
pedec(len | Xl:n ) - Hdeec(yi | 1/O:i—17 Xl:n ) (6)
i=1

As a result, the transformer-based decoder converts all prior target vectors Yp.;_1 and the encoded hidden

states Xi., to the logit vector I;. To construct the conditional distribution pgdec(yi|Y0:i_1,5€1m), logit vector
l; is subsequently processed using the softmax operation. Different from the decoders that are based on RNN|
the distribution of the target vector y is directly dependent on all preceding target vectors.

The previous encoder-decoder MD models that employed RNN [3, 8-12] are indirectly dependent on
preceding target vectors. In decoders that are based on RNN, current target vector y;’s distribution depends
directly on the prior hidden state ¢;—; and the preceding target vector y;_1. ¢;—1 has dependency on all of
the prior target vectors yo,y1, -, Yi—2. As a result, the RNN-based encoder-decoder models the conditional
distribution indirectly.

Our proposed model is founded on the sequence-to-sequence encoder-decoder network approach for
machine translation [38]. While language models condition on the previous steps to predict the next word,
machine translation models condition on both the context information and previous words to predict the next
word. Hence they can be named as the conditional language model. The sequence-to-sequence learning is
about training models in order to transform sequences from one domain to sequences in another domain. The
sequence-to-sequence architectures composed of an encoder and a decoder are well suited for such problems.
The Encoder maps the input sequence into a n-dimensional vector and sends it to the Decoder that turns it
into an output sequence.

Since we modeled MD as a sequence-to-sequence problem, for instance given an input sentence X =
?Geldim.” is represented as characters 1 = G, x9o = e, x3 =1, x4 =d, x5 =1, xg = m, v7 = ., v = FOS.
The goal is to produce the morphological analysis Y ="g e 1 Eor Verb Pos Past Alsg Eow . Punct” as a sequence
Yo = BOS, y1 =g, y2 =¢€, ys =1, yg = For, y5 = Verb, ys = Pos, y; = Past, ys = Alsg, yg = Fow,
Y10 = -, y11 = Punct. The start and the end of the sentences are represented with "BOS” (Beginning of
sentence) and "EOS” (End of sentence) tokens in sequence-to-sequence models. In the output representation,
"Eor” (End of root) token is added at the end of root characters in order to separate root from morphological
tags. Moreover, "Eow” (End of word) token is added at the end of each word to distinguish the analysis of

separate words. This process is described in Figure 1.

3.1. Transformer-based model

In order to solve the defined sequence-to-sequence problem, we propose the model named as TransMorph which
is based on a transformer-based encoder-decoder architecture [13]. In this section, while we briefly cover the
transformer network, we will also describe the modeling options for utilizing the transformer architecture as
a morphological disambiguator. At first, the input character sequence is sent into the Character Embedding
and Position Embedding modules, which generate an encoded representation for each character capturing the
meaning and position. Positional Embeddings are used to preserve the information related to order of the
sequence. On the target side, the output sequence of the analysis is also sent to Output Embeddings and

Positional Embeddings modules. TransMorph is comprised of a stack of three encoder layers and three decoder
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Figure 1. The input/output representation in transformer-based MD.

layers. The encoder encodes input embedding into the context vector, and then the decoder decodes this context
vector to lemmas one character at a time and also to the morphological analysis of the sentence. Each encoder
and decoder layer is organized into a multihead self-attention layer with relative position bias [39] and position-
wise fully connected feed-forward layers. Relative position bias is applied to establish relative position relations
among all positions, which can improve local relationships without overlooking them. These two sublayers
employed residual connection with dropout followed by normalization. The decoder adds a third sublayer,
which executes masked multihead attention with relative position bias on the encoder’s output. The other
important parameter is the number of layers in the feed-forward network. MD problem converged well with 4
feed-forward layers instead of 2048, which is used in the original implementation. The model’s hyperparameter

setting is given in Table 2, and the architecture of the TransMorph is shown in Figure 2.

Table 2. Hyperparameter setting.

Transformer parameter setup
Input embedding size 512
Number encoder/decoder layer 3
Number attention heads 8
Head dimension 512
Feed forward dimension 4
Dropout 0.1
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Figure 2. Architecture of transformer-based morphological disambiguation model: TransMorph.

3.2. Self-attention and multihead attention

Self-attention computes a weighted average of feature representations, where the weights determine which parts
of the feature vectors should be paid more attention. The attention layer inputs 3 parameters @@, V and K
which are referred as the query, the value, and the key. These three parameters are obtained with the input

sequence of n tokens of d dimensions X € R™*? and its projection to the matrices respectively Wgq € Rdxdq |

Wy € R4 and Wy € R4 . The computation of Q, V, K are carried out as follows:

On the other side, the self-attention can be formulated as:

S=DQ,K, V)= softmax(Lﬂ)V (8)

Vi

The input embedding and position embedding are supplied to all these three parameters, in the self-

attention of the first encoder, which then creates an encoded representation for each character in the input
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sequence. The representation includes the attention scores for each character as well. Each self-attention
module utilized inserts its own attention scores to the representation of each character, as this representation
travels through all of the encoders in the stack.

On the target side, the output embedding and position embedding are again supplied to all three param-
eters, key, query, and value in the self-attention module of the first decoder. Now an encoded representation
for each character is created in the target sequence, including the attention scores of the character as well.
This is given to the query parameter of encoder-decoder attention of the first decoder after going through a
normalization layer (layer norm). Meanwhile, the output of the stack’s last encoder is sent to the value and
key parameters. Therefore, the encoder-decoder attention receives a representation of both the target sequence
(from the decoder self-attention) and the input sequence (from the encoder stack). As a result, it generates a rep-
resentation of the attention scores for each target sequence element. The representation also includes the effect
of the attention scores obtained from the input sequence. Then the representation obtained is passed through
the stack of Decoders. In this process, the attention scores generated by all self-attentions and encoder-decoder
attentions are added to the representation of each character.

In multihead attention, the attention module performs its calculations for a number of times in parallel
and each output is named as an attention head. The knowledge explored by multiple heads are combined to
obtain a final score. This makes the transformer more powerful by encoding many associations and nuances for
each input element. The embedding vectors are split logically among several heads, which implies that different
parts of the embedding can capture different aspects related to the meaning of each word. For example, while
one part learns about the tense (present, past, future) of the word, the other part might be concentrating on

the word’s person agreement (I am, he is).

3.3. Features

To effectively reveal the relationship between words and morphemes, different experiments are carried out by
utilizing characters and subword tokens as the basic unit for the input representation. We train the proposed
model with character, unigram [40], BPE [41] and wordpiece [42] encodings separately. On the target side,
for the output of decoders, the root is represented as characters, and the morphological features POS tag and

morphemes are set as tokens as they are.

4. Experiments and results

4.1. Data sets

In the experiments, three different morphologically tagged data sets are employed. These datasets are composed
of both derivational and inflectional morphologically tagged data. The first one is TrMor2018 [9] which is recently
used in MD studies. The second one is the previous version of the first data set; trMor2006 [28]. The last dataset
is an unambiguous dataset. They are all composed of both derivational and inflectional morphologically tagged
data.

4.1.1. TrMor2018 and TrMor2006
Both TrMor2006[28] and TrMor2018[9] are semiautomatically generated morphology data sets. Since TrMor2006

training data set has limited accuracy, a new data set is required. The sentences in TrMor2018 data set
are first disambiguated automatically. Then, subset of the original data set is selected randomly and this

subset is disambiguated manually. These manually disambiguated sentences are compared with the results of
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the automatically disambiguated sentences and the errors in the automatically disambiguated sentences are
corrected. This process is repeated several times, until a data set with a noise level of %3 is obtained. The
ambiguous and unambiguous word counts are shown in Table 3. It is the most recent data set that has been
used in MD studies. It is used both for training and testing the MD model in this research. Since previous
studies were done with the previous version of TrMor2018 which is trMor2006 [28], our model is also tested on

trMor2006 in order to compare the results with prior research.

Table 3. Data set word count statistics.

Data set Ambiguous | Unambiguous | Total
TrMor2018 | 215024 243866 460669
TrMor2006 | 399216 436406 837524
Unambigous | - 1336231 1336231

4.1.2. Unambigous data set
The unambiguous sentences at the Hiirriyet News data set and the BOUN Web corpus [6] are combined to

obtain an unambiguous data set. These two data sets are used to filter sentences that are composed of only
unambiguous words.

We used Hiirriyet Api' to query news data and collected 50M tokens (6M sentences). The sentences are
analyzed with Zemberek Library [43] in order to determine unambiguous sentences which are composed of only
unambiguous words. We also filtered the sentences that had unknown and foreign words. Then the sentences are
reanalyzed by Oflazer’s finite-state transducers for Turkish morphological analysis [15]. After these operations,
11, 842 unambiguous sentences are obtained.

The BOUN Web Corpus was created in 2008 [6]. It has 500M tokens. Again, we have morphologically
analyzed its sentences by Kemal Oflazer’s finite-state transducers [15]. 298,703 unambiguous sentences are
detected in this corpus. These sentences are combined with the unambiguous sentences obtained from Hiirriyet
News data and finally an unambiguous data set is obtained that consists of 310,109 sentences after dropping

duplicate sentences.

4.2. Evaluation metrics

The most important indicator for the performance of the MD model is accuracy. This metric is also generally
used in the previous studies. The model’s prediction is compared with the morphological analysis tag of the
word in the utilized data set in order to determine if the analysis is correct. The accuracy is defined as the

percentage of the correctly analyzed words among all analyzed words.

# correctly analyzed words

A = 9
ceuracy # all analyzed words ©)
4.3. Training

Parameters of the proposed model are optimized with Momentumized, Adaptive, Dual Averaged Gradient
Method (MADGRAD) [44] which belongs to the AdaGrad adaptive gradient methods. The initial learning rate

LGitHub (2022). Hiirriyet API [online]. http://github.com/hurriyet/developers.hurriyet.com.tr[accessed 19 January 2022].
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is set as 0.0003 and then it is reduced by a factor of 0.1 when there is no improvement in the loss value for 10
epochs. We used a batch size of 8. Moreover, while preparing the training and test sets, the sentences selected
have a maximum word count of 50 and a maximum morphological analysis length of 300 (counting root as
one). We set that limit to prevent a negligible amount of examples to affect encoder and decoder input/output
length excessively. The selected limits are far above the average sentence length. Depending on input and target
data, the maximum Encoder length is set to 385 and the maximum decoder length to 525. The other model
parameters are given in Table 2. Lastly, the model is trained for 350 epochs on the data sets.

The code of the model and the unambiguous data set created in this study is released upon publication.?
The experiments were performed on the i7-10750H PC, with memory of 32 GB, RTX2070 GPU (8 GB memory),
Python 3.7. and Google Colab Pro personal accounts.

4.4. Results and discussion

Three experiments are conducted to examine the efficiency of the proposed model. In the first one, the
model is evaluated on data sets and compared to other competitive models. In the second experiment, the
model is tested with three subword input representations. Lastly, in the third experiment the all-in-one
morphological disambiguator and analyzer TransMorph is compared with a model that has a separate analyzer

and disambiguator.

4.4.1. First experiment

In the first experiment, we used character input representation and tokenized input sentence with character
tokenizer in SentencePiece library [40]. Then 10-fold cross-validation tests are applied on both TrMor2006 and
TrMor2018 data sets and the MD task accuracy results are presented in Table 4.

Table 4. Ten-fold cross-validation results on data sets.

Data set | Accuracy(%)
TrMor2006 | 94.74
TrMor2018 | 96.19

Additionally, in order to explore the effect of an unambiguous data set, the training data of trMor2018
is enlarged with the unambiguous data defined in 4.1.2. Then, the tests are rerun with the same test data, and
96.25% accuracy is obtained with this new training dataset.

The lemmatization and morphological tagging accuracy is also evaluated. The lemmatization accuracy is
the ratio of correctly identified lemmata to the total number of lemmata. The morphological tagging accuracy
is the ratio of the number of words whose all morphological tags are correctly identified over the total number

of words. The results of the experiment shown in Table 5.

Table 5. Ten-fold cross-validation results TrMor2018.

Data set | Lemmatization acc.(%) | Morph. tagging acc.(%) | POS tagging acc.(%)
TrMor2018 | 98.42 97.44 97.57

2GitHub (2022). TransMorph Model [online]. http://github.com/hozerk/TransMorph
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One important tag identified in MD is the POS tag. It is identified by considering the last POS tag in
the analysis. TransMorph identified POS tags with 97.57% accuracy on the TrMor2018 data set.
In order to verify the suggested method, a comparison is also carried out with some existing methods in

the literature:

. Yiiret and Tire [28] used a rule-based approach based on decision lists.

. Sak et al. [30] used a perceptron algorithm to rank morphological analysis.
. Shen et al. [8] used Bidirectional LSTMs and CRF-based model.

. Akyiirek et al.[9] developed a sequence-to-sequence LSTM based method.

W N

Among these methods, the first three methods depend on a morphological analyzer and use the candidate
parses that are received from an analyzer in order to select the best parse among them. Only Akyiirek’s method
and our proposed model accomplish morphological analysis and disambiguation in one step.

The TransMorph model is also evaluated on a small test set of TrMor2006 that has been manually
disambiguated and composed of 958 tokens. The aim was to compare the performance of TransMorph to earlier
models presented in Table 6. We used the same training set, namely TrMor2006 as previous researchers used,
and tested on the small test set utilized in these studies. Although it seems that the proposed model has a lower
performance, it should be noted that our model makes morphological analysis and disambiguation in parallel.
The first three methods in the table utilize the analysis of words obtained from a morphological analyzer and
make disambiguation for only ambiguous words. The correct analysis of unambiguous words is directly provided
by the analyzer in these studies. Moreover, in the experiments, we did not exclude any of the tags. [9] states
that "Prop” (proper noun) and digit tags are excluded in the experiments. When we excluded these tags, the
accuracy increased to 96.17% which is higher than [9] on this test set. As a result, it can be claimed that
TransMorph shows a satisfactory performance compared to similar methods in the literature.

We also compared the proposed model’s accuracy with that of Akyiirek et al. in [9] on the data set
TrMor2018 and presented the results in Table 7. In their article it is stated that they masked "Prop” and digit
tags. We had not made any exclusion of tags in the evaluation of results in our initial evaluations. In order to
make a comparison under the same circumstances, we masked these tags and the accuracy metric for the tests

of TrMor2018 increased to 97%. As a result, the proposed method has comparable results with [9].

Table 6. Comparative results on manually tagged test set Table 7. Comparative results on TrMor2018.
of TrMor2006.
Method TrMor2018

Method TrMor2006 Akyiirek et al., 2019 [9] | 97.67

Yuret and Ture, 2006 [28] | 95.82 TransMorph 97

Sak et al., 2007 [30] 96.28

Shen et al., 2016 [8] 96.41

Akytirek et al., 2019 [9] 95.94

TransMorph 95.08

When we have analyzed the errors in the experiments, we saw that 41% of the errors occurred in
predicting the lemma of the word. Moreover, about 58% of the errors consisted of cases where the lemma was
predicted correctly but the morphological tagging was done incorrectly. In 30% of the morphological tagging

errors, the root POS tag was selected erroneously. In 29% of them the POS tag of the root was erroneously
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predicted as adjective instead of noun. In 22.9% of them, noun should have been adjective. In 50.6% of
morphological tagging errors, the POS tag of the word was erroneously selected. In 27.88% of them the POS
tag was erroneously predicted as adjective instead of noun. In 17.51% of them, predicted noun should have
been adjective; in 10% of them, verb should have been noun. Lastly, 36.5% of all the morphological tagging
errors are cases where only the "Prop” tag was incorrectly decided and if the "Prop” tag was decided correctly,
then the morphological tagging would have been correct.

We noticed that using relative position bias in the multihead attention distinctly helped the model to
converge faster compared to using the absolute positional embeddings. It is because the relative representations
depend on how far the elements are from one another. The morphemes have mostly local relationships among
each other, and the relative position bias is better at capturing local relations. Moreover, in parameter tuning,
we see that the MD model converged with the lower layer dimensions of the feed-forward layer. This observation
corroborates findings of [45] that lower layers tend to capture the shallow patterns like n-grams and suffixes,
while upper layers learn the semantic patterns better.

We have carried out an extra experiment with RNN, using a 2 layer LSTM encoder-decoder architecture
with similar input and output representations in order to make a comparison with our model. However, the
LSTM model did not exhibit a convergence on the morphological disambiguation task since we used a single

character-level encoder.

4.4.2. Second experiment

A second experiment is conducted to see if the subword input representations are as effective as the character
input representation. We obtained the character, unigram, and BPE tokenizers by training the Sentencepiece
Library [40] with the BOUN Web corpus [6] where the vocabulary size is 16000. For the wordpiece encodings, we
used the pretrained tokenizer®. Ten-fold cross-validation tests were conducted on TrMor2018 dataset with the
unigram, BPE, and wordpiece subword input representations. The experiment shows that the character-level
representation is better than the subword representations in learning morphological data in the transformer-

based encoder-decoder architecture as in Table 8.

Table 8. Evaluation of accuracies of MD models with subword input representations.

Method TrMor2018
Character | 96.19
Unigram 95.11
BPE 94.74
Wordpiece | 93.48

4.4.3. Third experiment

In order to see if it is computationally advantageous to solve morphological analysis and disambiguation in
parallel, a comparison is made with a model that has a separate analyzer and disambiguator. For this new
model, initially a transformer-based morphological analyzer and then a transformer-based disambiguator are

trained separately on TrMor2018 dataset. The transformer-based analyzer is trained with the same settings as

3Zenodo (2020). BERTurk model [online]. Website http://zenodo.org/record/3770924#.YeiAz71BxPZ [accessed 19 January
2022].
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the transformer encoder-decoder architecture of TransMorph. All possible analyses of the words are given as
the target output for the new analyzer during the training phase. After training with 10-fold cross-validation,
the created analyses are used to train the disambiguator.

The disambiguator is constructed with two encoders, one encoder is used to encode candidate morpho-
logical analyses and the other is used to encode the input sentence. The encoders are combined serially to the
decoder as in [46]. The output of the encoders are fed to the decoder with cross-attention.

When we compare the separated model with TransMorph, TransMorph is more advantageous in terms of
training time. The training time of the analyzer is almost similar to Transmorph for one epoch. The training
time of the disambiguator is 50% longer than TransMorph. Separating the analyzer and disambiguator into
two models results about 2.5 times longer training time. Moreover, the separated model’s accuracy is 95.9% on
the MD task on TrMor2018 dataset which is below TransMorph’s accuracy 96.19%.

5. Conclusion

In this study, we presented a method using the transformer-based encoder-decoder to solve the problem of
MD in Turkish. To the best of our knowledge, this is the first study that uses a transformer-based encoder-
decoder model for the Turkish MD problem. Transformers can represent dependencies in long sequences better
than RNN’s, and they can be parallelized as well. We have shown that using only character features as
input, it is possible to achieve 96.25% accuracy, which is a comparable accuracy with the previous competitive
models. Since our model is not language-dependent, it can be applied to other languages as well. In the
experiments, it was observed that the character-level representation is better than the subword representations
for the morphological analysis and disambiguation task when the transformer-based encoder-decoder is utilized.
Moreover, we experimented that an all-in-one transformer-based morphological disambiguator performs better
in terms of training time and accuracy compared to a separated morphological analyzer and disambiguator that
is also based on the transformer model. In this study, also a public unambiguous data set is created that is

composed of sentences with only unambiguous words.
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