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Abstract: A search engine strikes a balance between effectiveness and efficiency to retrieve the best documents in a
scalable way. Recent deep learning-based ranker methods are proving to be effective and improving the state-of-the-art
in relevancy metrics. However, as opposed to index-based retrieval methods, neural rankers like bidirectional encoder
representations from transformers (BERT) do not scale to large datasets. In this article, we propose a query term
weighting method that can be used with a standard inverted index without modifying it. Query term weights are
learned using relevant and irrelevant document pairs for each query, using a pairwise ranking loss. The learned weights
prove to be more effective than term recall which is a probabilistic relevance feedback, previously used for the task. We
further show that these weights can be predicted with a BERT regression model and improve the performance of both
a BM25 based index and an index already optimized with a term weighting function.
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1. Introduction
A typical search engine retrieves the “best” matching documents to a user query. Its effectiveness is measured
through how accurately it ranks documents against the query. On the other hand, the retrieval algorithm must
scale to billions of documents and thus must be efficient. Recent research [1–4] shows that contextualized word
embeddings like bidirectional encoder representations from transformers (BERT) [5] are effective in retrieval
and outperform the long-standing baseline BM25 [6] significantly. Unfortunately, processing all documents with
a ranker like BERT is not efficient and scalable. Recent studies try to address this problem by striking a balance
between effectiveness and efficiency using multistage retrieval systems [7, 8].

As an alternative solution, it is possible to process only the query with BERT and transfer information
via term weights to an efficient index-based retrieval method like BM25. This allows the retrieval system to
scale to large datasets but still be able to capture the importance of the terms using rich semantic information
captured in BERT embeddings. Furthermore, a readily available standard inverted index-based retrieval system
like Lucene1 [9] can be used without any modifications.

Frequency-based ranking algorithms such as BM25 use corpus statistics to determine the importance
weights for terms. A term appearing in a large portion of the documents is deemed to be less important, while
a less frequent term is assigned a large weight. Inverse document frequency (IDF) is an effective weighting
scheme that incorporates this to BM25. BM25 can be further improved when some form of relevance feedback
is available, i.e. when relevant documents to the query are known. The proportion of relevant documents where
∗Correspondence: sahin.omer@outlook.com
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1Apache Lucene search engine https://lucene.apache.org/
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a query term appears is used as the weighting factor. While this improves the retrieval effectiveness, the term
recall values are specific to the query and do not generalize to a diverse set of queries.

To overcome this problem, Dai and Callan proposed a method to use BERT for predicting the term recall
values for an unseen query [10]. They report significant improvements over BM25 baseline using predicted
term recall values. The sum of BM25 score of each query term for a document gives the final ranking score of
the document. Estimated weights measuring query term importance are used as coefficients in the document
similarity method.

Term recall-based weights are effective in optimizing recall at high cutoff values, as terms appearing
in all relevant documents are boosted. A term appearing in all relevant documents will be assigned a high
weight value, even though it is also commonly used in irrelevant documents. A stop word appearing in all
documents will be assigned a high weight. In this article, we investigate the use of pairwise ranking loss to
learn the term weights per query as a replacement for term recall values. This can potentially adjust term
weights to better distinguish relevant documents from irrelevant ones. Furthermore, we continue to show that
these learned weights can be predicted by the BERT model and yield performance improvements over term
recall-based weights.

To increase effectiveness and maintain efficiency simultaneously, most of the approaches in the literature
do index-time term weighting, which manipulates documents before the index. Considering the size and
accessibility of the indices, reindexing might not be feasible or possible. In other respects, term weights can also
be applied in search time by preprocessing the query with a deep learning model. In such a case, term weighting
for query terms is an effective and efficient way to fetch relevant documents for the query. For this purpose, we
focus on query term weighting that aims to estimate optimum weights for query terms by optimizing a pairwise
ranking loss to achieve higher scores for relevant documents than irrelevant ones and propose a BERT regression
model to predict desired target term weights. We actualize full-ranking on a large collection of passages by
the query term weighting in an efficient and effective way. Thanks to the minimal overhead for query term
weighting, more complex reranking models can be performed on the first-stage ranking results of the proposed
method.

There is a well-known statistical relevance feedback method called term recall and various term weighting
schemes that use term recall in the literature. Most term weighting models focus on document term weighting,
and there are fewer query term weighting models. Furthermore, there is no study to use query and document
term weighting together. There is a work area for new relevance feedback and evaluating the combination of
query and document term weighting approaches in the literature.

We propose a new relevance feedback method that learns optimum term weights for a query to retrieve
relevant documents in the top ranks. The pairwise loss-based optimization method tries to find the best coef-
ficients for query terms that boost term contribution in BM25. When boosting terms according to importance
fetching relevant documents, it must not tend to favor irrelevant documents. The proposed relevance feed-
back method called pairwise term weight optimization generalizes over hard instances of relevant and irrelevant
pairs to choose relevant documents instead of irrelevant ones. The optimization highlights terms that express
the query and relevant document and reduce the effect of the generic terms that are insignificant for relevant
documents.

Pairwise term weight optimization runs supervised, which means it requires labeled data for the query.
To boost query term weights in the search time, we propose BERT-based regression model that takes term and
the query as input, and the model estimates target term weight which can be term recall or pairwise optimized
ones. The proposed BERT regression model allows to phrase weighting like term weighting as distinct from
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the term estimation frameworks in the literature thanks to the term-query input design. The BERT regression
model is trained with the proposed relevance feedback as offline, and with the minor addition of inference time
for query term weight estimation in search time, better retrieval and ranking performances are obtained.

In the following section, related studies in the literature on ranking methods are presented, with a focus
on methods estimating term weights. Following this, in Section 3, we introduce how relevance information of
documents can be used to learn the target term weights. Section 4 introduces the BERT-based term weight
prediction method. Consecutively, experimental setup and results are presented, comparing the performance of
the proposed method to baseline query term weighting methods.

2. Related work
Terms have different contributions to the relevance score. The term frequencies do not involve any contextual
information to retrieve a document. A relevance feedback metric can be defined when knowing the relevance
between queries and documents in the collection.

A probabilistic relevance feedback is defined by [11]. Assume that, for each term xt in the query,
there is constant pt that is probability estimation. Set of user judgment relevant documents is defined as
R = {d : Rd,q = 1} . When relevant and irrelevant document sets are big enough, the relevance feedback pt for
term t is shown as follows:

pt =
|V Rt|
|V R|

(1)

where V Rt is the set of relevant documents that contain term xt , and V R is the set of all relevant documents.
This probabilistic relevance feedback is similar to term recall.

Term weighting is a way to achieve better retrieval performance by increasing the importance of terms that
are central and more representative of the document. Naturally, an accurate term weighting method benefits
from rich semantic knowledge. Term weighting can be applied over document terms and query terms. Due to
their importance, there are several term weighting methods for query and document terms in the literature.

DeepTR [12] is a query term weighting method that boosts the score of the term in the ranking function.
DeepTR tries to estimate term recall [11] relevance feedback by using the distance between the term and the
query as a feature vector. Terms are represented in the feature space by Word2Vec [13] word embeddings. The
query is the average of the word vectors that compose the query itself.

DeepCT [10] is a contextual term weighting framework for document and query terms. The contextual
knowledge about text extracted with BERT [5] language model and a regression layer tries to predict target
relevance feedback which is term recall [11]. The pretrained BERT language model is fine-tuned for the task
that estimates term recall values with an additional regression layer.

TextRank [14] is a graph-based keyword extraction model. TextRank uses the PageRank [15] algorithm
to find the most important terms in the document by using their cooccurrence matrix. Relevance feedback of
the terms is defined by the PageRank algorithm in Text Rank. Most cooccurrence terms in the documents are
the most important terms to represent the documents, and the terms that cooccurrence with most important
terms is important as well in regard to the PageRank algorithm.

Document expansion models change term frequencies by adding terms and reduce term mismatching
between query and document by adding new terms to the document. Doc2Query [16] and its follow-up work
DocTTTTTQuery [17] models expand documents by estimating queries that address to the document. Both

1916



ŞAHİN et al./Turk J Elec Eng & Comp Sci

models use sequence-to-sequence [18] neural network architecture that takes documents as input sequence and
predicts queries as output sequence. Doc2Query model is trained end-to-end to estimate possible queries
for documents. DocTTTTTQuery model is fine-tuned for query estimation task from text-to-text transfer
transformer [19] model trained as a generative language model for different tasks with rich text data.

A more recent research, DeepImpact [20] combines document expansion by DocTTTTTQuery [17] and
term weighting together. The enriched documents with the help of document expansion by DocTTTTTQuery
reduce word mismatching, and the contextual document term weighting helps to get better ranking and
retrieving performance.

3. Utilizing relevance feedback
The ranking is the task of finding relatively higher scores for relevant documents than irrelevant ones. In this
way, relevant documents are placed at the top of the output result list. Relevance feedback information identifies
if the presented documents are relevant or not. While this information is not usually available, methods using
pseudo-relevance feedback exist that utilize user interactions to adjust the retrieval methods. Term recall is such
a method that uses the term weights to adjust the retrieval function like BM25 to retrieve relevant documents.

The term weighted BM25 score of a query Q for document D , is calculated as follows:

BM25tw(D,Q) =

n∑
i=1

wi · IDF (qi) · TF (D, qi) (2)

where qi is the ith term of the query, wi is the weight of qi , TF (D, qi) is the term frequency of qi in the
document D , and IDF (qi) is the inverse document frequency for qi . There is additional coefficient wi for
term weight unlike BM25 [6]. Weight coefficient of query terms is 1 in BM25.

When ranking documents for the given query, each term has a different effect on fetching relevant
documents. Some terms are more meaningful to understand the keywords of the query, while others serve
a more grammatical purpose. Term recall is a probabilistic weight function for setting wi weights. It uses only
relevant documents to weighting the terms and without using the information in other irrelevant documents in
the corpus.

3.1. Term recall-based term weighting
The importance of the query term in the given query to retrieval success is determined by the term recall value.
Term recall is the ratio of the number of relevant documents that contain the term over the total number of all
relevant documents. Thus, term recall shows the usage frequency of the query term in the relevant documents
and contribution to fetch relevant ones. Term recall equation is as follows:

TermRecall =
|Rq,t|
|Rq|

(3)

where Rq,t is set of relevant documents that contain the term of query, and Rq is set of relevant documents
for the query. DeepCT-Query [10] uses the term recall weights as the target metric and predicts the term
recall values for unseen queries using BERT. While this weighting scheme rewards terms appearing in relevant
documents, it does not penalize terms with low discriminative value. A stop word appearing in all documents,
both relevant and irrelevant will receive the maximum weight under this framework.
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3.2. Pairwise ranking loss-based term weighting

We propose an optimization function that learns optimal weights for query terms to achieve a higher weighted
BM25 score for relevant documents than irrelevant ones. For each query, a set of weights for terms are optimized
by pairwise ranking loss. The set of weights of the query terms is unique and independent from the other queries.
Optimization is applied over the BM25 scores of each term in the query. TF and IDF values of the terms are
included in the optimization of term weights in a query by comparing relevant and irrelevant document pairs.
Term recall only uses whether a document contains the term or not and term recall only knows the relevant
documents instead of relevant-irrelevant pairs. The proposed relevance feedback method also uses irrelevant
documents besides TF-IDF.

Let BM25(D, qi) be BM25 value of the ith term of the query for document D . In this case, BM25 score
of document D with weighted terms equals w1 · BM25(D, q1) + w2 · BM25(D, q2) + · · ·+ wn · BM25(D, qn) .
In this equation, n is the number of terms in the query, and it does not change for different documents. For
this equation, we try to optimize term weights to obtain a higher final BM25 score for relevant documents and
bring forward the most important query terms for retrieval performance.

Sorting is based on pairwise comparisons between the documents. The documents which are relevant to
the query should have a higher rank compared to the irrelevant documents. To find term weights that lift the
score of relevant documents, an optimization based on pairwise ranking loss is designed.

For an input query Q = {q1, q2, · · · , qn} , relevant documents are paired with irrelevant ones to form a
training instance. A training instance is represented with two feature vectors formed of BM25 values for each
term in the same order with query terms. Feature vectors can be represented as DRel =< x1, x2, · · · , xn > for
relevant document and DIrrel =< y1, y2, · · · , yn > for irrelevant document in the pair. xi and yi values are
BM25 scores of ith term of the query in respectively relevant and irrelevant document pairs. BM25 score of
the relevant document is written like BM25tw(DRel, Q) = w1 · x1 + w2 · x2 + · · · + wn · xn . In the same way,
for irrelevant document BM25, score is BM25tw(DIrrel, Q) = w1 · y1 + w2 · y2 + · · ·+ wn · yn .

The final objective is to learn term weights that produce high scores for relevant documents while reducing
the score of irrelevant ones. The pairwise optimization aims to provide the following condition:

BM25tw(DRelevant, Q) ≥ BM25tw(DIrrelevant, Q) + α (4)

where α is the margin between relevant and irrelevant document pairs, assuring that the difference between a
relevant and irrelevant document is at least α [21]. α selected as 1 according to the experimental results and
in considering relevance score range of BM25, which is between 0 and +∞ .

To find optimal weights using a gradient, Adam [22] optimizer is used. If the weighted BM25 score of the
relevant document is greater than the sum of the margin and the irrelevant one, then the loss will be 0 , and
weights are not updated.

After pairwise ranking loss-based term weighting, some of the optimal weights for query terms can be
negative. That means the optimal solution is provided by penalizing unwanted terms. The negative term
weights are not applicable by search framework Lucene. Therefore, all weights must be greater or equal to
0 . To provide this constraint, there are two ways; the weights are normalized after optimization or force the
weights to be positive when searching for an optimal solution.
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3.2.1. Min-max normalization (min-max)

Final weights, optimized for the higher BM25 score for relevant documents, are in the range −∞ and ∞ . After
the optimization, to scale the weights between 0 and 1 , min−max normalization is applied as follows:

Scaled wi =
wi −Wmin

Wmax −Wmin
(5)

where wi is the ith term weight for query, Wmax is the maximum term weight for the query, and Wmin is the
minimum term weight for the query.

3.2.2. Nonnegative weight constraint (non-neg)

In the training time, the negative weights are projected to another space by assigning to 0 at each iteration after
updating weights. In the next iteration, the equation tries to find another solution without negative weights. If
a weight tends to negative values, it is prohibited by ignoring weights less than 0 at each iteration. The final
solution is in positive space with the help of the nonnegative constraint.

In each iteration, the following operation is applied to optimized weights after updating weights by
gradient:

w⃗t+1 = maximum(w⃗t, 0) (6)

where w⃗t is the updated weights by optimizer and w⃗t+1 the new weights for next iteration.

3.2.3. Pair selection
Relevant and irrelevant pair selection starts with the initial BM25 ranking without weighting terms. Relevant
instances are known for a query thanks to the labels, and they are picked from the collection. Ranking documents
by original (unweighted) queries is called the initial run. Irrelevant instances are selected from the top results
that are retrieved by the initial run, after excluding relevant instances for the query. This allows the model to
discriminate the relevant documents from irrelevant false positives of the default BM25. There is an example
relevant and irrelevant pair for a query in Table 1.

Each relevant document is matched with irrelevant documents from the initial run to construct pairs.
Pair generation is based on cross-production of the relevant and irrelevant documents. The number of pairs at
the end of the pair generation depends on the number of documents retrieved by the initial run and the number
of relevant documents. Most of the queries fetch the desired number of documents from the initial ranking, but
some of them may fetch less results if there is less match with the documents.

Each query is optimized independently from the other queries. This method, in a way, overfits weights
with respect to relevant and irrelevant documents per each query. In this way, the optimization model predicts
the best weights to increase relevant document weights and decrease irrelevant ones when compared to each
other. It should be noted that as these weights would be too specific to a query and not generalize to a different
query, they would not be useful for a search engine. However, as we proceed to predict these weights for an
unseen query using contextualized word embeddings, considering both the semantics of the query and the role
of the term in the query, it is applicable to unseen queries. After estimating optimal weights, a contextual
model like BERT learns the predicted weights by only using the query terms.

In short, the pairwise term weight optimization method learns specific term weight for each query by
overfitting relevant and irrelevant pairs for the query. A language model like BERT aims to understand
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contextual information of queries to predict these optimized term weights by learning interactions between
terms in the query. In the end, a term weighting model is trained that estimates pairwise term weight for each
term in a query.

Table 1. Relevant and irrelevant pair for a query.

Query What is dynamic resolution?
Relevant DynamiX is a unique implementation of real-time dynamic resolution technique that is

designed to enable a tunable minimum performance level to increase the playability of a
game by dynamically changing the render target resolution of objects in real time, without
the need of the game developer to design it in advance.

Irrelevant Imaging the larynx’s positions and the vocal folds’ vibrations is possible using dynamic
MRI. This technique permits measurements of laryngeal structures and glottal parameters
in dynamic function with multiplanar high-resolution imaging.

*Query and passages were taken from MS MARCO passage dataset.

3.3. Term weight prediction model
Pairwise term weight optimization model runs in the manner of supervised learning. The model must know
relevant and irrelevant pairs for the query with the query itself. For this reason, weight estimation cannot be
made for new queries in the search-time. A BERT-based regression model is trained with the weights optimized
pairwise, the BERT model uses only the input query to predict term weights of the query.

BERT [5] is a language representation model that is designed to pretrain on unlabeled text corpus by
the masked language model (MLM) to learn the context of the text. The architecture of BERT consists of
transformer [23] in multilayer bidirectional form. Transformer applies bidirectional self-attention; each token
interacts with other tokens in BERT architecture.

BERT has special tokens to represent single sentences and pairs of sentences. Each text sequence starts
with the special classification token [CLS] , which represents the final hidden state that aggregated through the
sequence, and this token is used on the classification tasks. To separate sentences in a pair of text sequences,
the special separator token [SEP ] is used between the first sentence and the second sentence.

To fine-tune the BERT model, a regression task targeting query term weights is used. BERT takes term
and query as a pair. The term of the query and query itself are separated with a special token [SEP ] . This
way, the interaction between individual terms and queries is learned. The pooled output of BERT, which is
[CLS] token vector, is followed by a fully connected feed-forward layer with a single output value. The output
layer has no activation function due to being trained as a regression task. To prevent overfitting and achieve
more generalization, there is a dropout layer with 0.2 probability between pooled output and fully connected
layer. The model is trained with MSE (mean squared error) by fine-tuning the pre-trained BERT model to
estimate the term weights of the input query. The model is optimized with Adam [22] optimizer, and 10% of
training steps are used as warm-up steps.

All training pairs have a target value between 0 and 1 . For this reason, most of the predicted term
weights fall into this range. In the end, negative weights are ignored and set as 0 . Nonnegative term weights
enable the use of boosting factors available in most search engines.

Thanks to interaction architecture, phrases that are sequential words can be weighted as terms. The first
part of the input is the phrase in the query, and the second part is the query, both of them are separated by the
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special token. The target weight predicted by the model is for a phrase instead of a single word in this case.
In search-time, the model estimates the weights of each term of the query simultaneously. For each term

in the query, the model estimates weights as the coefficient for terms. An example for tokenization of the query
and forming input is given with BERT term weight learning model architecture at Figure.

Figure. [BERT Query Term Weighting Model Architecture]
An example input and model architecture for term weight estimation.

The proposed term weighting model and DeepCT [10] framework use the same pretrained BERT model
to understand the context of the text to predict target term weight. The main difference between DeepCT
and ours is that the proposed model can estimate term weights for phrases with the help of the interaction
architecture. DeepCT takes a query as an input and predicts term weights for each token in the query. In other
respect, the proposed BERT-based term weight estimation model takes term and query as a pair, and it can
predict term weights for tokens or phrases in the same architecture.

4. Experimental setup

4.1. Dataset

MS MARCO2 [24] dataset is widely used in related work for information retrieval and learning-to-rank tasks.
MS MARCO has two tasks which are document and passage ranking. The competition can be evaluated by
full-ranking or reranking for both tasks. Document and passage ranking tasks use a large dataset that consists
of the same queries and human-supervised labels. Labels are made that indicate relevance between queries and
documents by human supervision. In this work, we achieved evaluation scores for the full passage ranking task
of MS MARCO and compared proposed and existing methods with this task.

2MS MARCO - microsoft.github.io/msmarco
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To evaluate query term weighting models, the dataset of MS MARCO passage retrieval task is chosen in
this work. The passage ranking dataset has nearly 8,841,823 passages, 502,939 training, and 6980 evaluation
queries, evaluation queries are named as dev queries in MS MARCO. The collection of the passages consists
of a unique identifier pid for each passage and the passage text. Train and evaluation queries have unique
identifiers qid and query text. The relations between query and passage are given as pid − qid pairs. The
relevance between queries and documents is marked as binary, and they can be relevant or irrelevant.

In MS MARCO passage collection, the passages were indexed, and all evaluations for the query term
weighting task were run over this index. Document term weighting approaches manipulate original passage
collection, and the changed collection was reindexed. The train queries were used in model training and
parameter tuning. Parameters of BM25, k1 and b , were tuned by randomly selected queries from train queries.
In model training, part of training queries was selected as the validation set for the model evaluation. Evaluation
queries in MS MARCO were used as a test set, all evaluations and comparisons were performed with evaluation
queries. The evaluation queries of MS MARCO are used as the test set for evaluated methods in the literature
as well.

According to the distribution of the number of passages in MS MARCO collection, most of the passages
consist of around 50 terms, and nearly all of them have less than 150 terms. A similar distribution for both
train and evaluation query sets, most of them consist of 3 to 10 terms. Another distribution about queries and
the number of relevant passages in MS MARCO dataset is that most of the queries in both train and evaluation
set refer to a single passage.

4.2. Search framework

To achieve easy access to documents that contain one of the words in the query, the inverted index method is
used. The inverted index is a way to access documents by searching a set of words without requiring investigating
all documents in the corpus.

To index documents by words and search easily, the Apache Lucene3 [9] framework is used in this work.
Porter stemmer was applied to words when indexing documents. The same stemming is also applied when
extracting term recall values and BM25 calculation for the pairwise model.

Free parameters of BM25, which are k1 and b , are assigned to the same values for evaluation of all
methods. Fine-tuned k1 and b parameters4 of BM25 are used as k1 = 0.82 and b = 0.68 . To keep the
option to reranking results of the first stage ranking with the proposed method, free parameters optimized for
RECALL@1000 were chosen. By this preference, while increasing ranking performance by query term weighting,
we aim to fetch relevant documents as much as possible.

4.3. Compared methods

The ranking by BM25 of evaluation queries without term weighting, in other words, each term weight equals 1 .
As all methods are built on top of BM25 method, they all improve BM25 score by adding weighting to query
terms. Each method runs with the same search framework and BM25 configurations, except term weights.

3Apache Lucene - lucene.apache.org
4Anserini: BM25 Baseline for MS MARCO Passage Ranking, github.com/castorini/anserini/blob/master/docs/experiments-

msmarco-passage.md
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4.3.1. DeepTR-BoW

DeepTR model was trained 100 iterations as LASSO optimization [25]. There are more than 1.3 million instances
for the model training, the 10% of the instances are used as validation data. Pretrained Word2Vec [13] word
embeddings are the same as DeepTR [12]. DeepTR was trained to estimate term recall values of the query
terms. This method is referred to as DeepTR-BoW in the results.

4.3.2. DeepCT
In DeepCT, the BERT model, which is pretrained with a large uncased corpus of English as masked language
modeling (MLM) task, and base configuration, was fine-tuned to estimate term recall values of query terms.
DeepCT estimates all term weights for a query or a document in a single prediction. To do this, DeepCT uses
the sequential output of BERT corresponding to terms. Each vector for terms in sequential output proceeds to
a layer that estimates the weight of the term. The last layer of DeepCT has no activation function in the same
way as our BERT regression model. Most of the estimated term weights are in the range between 0 and 1 due
to training targets being in the same range, and if a predicted weight is less than 0 , then the term is ignored.

DeepCT-Query: DeepCT model was fine-tuned to predict query term weight as term recall value with
the same configuration5 as the configuration of DeepCT for MSMARCO.

DeepCT-Index: To evaluate if the pairwise optimization method can be applied to any other corpus, the
weighted documents by DeepCT-Index [10] were indexed by Apache Lucene. The corpus of DeepCT-Index6 is
provided by the authors. Free parameters of BM25 are defined as k1 = 10 and b = 0.9 , which are mentioned
by the author.

4.3.3. BERT-based term weight
The proposed BERT-based term-query interaction model uses the same pretrained BERT model, which is
pretrained using uncased English corpus as MLM task. The term recall and pairwise term weight values are
used as the target value of the model to predict term weight only by looking at the input query. The term-query
interaction model was fine-tuned only a single epoch for both target term weighting. When the target term
weight is term recall, we will refer to this model as BERT-TermRecall. It is referred to as BERT-Pairwise when
the term weights are learned by pairwise ranking loss as described in Section 3.2

5. Results
The pairwise term weight optimization method is proposed as an alternative to the term recall to retrieve
documents more accurately. After that, the BERT weight estimation model was trained to predict term recall
and pairwise optimized term weights and compared with different methods in the literature to evaluate the
success of pairwise optimization and the model. Firstly, the target term weight functions are evaluated and
compared to each other to measure the effectiveness improvement that can be attributed to the proposed target
weights optimized using pairwise ranking loss. Following this, results showing the BERT-based predicted term
weights would be evaluated and compared to each other. Finally, we investigate the use of the proposed query
term weighting method with an existing index-based term weighting method.

The retrieval and ranking performances are evaluated with different metrics, and different cuts of the
results on MS MARCO [24] passage retrieval dataset. Performances of existing and proposed methods are

5DeepCT - github.com/AdeDZY/DeepCT
6DeepCT Weighted Documents - boston.lti.cs.cmu.edu/appendices/arXiv2019-DeepCT-Zhuyun-Dai/weighted_documents
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evaluated with mean reciprocal rank (MRR) [26], mean average precision (MAP), recall, and normalized
discounted cumulative gain (NDCG) [27] metrics. The significance of the proposed methods to baselines is
measured with paired t-test. The statistical significance threshold is defined as 0.05 to measure significance.

The MAP measures the performance of getting relevant documents at the very beginning of the results.
MRR and NDCG measure the ranking performance of the models based on the ranking positions of the relevant
documents with the input query. The recall metric measures the performance of catching relevant documents
in the top results. With these evaluation metrics, the performance of the models is compared by their retrieval
and ranking of relevant documents to the input query.

Additionally, the significance of the improvement by proposed methods to baselines is measured. Paired
t-test is a statistical hypothesis test that investigates the difference between two lists of data for the same
subject. The similarity of the distribution between paired lists of data is tested with the help of paired t-test.
When the calculated p − value is less than the significance threshold, there is a significant difference in the
distribution of the results.

5.1. Number of pairs for pairwise term weight optimization

In pairwise optimization, pairs are constructed from at the top of initial results to generate hard negative
instances. To reduce the score of confusing irrelevant documents, hard negative samples are required. The
relevant and irrelevant documents are paired by cross-product to generate pairs with hard negative instances.
After ranking documents with the original queries, relevant documents are excluded from the result, and the
rest of them are considered irrelevant documents. In other respects, extreme negative instances may prevent
the model from being more generalized for collection. Still, there are far more completely irrelevant documents
than confusing ones.

To get a number of documents from the initial run that are enough to generalize the model and achieve
good results, retrieval and ranking performances are compared in Table 2. The pairwise query term weight
optimization method was evaluated with the min-max normalization. In regard to Table 2, the higher the
number of documents acquire higher the retrieval and ranking scores. At the point between 800 and 1000

documents, the ranking performance slightly reduces with respect to MRR@10, MAP@10, and NDCG metrics,
but then, retrieval performance is still increasing with respect to RECALL@1000. This spot was chosen to
define the number of documents to optimize the model without missing relevant documents with acceptable
ranking performance loss. In the next experiments, 1000 documents were selected from the top of the initial
results.

Table 2. Number of documents to optimize pairwise model.

#Docs MRR@10 MAP@10 NDCG@5 NDCG@10 RECALL@1000
20 0.2348 0.2398 0.2513 0.2758 0.7522
100 0.2562 0.2625 0.2750 0.3066 0.8193
200 0.2621 0.2692 0.2800 0.3130 0.8406
400 0.2657 0.2723 0.2841 0.3173 0.8610
500 0.2638 0.2709 0.2825 0.3156 0.8706
600 0.2654 0.2722 0.2834 0.3167 0.8733
800 0.2662 0.2733 0.2845 0.3177 0.8784
1000 0.2633 0.2706 0.2814 0.3150 0.8814
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The number of pairs for each query can be different. Most of the queries fetch 1000 documents after
initial rank. After relevant queries are excluded from the top results, the rest of the documents number differs.
In the end, the number of pairs equals all relevant documents number in collection multiplied by irrelevant
documents number in the results.

5.2. Term recall and pairwise term weight optimization

Firstly, BM25 and oracle target query term weights are compared to each other. BM25 is the score of the original
evaluation queries. The original queries are ranked with BM25 rank algorithm and the same configuration as
other methods. As can be seen in Table 3, the target weighting schemes can improve the baseline BM25 by
more than 30% in MRR, MAP, and NDCG metrics with improvements up to 15% for RECALL metrics.

The query term weighting is not applied to the queries in BM25 results; in other words, all weights are
considered 1 . The oracle scores are shown as the best possible outcome when term recall values or pairwise
optimized weights are perfectly predicted. The oracle methods use the relevant and irrelevant document labels,
which are not typically available at the search time. The target weights are extracted for test queries by
supervised. In this regard, they can be regarded as the upper bounds for the BERT-based weight prediction
methods. In evaluations of the oracle, term weighting schemes are applied to the evaluated queries directly.
Term recall and pairwise optimized weights are extracted for the evaluation set as supervised.

Table 3. Query term weighting with oracle methods using the document relevance information.

Method MRR@10 MAP@10 RECALL NDCG
@100 @1000 @5 @10 @20

BM25 0.1875 0.1958 0.6700 0.8575 0.2024 0.2342 0.2578
Oracle-TermRecall 0.2582 0.2661 0.7743 0.9234 0.2781 0.3145 0.3393
Oracle-PairWise (Min-Max) 0.2676* 0.2745* 0.7427 0.8805 0.2850 0.3190 0.3413
Oracle-PairWise (Non-Neg) 0.3089* 0.3164* 0.7877* 0.8999 0.3290* 0.3628* 0.3848*

Comparison of oracles which are term recall and pairwise are given in Table 3. According to oracle
results, the pairwise term weight optimization methods (min-max normalization and non-neg constraint) achieve
significantly (shown in Table 3 with *) higher scores on ranking relevant passages at the very top results as per
MRR@10, MAP@10 RECALL@100, and NDCG metrics than the term recall method, and gets slightly better
scores on RECALL@1000 metric. Paired t-test statistic of the proposed method and the previous method
in the literature (Oracle-PairWise (Non-Neg) vs. Oracle-TermRecall) for MRR@10 is 23.79 and p-value is
2.37× 10−120 .

Pairwise optimization aims to increase BM25 score of relevant documents against irrelevant ones. In this
way, the ranking performance of pairwise optimization is way better than term recall. Conversely, term recall
is a statistical metric that gives which term is more important to retrieve relevant documents without knowing
irrelevant ones. As a result, term weighting by term recall finds much more relevant documents than pairwise
optimization when considering wide range of ranks such as top 1000 documents, but metrics focusing on top
ranks are improved with Oracle-Pairwise as it is able to discriminate relevancy in more detail as it considers
irrelevant documents as well.

The weights of the query terms must be positive numbers due to constraints of the Lucene framework.
To ensure that, two methods are proposed and evaluated for pairwise optimization. The first one is the fitting
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weights into the [0− 1] range. This causes at least one weight to equal to 0 , and at least one weight to equal
to 1 . The other method is applied to the model when optimizing weights. The 0 assignment to the negative
weights was used as a layer constraint in the second method. At the end of each iteration, negative weights are
ignored and assigned to 0 . This kind of projection allows us to make sure the weights are always greater or
equal to 0 .

According to Table 3 nonnegative constraints methods achieve significantly higher performance than the
min-max normalization method. The min-max normalization can result in loss of information due to fitting the
optimized weights into a fixed range. Therefore, the min-max normalized pairwise optimization had less success
on the ranking and retrieval performance.

5.3. Term weight estimation

Oracle results show the possibly best results if predicted weights of the query as term recall or pairwise
optimization, which are extracted using the relevant and irrelevant document labels. In real life, there is
no way to find exact values of term recall or pairwise term weights due to unique and unknown input queries.
A way to overcome these unknown query inputs is by creating a generalized model that learns term weights of
queries by supervised and predicts term weights of new queries in the search-time.

To this end, models try to estimate term weight as close as possible to the ground truth to achieve scores
as good as oracles. DeepTR-BoW and DeepCT-Query are the query term weighting approaches that use term
recall as term weight in the literature for the document ranking task. The proposed BERT-based term-query
interaction model is evaluated with term recall and pairwise as the target of the query term weighting task.

When the target value changes to pairwise optimized ones, the query-term interaction model acquires
significantly (shown in Table 4 with *) higher scores for ranking and retrieving relevant documents for the input
query than DeepCT-Query model. The results indicate that target term weights learned by pairwise ranking
loss independently for each query can also be predicted by a BERT-based regression model. The proposed
relevance feedback achieves the best results compared to both DeepCT-Query and BERT-TermRecall in all
metrics. It is interesting to note that, although Oracle TermRecall achieves high recall values compared to
Pairwise oracle weights (Table 3), when considering the BERT, predicted weights recall of BERT-Pairwise is
significantly better than BERT-TermRecall. Paired t-test statistic of the proposed method and the previous
method in the literature (BERT-Pairwise (Min-Max) vs. DeepCT-Query) for MRR@10 is 6.97 and p-value is
3.57× 10−12 .

Table 4. Query term weighting using estimated term weights.

Method MRR@10 MAP@10 RECALL NDCG
@100 @1000 @5 @10 @20

BM25 0.1875 0.1958 0.6700 0.8575 0.2024 0.2342 0.2578
DeepTR-BoW 0.1901 0.1989 0.6845 0.8738 0.2053 0.2380 0.2620
DeepCT-Query 0.1915 0.2005 0.6907 0.8821 0.2060 0.2393 0.2631
BERT-TermRecall 0.1930 0.2020 0.6954 0.8837 0.2080 0.2414 0.2657
BERT-Pairwise (Min-Max) 0.2012* 0.2097* 0.7062* 0.8870* 0.2179* 0.2517* 0.2750*
BERT-Pairwise (Non-Neg) 0.2005* 0.2092* 0.7065* 0.8842 0.2167* 0.2509* 0.2746*

As Table 4 shows, DeepCT-Query achieves slightly higher scores than DeepTR-BoW on any metric, both
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methods try to predict term recall values of the query terms. DeepCT-Query tries to understand the semantic
of each term in the query in considering contextual relation, but DeepTR-BoW simply uses vectors of terms
that measure how far from the query with direction. Due to the use of semantic information, DeepCT-Query
is slightly better than DeepTR-BoW for retrieval and ranking tasks.

Pairwise optimization with nonnegative constraint model got higher scores on any evaluation metrics
when supervised evaluation (Oracle results, Table 3). However, the BERT-based contextual model that tries to
estimate pairwise optimized term weight did not succeed in this increase. BERT-based model made very close
estimation for both min-max normalization and nonnegative constraint methods of the pairwise term weight
optimization model when comparing the evaluation metrics on ranking and retrieval performance.

As a final note, DeepTR-BoW, DeepCT-Query, and BERT-TermRecall methods all try to predict term
recall weights using different supervised regression methods. DeepTR-BoW uses Word2Vec for feature repre-
sentation and LASSO optimization for term weight predictions. DeepCT-Query and BERT-TermRecall use a
similar architecture for term weighting based on BERT and the same target value as relevance feedback. Even
so, the proposed BERT-TermRecall method achieves the best results compared to these three methods. The
proposed BERT-TermRecall and DeepCT-Query achieve similar results to each other due to the similar archi-
tecture. In other respects, pairwise term weight optimization BERT-Pairwise, which is the proposed relevance
feedback, achieves best retrieval and ranking results over other methods and term recall.

According to the query term weighting example in Table 5, ”acetate definition” is searched with non-
weighted and weighted terms by different methods. The keyword of the given query is ”acetate” and the second
term ”definition” can be seen as a question term. In the original query, both terms have the same contribution
to the relevance score to retrieve documents, which causes the loss of the contribution of the key term. In
other respect, DeepTR-BoW completely ignores the contribution of the question term ”definition”, but both
terms carry a mean for relevant documents at different rates. For this reason, DeepTR-BoW got the worst
result among the methods. DeepCT-Query and proposed BERT-Pairwise (which predict proposed pairwise
optimized relevance feedback with BERT-based regression model) can create a weight distribution over terms.
DeepCT-Query uses the term recall as relevance feedback, and estimated term wights focus on the only relevant
documents. Because of this knowledge, the rank of the irrelevant documents also increases by giving higher term
weight for a key term ”acetate” and lowering the contribution of the question term ”definition”. The proposed
relevance feedback increases the score of relevant documents when decreasing irrelevant ones. Thanks to the
pairwise optimization by relevant and irrelevant document pairs, the optimal term weight distribution can be
found, and with help of the contextual knowledge about the query, weights are correctly estimated.

As a result, the proposed relevance feedback method got more accurate than the statistical term recall,
with help of the optimization by using relevant and irrelevant document pairs. Thus, it found and ranked
the relevant passage in the first rank, as can be seen in Table 5 and MRR@10 metric. According to ranking
and MRR@10 results in Table 5, BERT-Pairwise and DeepCT-Query are better than DeepTR-BoW at the
ranking task. This result shows that a model that uses contextual knowledge by using a deep language model
can estimate term weight much more correctly than the simple regression model which uses word embedding
vectors.

5.4. Combining with index term weighting

DeepCT-Index [10] is a document term weighting method. The term frequencies are modified before indexing
using the estimated term weights. The query is executed on the modified index. The proposed query term
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Table 5. Query term weight example and ranking performances.

Method Query Rank MRR@10
Nonweighted acetate definition 3 0.333
DeepTR-BoW acetate^0.999 definition^0.007 8 0.125
DeepCT-Query acetate^1.004 definition^0.405 2 0.500
BERT-Pairwise (Min-Max) acetate^0.654 definition^0.316 1 1.000
Relevant passage with the query:
This is a form of the compound we will be discussing in this lesson: acetate. By definition, acetate is
a type of anion, salt, or ester derived from the compound acetic acid. Let’s break down this definition
by looking at the three different forms of acetate. Acetate Has Many Forms... Keep in mind that as
we go through each form of acetate, everything originates from the parent molecule acetic acid.
*Estimated term weight coefficients represent with the exponential sign (∧).
**Query and passage were taken from MS MARCO passage dataset.

weighting method can also be applied to a reweighted index such as DeepCT-Index. This strategy can combine
the effects of both methods and result in superior outcomes.

Query term weights are estimated by the proposed BERT model using the modified TF and IDF values
obtained from DeepCT-Index. The result of BM25, DeepCT-Index, and weighted query one is given in Table
6. As can be seen from the results, the proposed model improves DeepCT-Index significantly (shown in Table 6
with *), with improvements in all metrics. This demonstrates that combining the proposed query term weighting
method with existing index term weights can improve the results even further. Paired t-test statistic of the
proposed method and the previous method in the literature (DeepCT-Index + BERT Pairwise (Min-Max) vs.
DeepCT-Index+Query) for MRR@10 is 3.73 and p-value is 1.95 × 10−4 . The BERT-Pairwise model adds
minimal overhead to the search engine, taking less than 23 ms when processed with an RTX 2060 GPU.

Table 6. Combined effect of query term weighting with index term weighting (DeepCT-Index)

Method MRR@10 MAP@10 RECALL NDCG
@100 @1000 @5 @10 @20

BM25 0.1875 0.1958 0.6700 0.8575 0.2024 0.2342 0.2578
DeepCT-Index 0.2440 0.2516 0.7550 0.9086 0.2624 0.2979 0.3227
DeepCT-Index+Query 0.2487 0.2564 0.7635 0.9111 0.2676 0.3030 0.3275
DeepCT-Index + BERT
Pairwise (Min-Max)

0.2534* 0.2608* 0.7732* 0.9137* 0.2728 0.3091* 0.3335*

DeepCT-Index + BERT
Pairwise (Non-Neg)

0.2524* 0.2599* 0.7721* 0.9127* 0.2727* 0.3077* 0.3319*

As a baseline, we compared the combination of DeepCT-Index and DeepCT-Query which was presented
by the same authors to our model. Similar to Table 4, proposed pairwise optimized relevance feedback and
BERT-based model achieved better retrieval and ranking results than DeepCT-Query that learns term recall
as relevance feedback. The clear advantage of the proposed pairwise optimized relevance feedback is obtained
in these results as well.

Both pairwise optimization methods got close results similar to the original corpus index. The min-max
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normalized pairwise optimized weights are slightly better than the nonnegative constraint optimized one.

6. Conclusions
A text search engine works with a huge amount of corpus, and it keeps text data in a structured database to
retrieve as fast as possible when queried by a user request. Search engines use retrieval and ranking algorithms
when searching a query to find the best candidates that meet the user request in the vast dataset. To take
advantage of a search engine in all possible ways, neural network solutions are applied to documents and queries.
While doing this, minimal overhead has to be added to the search cost to ensure a fluent user experience.

The usage of neural networks to improve retrieval and ranking performance focus on two sides of the
query searching task. The first one is editing documents in index-time, and the second one is weighting query
terms in search-time. The index-time operations are offline, and its cost does not affect the execution time of
the search. However, weighting query terms adds an additional operation that estimates term weights to the
search-time.

The contribution of this work is the utilization of the well-known pairwise loss function for the term
weighting as relevance feedback besides comparing term weighting approaches in the literature. The pairwise
relevance feedback method finds optimal weights that boost the contribution of essential terms for relevant
documents when throwing back the irrelevant ones. The proposed relevance feedback method outperformed the
statistical term recall. To support our work, we applied the pairwise optimized term weights estimated by the
BERT-based regression model to queries in search-time with minimal cost. The proposed relevance feedback
method increased retrieval and ranking performance significantly compared to term recall approaches.

Pairwise term weight optimization requires lots of pairs for generalization and hard negative instances for
an optimal solution. A query can fetch more than a thousand documents, and the initial ranking of documents
consists of mostly hard negative instances. To this end, the proposed relevance feedback method is demonstrated
on the query term weighting task, and the strategy was evaluated from various perspectives.

The combination of query term expansion models and the proposed query term weighting is considered
as future work. Evaluating the proposed relevance feedback method on the document term weighting is an
additional task for follow-up works. Additionally, studies can increase the predictability of relevance feedback
to catch oracle results.
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