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Abstract: The information of the fault frequency characteristics is of great importance for all associated fault diag-
nostics. This requires a high-resolution spectrum analysis to achieve efficient monitoring of machinery faults, especially
while diagnosing rotor bar breakage under light load conditions, because the fault frequencies almost overlap with the
fundamental. In this context, rather than looking for frequencies associated with rotor faults, several frequency bands
are observed separately in terms of the entropy contained within these bands. First, the motor current signal has been
divided into several frequency bands using the continuous wavelet transform (CWT), and the spectral entropy is cal-
culated from each band as the features to describe the rotor condition. Principal component analysis (PCA) has been
used as a feature reduction tool, and the features projected onto the first two principal components have been fed into
the SVM for inference. SVM is a supervised learning method used for classification and regression analysis. To improve
classification performance, a radial basis function (RBF) kernel has been employed, and to find the optimal value of
the kernel parameters, a metaheuristic approach, namely teaching learning-based optimization (TLBO), is utilized. The
ANSYS 2D workbench is used to simulate the finite element model (FEM) of an induction motor with broken rotor
bars, and the efficacy of the proposed method is then tested using simulated data. To investigate the robustness of the
proposed approach, white Gaussian noise has also been added to the simulated data, and the performance of the SVM

is tested with these spectral features.

Key words: Broken rotor bar fault, continuous wavelet transform, spectral entropy features, teaching learning-based

optimization, support vector machine

Nomenclature
Ly : Lower bound & : Constant, governing the clasification error margin
Uy : Upper bound L;  : Dual of the primal SVM optimization problem
N, : Population « : Lagrange multiplier
T : Maximum number of iteration o : RBF kernel parameter
Xpest : Best solution P : Mother wavelet
fi : Fitness of ith member of population s : Scale (Dilation parameter)
Ty : Teaching factor (either 1 or 2) Cy : Admissibility constant
r : Random variable between zero and one H  : Spectral entropy
H,

: Regularization parameter : Normalized spectral entropy
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1. Introduction

Among different induction motor faults, approximately 5%—-10% cases are related to the broken rotor bar (BRB)
failure [1]. Though broken rotor bar fault is not common as bearing or insulation failure, but can cause terrible
destruction in electrical machines. It might happen due to manufacturing imperfections, frequent starting,
mechanical and thermal stress, etc., and especially in large motors it can be extremely dangerous. Thus,
prevention of this fault has also become a major concern in the field of motor condition monitoring. However,
insufficient detection accuracy in broken rotor bar fault diagnosis has inspired many researchers in improving

this method. Use of sensors has been shown to be effective for the detection of BRB faults. Hall sensors based
magnetic flux assessment [2], infrared image analysis [3], smart sensor based current and vibration analysis [4] has

been employed efficiently for rotor condition monitoring. The oscillatory behavior of motor torque is also a good
indication of rotor fault. Therefore, with the help of a torque sensor electromagnetic torque has been analyzed
[5] in the frequency domain to estimate rotor health. But the main drawback of these approaches is the use of
costly sensors and necessary hardware with them. Several parameter estimation methods have been proposed
to estimate the parameters which cannot be measured easily. Air gap torque estimation [6], Kalman filter-based
flux estimation [7] are some of the good examples of BRB fault detection techniques. Being a noninvasive
technique motor current signature analysis (MCSA) [8-10] based methodologies are becoming dominant for
years which can avoid the need of extra hardware complexity. Most of the current analysis methods consist
of finding sideband frequency components (SFCs) corresponding to the fault. But the problem is that these
SFCs are very closely spaced components and the conventional spectral analysis approach does not have the
necessary resolution to identify these components, hence high-resolution spectral analysis techniques have been
used to meet the purpose. Multiresolution Taylor-Kalman approach [11], Prony analysis [10], and root-MUSIC
analysis [12] have been shown to be good solutions for the spectral resolution problems. It is also advantageous
to analyze the current envelope [13] i.e. how the phase current is being modulated due to fault. But detecting
the current envelope is difficult in practical cases when noises are present in the recorded signal. Analysis of
current features in the time-frequency domain has also been proven to be a good diagnostic mechanism for
machinery fault analysis. In this regard more specifically the startup transient analysis of stator current has
been investigated. The analysis lies on the exposure of a V pattern in the time-frequency plane produced by the
evolution of sidebands corresponding to rotor fault. Positive outcomes have been found through the approaches
based on Hilbert transform [14], Hilbert—Huang transform [15], Gabor analysis [15, 16], complex empirical
mode decomposition (EMD) [17], synchrosqueezing transform [18], short-time Fourier transform (STFT) [19].
In general, machinery faults result in a magnetic asymmetry in the air gap. To investigate this asymmetry search
coil-based techniques have been proposed where search coils are wound around the stator teeth to capture the
air gap flux for further analysis [20]. Not only air gap flux, but stray flux signature analysis (SFSA) can also
be employed for health assessment of rotor bar [21]. This method of stray flux analysis is also competing with
the conventional MCSA approaches as it has been successfully applied on numerous machinery faults [22-24].
Despite the availability of advanced methods, several cases of false alarms have been reported [25, 26] which is
undesirable and it eventually leads to the use of artificial intelligence and machine learning-based approaches
which are proven to be very effective specifically when multiple fault diagnosis is required. In this context, some
of the mentionable works are based on fuzzy logic [27], hybrid FMM-CART model [28], convolution neural
network(CNN) [29], which have been used as an effective diagnostic tool to detect faults like broken rotor bar,
eccentricity problems, unbalanced voltage, bearing failure, etc. Though neural network-based diagnosis schemes

are very efficient, particularly for online fault detection, they have several drawbacks, which are as follows:
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e Optimal tuning of network parameters is difficult due to the huge number of parameters that must be

optimized.
e The learning process is time-consuming due to the high computational burden.

e Sometimes it gets stuck on local optima, affecting overall effectiveness.

Also in the case of fuzzy logic-based approaches, finding optimized membership functions requires good
domain expertise. SVM, on the other hand, is preferred [30] because it requires only the support vectors, which
are very few in total datasets, leading to a high training speed of the model. Even in cases of linearly inseparable
features, SVM performs efficiently using kernel tricks [31]. Choice of optimal parameters can also be done easily
based on the crossvalidation score. For this purpose, TLBO has been used because it is robust and involves
comparatively less computational effort compared to other metaheuristic approaches. With all of the previously
mentioned benefits, the authors used SVM as a rotor fault prediction tool. The proposed method consists of
three steps. First, using CWT-based signal reconstruction, spectral entropy features are extracted from the
stator current signal. Second, suitable SVM parameters were chosen using teaching learning-based optimization
(TLBO) to improve the accuracy of the 10-fold crossvalidation performance. Finally, the trained SVM model
is used to predict broken rotor bars in the induction motor. The following are the primary contributions of this

work:

e FEM simulation and study of broken rotor bar fault in an induction motor.

e Application of FFT-based CWT to resolve the current signal in different frequency bands.

e New features based on spectral entropy in different frequency bands are extracted from the current signal.

e Tuning of SVM hyperparameters using TLBO algorithm and prediction of rotor faults.

The next section provides a thorough theoretical foundation for the proposed method, which includes the
basics of SVM, parameter tuning using TLBO, feature extraction mechanism, computation of spectral entropy,

choice of mother wavelet and feature reduction using PCA.

2. Theoretical background
2.1. Basics of support vector machine (SVM)
The classifier is trained to find a hyperplane by applying the margin maximization principle to feature vectors
that can optimally separate two classes.

A hyperplane (linear discriminant function) g(x) = W.X+Db is defined (Figure 1) to separate the classes,
where W is a weight vector which is perpendicular to the hyperplane, and b is an offset. The hyperplane is

found by solving the optimization problem as follows [32]:

mwz/n% W2 +C (Zézl fi)

1
st. (WX, +b)>1—&, &>0Vi @

fW.€) =

Here, [ is number of training set, C represents the regularisation parameter, and £ is a constant that governs

the classification margin of error. The input vector is denoted by X, and Y represents the output classes. The
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following dual can be used to find the solution to (1) [33].

maxLg =Y, 0;0; VY K(X; X)) )
st. 0<0; <C Vi, Y, a;Y;=0 (2)

K(X;X;) denotes a nonlinear kernel function. If the feature points are not linearly separable kernel functions
are used for mapping the data to higher dimensional feature space ¢, where the points become linearly separable.

The discriminant function g(x) then becomes

g(x) = Who(X) +b (3)
= Z a; (X)) T p(X;) +b. (4)
seSV

A kernel function K is defined as a function that corresponds to a dot product of two feature vectors in some

expanded feature space,

K(Xa;Xb) = ¢(Xa)¢(Xb) (5)

Most commonly used kernel functions are:

Linear K(X“XJ) = Xi.Xj (6)

Polinomial of power p K(X;,X;) =1+ X;.X;)? (7)
X — X,

Radial basis function K(X;, X;) = e‘M. (8)
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Figure 1. SVM classifier.

According to the aforementioned mathematical analysis, SVM was designed primarily for binary classi-
fication. As a result, SVM is further modified to address multiclassification issues. A multiclass SVM can be
created by combining several binary classifiers. To generate multiclass SVM, two techniques are mostly used:
One-vs-One (OVO) and One-Vs-Rest (OVR). These techniques determine the algorithm’s speed and accuracy.

The authors have used the OVR technique to achieve greater accuracy in this work.
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2.1.1. Parameter tuning for SVM Kernel

When using the RBF kernel, there are primarily two parameters to optimize: regularisation (C) and sigma (o)
before conducting the final training and testing procedure. Many studies attempted to find SVM parameters
empirically by attempting a limited number of values and retaining the values that produced the best results.
However, in order to find viable solutions, this procedure necessitates a thorough search of the entire search
space. A grid search was used to look for ways to optimize SVM parameters in the parameter space, where
the parameters change with a fixed step size [34]. Applications of particle swarm optimization (PSO) [35],
genetic algorithm (GA) [36], and ant colony optimization (ACO) [37] are also noteworthy in this context. The
authors used the teaching learning-based optimization (TLBO) method, which was proposed by Rao et al. [38],
because it finds global optima quickly with little computational effort and has a high consistency. In this work,

parameter tuning is done on the Python-3 platform.

2.1.2. TLBO

This method focuses on the impact of the teacher’s influence on students. The process is divided into two parts:
the first is the ”teacher phase”, in which new solutions are generated using the best solution and the population
mean. If the new solution is superior to the current one, it is accepted (greedy selection). The second phase is
known as the "learner phase”, and it involves the creation of a new solution using a partner solution. Acceptance
of this solution is based on the same greedy selection strategy as before. The goal of TLBO is to improve the
performance of SVM, and classification accuracy has been used as a performance metric in this context. For a

test data set, the accuracy can be given as:

TP+ TN

TP+FP+TN+FN’ )

Accuracy =

Here TP: True positive, FP: False positive, TN: True negative and FN: False negative. Because the authors
used 10-fold crossvalidation, accuracy has been measured for all ten iterations, and the average accuracy has

been used as the SVM’s performance parameter.

10
Accuracygpe = Z Accuracy (10)
i=1

Finally to implement TLBO, the fitness function is defined as (1-accuracyqy. ), which must be minimised using
the best SVM parameters. Figure 2 depicts the TLBO pseudocode and the proposed tuning approach for SVM
parameters.

2.2. Feature extraction

2.2.1. Resolving the signal into different frequency bands using CWT

The two common methods for computing wavelet coefficients are the convolution-based algorithm and the FFT-
based algorithm [39]. Considering the mother wavelet as (t) CWT coefficients as per the first method for a

time location 7 can be given as
To(7,5) = (x % 5)(7), (11)

where 1, = ﬁw*(%) The computation starts at 7 = 0, and 7 is to be incremented until the end of the signal

is reached. The calculation of CWT coefficients has to be done for each time step.
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Input: Fitness function, Ly, Uy, Ny, T
Initiate random population (P)
Evaluate fitness of P
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end
Bound X,,.,w and evaluate it’s fitness f,cy
ACCCpt Xnew if it is better than Xi Satisfying stopping criterion
S Tuncd SVM
end ur]l?[ode] Pr::ilc]]ttion
(a) Pseudocode of TLBO. (b) Application of TLBO for SVM parameter tuning.

Figure 2. Tuning of SVM hyperparameters.
The FFT-based wavelet transform, on the other hand, does not require the inner loop computation related

to the translation parameter (7 ), making it more computationally efficient than the first. Wavelet transform in
with this method can be given as

T.(r,s) = /oo x(t)y; ((t)dt (12)

_ /oo ()=t (" Da, (13)

where 7 and s are translation and dilation parameter (scale), respectively. Recovery of the signal is possible

with the wavelet transform coefficients using the equation below
1 [ [ 1
x(t) = C—w . T, (T, s)z/)T7s(t)s—2dsdT. (14)

Here Cy is defined as fooo w:w&dw. For both these analysis and synthesis purpose the wavelet should satisfy

the zero average condition i.e. [ fooo Y(t)dt = 0 and the admissibility condition i.e. Cy < co. Fourier Transform

of the CWT along the dimension 7 can be written as

FITo(7,5)] = Vs X (w)¥" (sw). (15)
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Now taking the inverse the CWT coefficients can be given as
1 o ,
T,(7,5) = 2—/ VX (W)™ (sw)e?™Tdr. (16)
T J_co

Here CWT is evaluated at all values of 7 in a single run for particular value of scale parameter, hence this
FFT based approach is computationally efficient. The signal corresponding to each scale can be reconstructed
as per equation (12). Since each scale represents a different bandpass filter, the input signal can be resolved
into multiple signals with varying frequency contents based on the filter represented by those scales. Finally,
spectral entropy has been calculated for each reconstructed signal as a feature to be fed into the SVM model.

The following subsection discusses the computational aspects of spectral entropy.

2.2.2. Computation of spectral entropy

A signal’s spectral entropy (SE) is an assessment of its spectral power distribution. It computes the Shannon
entropy considering the normalized power distribution of the signal in the frequency domain as a probability
distribution. This feature can be used for machinery damage investigation [40]. Given X(k) as the DFT of the

signal x(n), the power spectral density of the signal is:
S(k) =X (k). (17)

Then the probability distribution P(k):

Plk) = =0 (18)

And the spectral entropy can be given as

M
H ==Y P(k)logaP(k). (19)
k=1
Finally the normalized spectral entropy:
Soiey P(k)log: P(k)
H, = —=5= . 20
loga N (20)

Here M is the number of frequency points. Figure 3 depicts the entire method of the proposed feature extraction.

2.2.3. Choice of mother wavelet

When performing CWT-based analysis, the choice of mother wavelet is equally significant because it depends
on the application and also the data to be studied. Orthogonal wavelet families (such as Haar wavelet) and
nonorthogonal wavelet families (such as Morlet wavelet, Gaussian wavelet, Paul wavelet) are mostly common
among diverse wavelet families [41]. In the field of time-series analysis, nonorthogonal wavelets are highly
prevalent. The morlet wavelet, in particular, is very beneficial in this context because of its efficiency in

extracting oscillatory features from the signal. The expression for this wavelet can be given as
Py = Ce*z2cos(5x). (21)

The constant C is used for normalization while reconstructing the signal. The benefits [42] listed below

are the main reasons for using this wavelet to calculate CWT coefficients.
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Stator Current Signal

) 2
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Spectral Spectral Spectral
Entropy Entropy Entropy
F1 F2 Fn

Figure 3. Proposed feature extraction.
e The Morlet wavelet is Gaussian-shaped in the frequency domain, which minimises signal ripple effects.

e Compared to other methods, wavelet convolution is more computationally efficient and requires less code.

2.3. Feature reduction with PCA

Principal component analysis (PCA) evaluates most meaningful linear projection of original features on a new
basis that maximizes the scatter of all projected features. For a feature vector X, which is a (m x n) matrix
where m is the number of features and n is number of data trials. A new feature vector Y is defined by linear
transformation Y = P.X, where P is a matrix of orthogonal rows representing the basis of new feature space.

Defining the covariance matrix of Y, Sy = ﬁ Y.YT the main goal of PCA is to diagonalize Sy which

means the new features are completely uncorrelated.

1
(n—1)

_ 1 T
= oy (PXHPX)

= #PX.XTPT
(n—1)

= #PAPT,
(n—1)

Sy = ad

where A = X X7 is a symmetric matrix. From theory of linear algebra matrix A can be diagonalized as A =

MD M7 | where D is a diagonal matrix and M is a matrix of eigenvectors of A. Now if P is chosen such that P
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= MT then A = PTDP. Substituting this to the equation of Sy,

P(PT"DP)PT

= (PPTYD(PPT).

As M is an orthogonal matrix so as P. Hence PPT = PP~ !=I and Sy can be written as

Clearly Sy is now diagonalized and ith diagonal value of Sy is the variance of X along P;, where P; is
ith principal component of X. In this paper first two principal components have been taken for classification.

The study of rotor fault using FEM of an induction motor is described in the following section.

3. FEM simulation of BRB fault
Broken rotor bar (BRB) fault is implemented on a machine with the data as shown in Table 1, in ANSYS

Maxwell 2D. The fundamental equation relating time and space variations of the vector potential over the

section to be analyzed is given as [43]

D L0AL 0 104 oA,
"0z u Ox oy n Oy - ST
FllAZ:O.

Here D is the analysis area, I'y is the outside peripheral of stator and inside peripheral of the rotor (the
Dirichlet boundary conditions). The current density is denoted as J, and the conductivity of a conductor is o .
Permeability is denoted as p and A, indicates the magnetic vector potential.

As because of broken rotor bar current cannot flow through that bar, it tries to flow through adjacent
bars which causes field saturation in that area as shown in Figure 4b.

In the subsequent section, the findings obtained utilizing the proposed method for rotor fault diagnostics

are explained in detail.

4. Results and discussion

In this work, CWT has been used as a collection of several bandpass filters. The signal recovered from the
coefficients corresponding to a particular scale contains a specific band of frequencies having a centre frequency
as shown in Table 2. CWT is performed over a predefined set of scales, while the thumb rule for choosing
the smallest scale is sg = 27Ty, where Tj is the sampling period. With a sampling period of 0.0002 (sampling
frequency of 5000), the smallest scale taken is 0.0004. Considering N to be the total number of samples of an

input signal, the total number of scales is given as

OggN X TQ/SO

l
Ns. = nearest integer of 3 (22)
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Table 1. Motor specification.

Given output power (HP) 1
Rated voltage (V) 220
Number of poles 4
Frequency (Hz) 60
Number of stator slots 48
Number of rotor slots 34

Air gap (mm) 0.35
Stator resistance R1 (ohm) 2.59627
Stator leakage reactance X1 (ohm) | 3.66015
Rotor resistance R2 (ohm) 2.57657
Rotor leakage reactance X2 (ohm) | 7.89809
Magnetizing reactance Xm (ohm) | 274.656
Efficiency (%) 88.2029
Power factor 0.929495

B [tes1al

18948
1.8211
0. auE1
B.8752

0.8023
0.7293
0. 6564
0. 58385
2.5105
B, 4376
0. 3647
0. 2917
0. 2188
2. 1459
B.8729
0. 8008

B [tesla]

11347
1.0598
2,9834
0.9077

0.8524
.7564
0,880
.8051
08,5295
.4530
0.3782
.3028
08,2269
8.1513
8.8756
0.0000

Field Saturation|
Due to Fault

[ f
0 50 100 (mm) 0 50 100 (mm)

Field distribution at healthy condition. Field distribution with one broken bar

Figure 4. FEM simulation of broken bar fault.

Here d, is spacing between two scales and taken as 0.4875. Finally the scales are chosen in a dyadic manner

and the ith scale can be given as

;=80 x 2% i =0to (Ny — 1). (23)

As a length of 2000 samples has been considered for extracting the fault features, Ny, comes out to be 20.
Total 20 scales (computed as Equation 22) and the corresponding center frequencies are given in Table 2.

The signal corresponding to individual scales has been reconstructed by zeroing out the coefficients related
to other scales after the CWT coeflicients for all scales have been computed. ”"Hard thresholding” is another
name for this technique. The spectral entropy of each reconstructed signal was then calculated to extract 20
features, denoted as F1 to F20. A total of 600 feature samples were extracted for the motor under two different

loading conditions (no load and medium load). One sample for each case has been given in Table 3.
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PCA has been used to reduce the number of features. Feature reduction helps to avoid overfitting and also
leads to better human interpretations and lower computational costs. PCA builds new independent features
from old features and a combination of both, eliminating correlated variables that do not contribute to any
decision making. Features from the first two principal components have been used to predict rotor faults.
Before those features are fed, the multiclass SVM classifier has been tuned using the TLBO technique. Based
on the accuracy of 10-fold crossvalidation, optimal C and sigma were chosen. Figure 5 shows that convergence
occurs after 75 iterations with best fitness value = 0.013333. The best parameters obtained as, ¢ = 91.15518313
and o = 9.78368304. A population size of 50 has been chosen for optimization, and the algorithm has been run
for 200 iterations.

Figure 6 shows the classification using this tuned SVM for both no load and medium load cases. Though
faulty features are always distinguished from healthy ones, distinguishing one broken rotor bar from two broken
rotor bars is relatively difficult in a no load situation. However, the RBF kernel has taken care of this issue

admirably. On the other hand, when the load increases (medium load), these characteristics become more

distinct.
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Figure 5. Convergence curve of TLBO.
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Figure 6. Classification with decision boundary.

The receiver operating characteristic (ROC) curve has been shown in Figure 7 as a performance measure
for the SVM classifier. The rate of true positives vs. false positives is represented by the ROC curve. The

performance of classifiers with curves closer to the top-left corner is superior. Figure 7a shows that for the no
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load condition, the ROC curve is perfect only for the case of healthy vs. rest, but SVM cannot achieve a true
positive rate of 100 percent with zero false positives in the other two situations (one BRB vs rest and two BRB
vs rest). However, as the load rises, the classification accuracy increases to 100%, as illustrated in Figure 7b.
Hence the proposed approach can separate the faulty machine fairly easily, even at no load condition, but the
accuracy reduces while distinguishing machines with 1 BRB and 2 BRB. But, with a loaded machine, all the
faulty and healthy situations are well separated.

On the basis of precision, recall, and fl-score, the authors compared the classification performance with
that of other commonly used machine learning (ML) approaches, such as logistic regression (LR), k-nearest
neighbor (KNN), and naive Bayes (NB). Table 4 shows the comparative analysis for no load situation where

accuracy is higher for SVM.

Multiclass ROC curve Multiclass ROC curve
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Figure 7. Multiclass ROC curve.
Table 4. Comparison with other ML methods.
SVM LR
Precision | Recall | Fl-score | Support Precision | Recall | Fl-score | Support
Healthy 1 1 1 49 Healthy 1 1 1 47
One BRB 0.87 0.88 0.87 51 One BRB 0.82 0.74 0.78 54
Two BRB 0.88 0.86 0.87 50 Two BRB 0.74 0.82 0.78 49
Accuracy 0.91 150 Accuracy 0.85 150
Macro avg 0.91 0.91 0.91 150 Macro avg 0.85 0.85 0.85 150
Weighted avg | 0.91 0.91 0.91 150 Weighted avg | 0.85 0.85 0.85 150
KNN NB
Precision | Recall | Fl-score | Support Precision | Recall | Fl-score | Support
Healthy 1 1 1 47 Healthy 1 1 1 47
One BRB 0.82 0.87 0.85 54 One BRB 0.83 0.83 0.83 54
Two BRB 0.85 0.8 0.82 49 Two BRB 0.82 0.82 0.82 49
Accuracy 0.89 150 Accuracy 0.88 150
Macro avg 0.89 0.89 0.89 150 Macro avg 0.88 0.88 0.88 150
Weighted avg | 0.89 0.89 0.89 150 Weighted avg | 0.88 0.88 0.88 150
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After the SVM model has been trained, it is tested on 150 randomly selected samples to see how well

it predicts.

Figure 8 depicts the resulting confusion matrix.

In the no load situation, a few samples are

misclassified, but with loading, the SVM model has shown 100% accuracy. The proposed method’s performance

is also compared to that of recently reported relevant methods, as shown in Table 5.

Confusion Matrix
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Figure 8. Confusion matrix.
Table 5. Proposed methodology performance comparison.
Reference Method Detected fault | Analysed signal | Motor state Accuracy rate
Aydin et al. | Hilbert transform, | 1 BRB Current signal Steady state 98.75
[44] boundary analysis and | 2 BRB
Fuzzy decision tree
Weiguo Zhao | PCA and multivariate | vl BRB Current signal Steady state 80-95
et al. [45] relevance vector 2 BRB
machine with multiple | 3 BRB
Gaussian
kernels
Weiguo Zhao | Fuzzy logic approach | 1 BRB Current signal Steady state 98.30
et al. [46] based on contrast | 2 BRB
computation
Rangel Mag- | Hilbert transform and | 0.5 BRB Current signal Start up transient | 99
daleno et al. | statistical analysis 1 BRB
[47] 1.5 BRB
Proposed Spectral entropy and | 1 BRB Current signal Start up transient | 91-100
tuned SVM 2 BRB

5. Severity estimation

The approximate entropy of the current signal has been computed for quantitative analysis of fault severity.

The fault harmonics in the signal increase as the number of broken rotor bars increases, resulting in higher

approximate entropy. As a result, it is a good choice for estimating fault severity. Figure 9 shows how it

changes as the number of broken bars increases.
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Figure 9. Fault severity estimation.

6. Conclusion and future works

This paper proposes new frequency domain features derived from various frequency bands for the precise
prediction of rotor fault in an induction motor. The main goal of using CWT is to filter the current signal with
several bandpass filters with the least amount of computation. Individual filtered signals are then subjected
to spectral entropy computation and treated as features for fault detection. When the proposed features are
combined with SVM, with optimally chosen parameters, they result in precise fault detection. According to the
findings, the proposed method is capable of accurately predicting rotor faults while having low computational
complexity. The proposed scheme has also been tested under two different loading conditions and at different
fault severity levels. The presented feature extraction technique is validated by combining it with KNN, LR
and NB in order to justify the effectiveness of the TLBO optimized SVM model compared to other commonly
used ML approaches. Though the proposed method is extremely effective in predicting rotor faults, it cannot be
used in the situation of an inverter-fed motor running at a very low speed because fault frequencies are strongly
related to the slip, which is determined by the motor speed. In such circumstances, a new set of training data
must be obtained, and the SVM should be trained with that data set to generate accurate results.

Future research could go in a number of directions. To begin, the proposed approach can be validated
using the current signal from a real experimental setup. Second, other metaheuristic algorithms’ performance
can be evaluated in order to fine-tune SVM parameters. Finally, the approach’s effectiveness can be tested by

looking into other machine faults like irregular air gaps, stator interturn failure, and so on.
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