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Abstract: The arbitrary-sharing connection game is prominent in the network formation game literature [1]. An
undirected graph with positive edge weights is given, where the weight of an edge is the cost of building it. An edge is
built if agents contribute a sufficient amount for its construction. For agent i , the goal is to contribute the least possible
amount while assuring that the source node si is connected to the terminal node ti . In this paper, we study the special
case of this game in which there are only two source nodes. In this setting, we prove that there exists a 2 -approximate
Nash equilibrium that is socially optimal. We also consider the further special case in which there are no auxiliary nodes
(i.e., every node is a terminal or source node). In this further special case, we show that there exists a 3

2
-approximate

Nash equilibrium that is socially optimal. Moreover, we show that it is computable in polynomial time.

Key words: Algorithmic game theory, network formation games, connection game, approximate Nash equilibrium

1. Introduction
The game theory emerged in the 20th century as a mathematical discipline to analyze the interactions of self-
interested agents. Before the advent of the Internet, game theory was not part of computer science research
studies, except for a few artificial intelligence applications [2]. The advent of the Internet changed this situation
dramatically. With applications such as online auctions [3], sponsored search [4], cryptocurrencies [5], and
multi-agent robot systems [6], computer systems have become the main venue for game theory. Algorithms and
game theory intertwined, giving birth to the field today known as algorithmic game theory [7].

A game instance G in normal form is a triplet (N,Σ, c) : N = {1, 2, . . . , n} is the set of agents (players),
Σ = Σ1 × . . . × Σn is the strategy space, and c = (c1, . . . , cn) is the profile of agents’ cost functions. In
this specification, Σi is agent i ’s set of possible strategies, and ci : Σ → R≥0 is agent i ’s cost function (her
negative “payoff function”). A strategy of agent i is denoted by σi . The profile of agents’ strategies, denoted
by σ = (σ1, . . . , σn) ∈ Σ , is referred to as a strategy profile, or a solution. The social cost of σ is the sum of
individual costs at σ . The solution for which the social cost is minimum is called the socially-optimal solution.
A solution is a Nash equilibrium if, at that solution, no agent can reduce her cost by unilaterally changing her
strategy [8]. In a game instance, there may be multiple Nash equilibria, and a socially-optimal solution is not
necessarily a Nash equilibrium.

In game theory, two important questions are whether a Nash equilibrium always exists, if it does and
if it is unique. Additionally, in algorithmic game theory, a Nash equilibrium’s computational tractability, and
∗Correspondence: bcaskurlu@etu.edu.tr
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the quantification of its inefficiency level are also important questions. In the literature, as a measure of the
inefficiency level, the ratio of the social cost of a Nash equilibrium outcome to the optimal social cost is commonly
used. The maximum and the minimum values that this ratio takes in Nash equilibrium outcomes are called, in
order, the price of anarchy [9] and the price of stability [10].

The influence of the Internet brought networks into the center stage of algorithmic game theory studies
[11]. In what is called network formation games, researchers try to understand the structure and the properties
of networks constructed by self-interested agents [12]. A network is often modeled as a graph with positive edge
weights, where the weight of an edge is the cost of building (or purchasing) it. In a typical network formation
game, each agent sits at a node and wants her quality of service (QoS) requirement to be met. To this end,
certain edges must be built, and the costs of building edges are shared by agents. Agents try to minimize their
incurred costs while assuring that their QoS requirements are satisfied. The two defining features of a network
formation game are the nature of agents’ QoS requirements and the protocol by which edge costs are shared.

It was indeed the economists who initiated the research on network formation games [13]. They used
this type of game to model the creation of social and economic networks [14]. In these games, agents typically
form local connections in the form of direct links with other agents, and each agent aims to pay as little as
possible while achieving some goal. This type of model is also employed in computer science, for instance, when
modeling the peering relations among autonomous systems [15–17].

In this paper, we consider the connection game, which is a prominent network formation model [1]. In
a connection game, agent i ’s QoS requirement is the connectivity between two agent-specific nodes, the source
node si and the terminal node ti .1 Multiple agents may share the same source node (i.e. for i, j ∈ N , we may
have si = sj ), and multiple agents may share the same terminal node (i.e. for i, j ∈ N , we may have ti = tj ).
Two special cases of the connection game considered in the literature are the multicast game and the broadcast
game. In the multicast game, also called the single-source connection game, all agents share the same source
node s . That is, for all i ∈ N , we have si = s . A node is said to be auxiliary if it is not a source node or a
terminal node of some agent. The broadcast game is the special case of the multicast game in which there are
no auxiliary nodes. Notice that the graph of a broadcast game with n agents has at most n + 1 nodes, and
each node other than s is necessarily the terminal node of some agent.

In a network formation game, how much agents pay for the construction of an edge is determined by
a cost-sharing scheme. The most popular cost-sharing scheme in the literature is fair-sharing [10]. In the
fair-sharing connection game, a strategy of agent i is a simple si − ti path.2 Therefore, Σi is the set of all
simple si − ti paths in the graph. For a solution σ = (σ1, . . . , σn) , if σi contains e , it means e is selected by
agent i . An edge is built if it is selected by at least one agent and its cost is shared equally by those agents who
selected it. The fair-sharing connection game falls into the class of “congestion games” for which the existence
of Nash equilibrium is guaranteed [18]. The fair-sharing scheme is associated with some desirable properties.
For instance, it eliminates the free-rider problem by ensuring that every agent pays for a fair portion of the cost
of the edges that she uses. It can also be derived from the Shapley value [19]. For axiomatic studies on the
fair-sharing scheme, see [19–21].

There is a major drawback of the fair-sharing scheme, however. In fair-sharing network formation games,
1In the original definition of the connection game [1], an agent’s QoS requirement is the connectivity between a subset of nodes.

The follow-up papers however consider the bare-bones case, as in our paper, in which the QoS requirement is the connectivity
between a pair of nodes.

2A v0 − vk path in a graph is a sequence of nodes v0, v1, . . . , vk with the property that each consecutive pair vi, vi+1 is joined
by an edge. The path contains the edges (v0, v1), . . . , (vk−1, vk) . A path is simple if all its nodes are distinct from one another.
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the price of stability tends to be high. Anshelevich et al. [10] proved that in the fair-sharing connection game,
the price of stability is bounded above by Hn =

∑n
i=1

1
i , and this bound is tight even in the special case of

the broadcast game on directed networks.3 On the other hand, establishing the price of stability on undirected
networks is a long-standing open challenge. The best-known lower bounds for the price of stability, as of now,
are 1.818 for the broadcast game, 1.862 for the multicast game, and 2.245 for the connection game [22]. The
best-known upper bounds for the price of stability are O(lg n) for the connection game [10], O( lgn

lg lgn ) for the

multicast game [23], and O(1) for the broadcast game [24].
In this line of research, another key concept is the notion of an α-approximate Nash equilibrium. A

solution σ is an α -approximate Nash equilibrium if no agent has a unilateral deviation that reduces her cost to
less than 1

α times her cost under σ . Another drawback of the fair-sharing scheme is that there may not exist
any approximate Nash equilibrium that has a low social cost. See [25], for instance, for a fair-sharing network
formation game where the socially-optimal solution is not an approximate Nash equilibrium for any α .

Another popular cost-sharing scheme in the literature is arbitrary-sharing [1]. In the arbitrary-sharing
scheme, as their strategies, agents specify the amounts that they are willing to contribute for the construction
of different edges. Thus, when there are m edges, agent i ’s strategy is a nonnegative vector of size m . An edge
is built if the total amount contributed for its construction covers its cost, and it is not built otherwise. An
arbitrary-sharing network formation game is not a congestion game, and in this game, the existence of a Nash
equilibrium is not guaranteed. However, arbitrary-sharing network formation games are quite robust in having
low-factor approximate Nash equilibrium solutions associated with low social cost [1, 26–28]. Arbitrary-sharing
is also related to separable cost-sharing protocol design [29].

In their seminal paper, Anshelevich et al. [1] showed that the price of stability of the arbitrary-sharing
multicast game is 1 . In other words, there exists a Nash equilibrium that is socially optimal. This result also
holds for directed networks. For the arbitrary-sharing broadcast game, the price of stability is 1 even for its
“survivable” version, in which the QoS requirement for agent i is two edge-disjoint paths between s and ti

rather than a single path [26]. However, it is known that for the arbitrary-sharing connection game, a Nash
equilibrium may not exist if there are two or more source nodes. Anshelevich et al. [1] proved the existence of
a 3 -approximate Nash equilibrium that is socially optimal.

The following real-life application motivates the network formation models under the arbitrary-sharing
scheme. Imagine a huge nationwide road construction project in the US. The set of all potential roads to be
built can be represented as an undirected graph. In this scenario, each continental state acts as an agent that
aims to minimize the state’s contributions while assuring that the state-specific connectivity requirements are
satisfied. The strategy of each state is a nonnegative contribution toward the construction of each potential
road to be built. The underlying game is an arbitrary-sharing network formation game. Notice that the social
cost of the road network built may be significantly higher than that of the socially-optimal solution. In that
setting, the federal government may act as the central authority that aims to ensure that the socially-optimal
road network is built. The federal government, however, cannot directly control how states use their resources.
But to ensure that the allocation of state resources leads to the construction of the socially-optimal network, the
federal government may give subsidies for the construction of some roads in the network. However, the federal
government would also be interested in minimizing the sum of the subsidies it gives. The theoretical results
proving the existence of an α -approximate Nash equilibrium payment scheme that builds the socially-optimal

3Note that Hn = Θ(lgn) .
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solution gives a theoretical upper bound on the total amount the federal government needs to spend. It is easy
to see that in that case, the federal government can ensure the construction of the socially-optimal network by
paying at most α−1

α of the total cost.
In this paper, we study the special case of the arbitrary-sharing connection game in which there are only

two source nodes. We call it the two-source connection game. We also consider it a special case in which there
are no auxiliary nodes. Notice that the games we consider are similar to the multicast and the broadcast games,
except that in our games there are two source nodes rather than one. The main findings of our paper are as
follows: In the two-source connection game, we show that there exists a 2 -approximate Nash equilibrium that is
socially optimal. For the further special case in which there are no auxiliary nodes, we prove that there always
exists a 3

2 -approximate Nash equilibrium that is socially optimal and which is computable in polynomial time.
The rest of this paper is organized as follows: Section 2 introduces the problem and presents preliminary

results from the literature. Section 3 introduces some terminology and presents the ideas commonly used in
showing the existence and computability of approximate Nash equilibrium solutions in arbitrary-sharing network
formation games. Section 4 presents our result for the two-source connection game. Section 5 studies the special
case of the two-source connection game in which there are no auxiliary nodes. Section 6 summarizes our findings
and outlines avenues for future research.

2. Model and preliminaries

In the rest of the paper, we consider a given undirected graph G = (V,E, c) . The value c(e) ≥ 0 denotes the
cost of building edge e ∈ E .

Let N = {1, 2, . . . , n} be the set of agents (players). A connection game associates each i ∈ N with a
pair (si, ti) , where si, ti ∈ V . We imagine that agent i sits at a terminal node ti and wishes to be connected
to a source node si . Thus, she wants a path to be built between the nodes si and ti . We use G to denote a
connection game instance. Let S ⊂ V denote the subset of source nodes in G .

For ease of reference, we may speak of a node ti as an agent (agent i). But notice that multiple agents
may sit at the same terminal node (i.e. for i, j ∈ N , we may have ti = tj ). Furthermore, multiple agents may
wish to connect to the same source node. We say that a node is auxiliary if it is not a source or a terminal node
for some agent.

We assume that the cost-sharing scheme is arbitrary. Therefore, for agent i , her strategy is a payment
vector pi : E → R≥0 , where pi(e) denotes how much agent i contributes to the cost of edge e . Agents’ strategy
profile is a payment scheme p = (p1, . . . , pn) . We use the terms “strategy profile” and “payment scheme”
interchangeably.

A subgraph G′ of G consists of a subset of edges and the associated edge costs and nodes. The cost
of the subgraph G′ is the sum of the costs of the edges in G′ . Let c(G′) denote this cost. A subgraph G′ is
socially-optimal if it is the minimum-cost subgraph of G that satisfies every agent’s connectivity requirement.

An edge e is built if
∑

i∈N pi(e) ≥ c(e) . Let Gp denote the subgraph of G that exclusively contains
the edges built under the payment scheme p = (p1, . . . , pn) . If Gp does not contain an si − ti path, agent i ’s
incurred cost is infinite. If Gp contains an si − ti path, agent i ’s incurred cost is the sum of her contributions
for the edges, i.e.

∑
e∈E pi(e) .

Let p−i denote the (n − 1) -dimensional vector of strategies played by all agents except i under the
payment vector p . Notice that we can write p as (pi, p−i) . A payment scheme p is a Nash equilibrium if for
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each i ∈ N , the subgraph Gp contains an si − ti path, and there does not exist a strategy p′i such that the
subgraph G(p′

i,p−i) contains an si − ti path and
∑

e∈E p′i(e) <
∑

e∈E pi(e) . That is, p is a Nash equilibrium if
no agent has a lower-payment deviation that keeps her connectivity requirement satisfied.

Since cost-sharing is arbitrary, agent i only cares about how much she must contribute to an edge e so
that e is built. This amount, denoted by c′i(e) , is called the modified cost of e for agent i . For instance, if
c(e) = 10 , and if other agents’ combined contributions for e is 8, then c′i(e) = 10 − 8 = 2 . Notice that for a
connection game instance G , a payment scheme p is a Nash equilibrium if for each i ∈ N , the sum

∑
e∈E pi(e)

is equal to the cost of the shortest path between si and ti under the modified costs for agent i .
Observation 1 below states some properties of Nash equilibrium payment schemes.

Observation 1 (Anshelevich et al. [1]) For a connection game instance G , let the payment scheme p be a
Nash equilibrium. Then, the following properties hold:
(P1) Gp is a forest. 4

(P2) Agent i pays a positive amount only for the edges along the unique si − ti path in Gp .
(P3) For edge e , the total payment is either c(e) or 0 .

For a connection game instance G , the socially-optimal subgraph is the minimum-cost Steiner forest5 that
connects each terminal node to the associated source node. We use T ∗ to denote the socially-optimal subgraph.
Notice that for a multicast game, T ∗ connects s to all terminal nodes. We present below the seminal existence
result for the multicast game.

Theorem 1 (Anshelevich et al. [1]) There exists a polynomial-time algorithm that satisfies the following
specifications: The algorithm takes as input a multicast game instance G and a Steiner tree T that connects s

to all terminal nodes. Then, it returns:
• A Nash equilibrium payment scheme p that builds T , or
• a Steiner tree T ′ such that c(T ′) < c(T ) and T ′ connect s to all terminal nodes.

We shortly call the algorithm with the properties in Theorem 1 the ADTW algorithm. Notice that
since no Steiner tree is cheaper than T ∗ , if T ∗ is given as an input, then the ADTW algorithm returns a
Nash equilibrium payment scheme that builds T ∗ . The ADTW algorithm is not directly applicable if there
are multiple source nodes. But in network formation games with arbitrary-sharing, the ADTW algorithm is
typically used as a subroutine when showing the existence of approximate Nash equilibrium payment schemes
that build the socially-optimal subgraph [1, 25, 26].

A payment scheme p is an α-approximate Nash equilibrium if for each i ∈ N , Gp contains an si − ti

path, and there is no strategy p′i such that G(p′
i,p−i) contains an si− ti path and

∑
e∈E p′i(e) <

1
α

∑
e∈E pi(e) .

That is, at p , agent i does not have a deviation that makes her payment less than 1
α times her pre-deviation

payment while keeping her connectivity requirement satisfied. Note that this condition is equivalent to saying
that the sum

∑
e∈E pi(e) is no more than α times the cost of the shortest path between si and ti under the

4An undirected graph G is called a forest if any two vertices are connected by at most one path, i.e. G is an acyclic graph. G
is called a tree if any two vertices are connected by exactly one path, i.e. G is an acyclic connected graph.

5Let G = (V,E, c) be an undirected graph with positive edge weights, and let S1, S2, . . . , Sk , for k ≥ 1 , be disjoint subsets of
V . A minimum-cost Steiner forest is a minimum-cost subgraph G′ of G in which any two vertices belonging to the same set Si

are connected. Notice that G′ is necessarily a forest, and it may or may not be a tree. For the special case where k = 1 , G′ is
referred to as minimum-cost Steiner tree. Notice that G′ is necessarily a tree for k = 1 .
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modified costs for agent i . Also, note that the properties given in Observation 1 need not hold for approximate
Nash equilibrium payment schemes.

A two-source connection game is a connection game with two source nodes. We denote the source nodes
by s1 and s2 . A two-source connection game instance may not have a Nash equilibrium, as illustrated in Figure
1 (due to [1]). To see this, suppose by contradiction that the payment scheme p = (p1, p2) is a Nash equilibrium.
Then, Gp may contain only three edges due to (P1). Without loss of generality, let these edges be a ,b ,c . Due
to (P2), agent 1 may only contribute to the costs of a and b , and agent 2 may only contribute to the costs
of b and c . So, it must be that p1(a) = 1, p1(c) = 0, p2(a) = 0, p2(c) = 1 . Since Gp contains b , we must have
p1(b) + p2(b) = 1 . However, neither agent can contribute a positive amount to b due to her alternate strategy
under which she only pays 1 for edge d . Therefore, for this game instance, there exists no Nash equilibrium.

�1 �2

�1�2

1

�

�

�

�

1

1

1

Figure 1. A two-source connection game instance with no Nash equilibrium. The building cost of each edge is 1 .

Consider the payment scheme p′ where agent 1 builds a , agent 2 builds c , and agents equally share
the building cost of b . The cost of p′ to each agent is 3

2 . Under p′ , for agent 1 , the modified costs of a, b, c, d

are, respectively, 1, 1
2 , 0, 1 . Similarly, under p′ , for agent 2 , the modified costs of a, b, c, d are, respectively,

0, 1
2 , 1, 1 . Under the modified costs: For agent 1 , the shortest s1 − t1 path is through d and c , and its total

modified cost is 1 and for agent 2 , the shortest s2 − t2 path is through a and d , and its total modified cost is
1 . Notice that p′ is a 3

2 -approximate Nash equilibrium since for each agent i ,
∑

e∈E pi(e) is no more than 3
2

times the cost of the shortest path between si and ti under the modified costs for i .
Since a two-source connection game instance may not admit a Nash equilibrium, we will concentrate our

efforts in proving the existence of a low-factor approximate Nash equilibrium payment scheme. For that, we
will make use of the concept of stable payments, which we explain next.

For a connection game instance G , let T be an arbitrary Steiner forest that connects each source node
to the terminals that wish to connect it. Assume that agent i plays the strategy pi , and the remaining agents
collectively make the remaining payments necessary to build T . We say that pi is a stable payment for agent i

with respect to T if
∑

e∈E pi(e) is equal to the cost of the cheapest si− ti path in G under the modified costs
for i . Notice that p is a Nash equilibrium if and only if the payment vector of each agent is a stable payment
for her with respect to Gp . Lemma 1 below pertains to the concept of stable payment. It becomes useful when
proving the existence of approximate Nash equilibrium results.

Lemma 1 (Anshelevich et al. [1]) Let p be a payment scheme for a connection game instance G such that
the connectivity requirements of all agents are satisfied in Gp . Assume that the payment vector pi of each agent
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i can be written as the sum of α payment vectors, p1i , p
2
i , . . . , p

α
i , each of which is a stable payment for i with

respect to Gp . Then, p is an α-approximate Nash equilibrium payment scheme for G .

The statement in Lemma 1 can be trivially extended to the case where the payment vector of an agent
i is a linear combination of a set of stable payments for i with positive coefficients, rather than just a sum.
Consider the game instance given in Figure 1. Let p1 = (1, 1

2 , 0, 0) and p2 = (0, 1
2 , 1, 0) . That is, agent 1 builds

a , agent 2 builds c , and agents share the building cost of b equally. Let T be the subgraph consisting of the
edges a, b, c . Notice that, with respect to T , (1, 0, 0, 0) is a stable payment for agent 1 , (0, 0, 1, 0) is a stable
payment for agent 2 , and (0, 1, 0, 0) is a stable payment for both agents. Then, the payment scheme p is a
3
2 -approximate Nash equilibrium because each agent’s payment vector can be written as the sum of a stable
payment for her with respect to Gp and a half of another stable payment for her with respect to Gp .

3. Terminology, ideas, and proof techniques

In this section, we present the ideas and techniques introduced in [1] and that are commonly used in the
literature when proving the existence and computability of exact or approximate Nash equilibrium solutions in
arbitrary-sharing network formation games [25–28]. We define two useful operations on Gp .

Edge contraction: Let p be a payment scheme for a connection game instance G such that the connectivity
requirements of all the agents are satisfied in Gp . Let P be a maximal-length v0 − vk path (with at least
two edges) in Gp such that for P , each internal node vi (0 < i < k ) is an auxiliary node and the degree of
vi in Gp is 2 . The edge contraction operation adds a (v0, vk) compound edge to G with a building cost of∑k−1

i=0 c((vi, vi+1)) . The path P in Gp is then replaced with the compound edge (v0, vk) .
The edge contraction operation is commonly used in arguments when proving the existence of an

approximate Nash equilibrium payment scheme that builds the socially-optimal subgraph T ∗ . The outline
of these proofs is as follows: If T ∗ is a forest, the arguments that we present next can be applied to each tree
of T ∗ separately. Therefore, without loss of generality, assume that T ∗ is a single tree. Let us apply the edge
contraction operation on maximal-length paths of T ∗ of length at least 2 whose all internal nodes are auxiliary,
until T ∗ does not have any such paths. Note that T ∗ is now composed of relatively few (simple or compound)
edges. Let e be an arbitrary edge of T ∗ . The removal of e from T ∗ will divide T ∗ into two trees, T ∗

1 and
T ∗
2 . Notice that there is at least one agent, say i , such that si ∈ T ∗

1 and ti ∈ T ∗
2 or vice versa, since assuming

otherwise contradicts T ∗ being the socially-optimal subgraph. The critical observation here is that building
edge e entirely constitutes no more than one stable payment for any agent i with si ∈ T ∗

1 and ti ∈ T ∗
2 (or vice

versa) with respect to T ∗ . One technique to give a constructive proof of the existence of an α -approximate
Nash equilibrium payment scheme that builds T ∗ is to come up with an assignment of the edges of T ∗ to agents
with the following restrictions. An edge e can be assigned to an agent i only if e is along the unique path
between si and ti in T ∗ , and no agent is assigned more than α edges. To show our existence of approximate
Nash equilibrium result, we will use this technique in conjunction with the node contraction idea, which we
present next. The node contraction idea enables us to use the ADTW algorithm in the two-source setting.

Node contraction: Without loss of generality, assume that T ∗ is a tree, since otherwise the arguments that
we present next can be applied to each tree of T ∗ separately. Let T ′ be the minimal connected subgraph of
T ∗ that spans all the source nodes. The critical observation is the following: Let p be a payment scheme that
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builds T ∗ . Let pi(T
′) denote the vector of payments by agent i for the edges of T ′ . Assume that for each agent

i , pi(T
′) can be written as the sum of k vectors p1i (T

′), p2i (T
′), . . . , pki (T

′) , each of which is a stable payment
for i with respect to T ∗ . That is, no agent i pays more than k stable payments for i with respect to T ∗ for
the edges of T ′ . Then, there is a (k + 1) -approximate Nash equilibrium payment scheme p̃ that builds T ∗ .
The payment scheme p̃ can be constructed as follows: For each edge e ∈ T ′ , and for each agent i ∈ N , we will
have p̃i(e) = pi(e) . Since the edges of T ′ are built (by at most k stable payments by each agent with respect to
T ∗ ), we can now fix the payments for the edges of T ′ and contract the nodes of T ′ into a single node v . Notice
that all source nodes (and possibly some terminal nodes) are contracted into v . The connectivity requirements
of the agents whose terminals are contracted into v are already satisfied. The remaining edges of T ∗ are built
by the remaining agents so that these agents’ connectivity requirements are also satisfied. But note that each
of these agents now wishes to connect to v . They can build the remaining edges of T ∗ by making one stable
payment per agent with respect to T ∗ , and these payments can be decided by the ADTW algorithm.

Structure of the socially-optimal subgraph: The socially-optimal subgraph T ∗ of a two-source connection
game instance G is composed of a single tree, or two trees such that each contains a source node and the terminal
nodes that wish to connect to it. If T ∗ is composed of two trees, then there exists a Nash equilibrium payment
scheme that builds T ∗ , and one such payment scheme can be computed by running the ADTW algorithm twice
(one for each tree). Therefore, in the rest of the text, without loss of generality, we will assume that T ∗ is
composed of a single tree. Assume that we started with T ∗ , and applied the edge contraction operation on
maximal-length paths of T ∗ of length at least 2 whose all internal nodes are auxiliary, until T ∗ does not have
any such paths. The structure of T ∗ will then be as depicted in Figure 2. T ∗ will be composed of an s1 − s2

path such that each node of this path is the root node of a subtree. Notice that each edge of the s1 − s2 path
is either a simple edge or a compound edge. In Figure 2, the s1 − s2 path contains k internal nodes named as
v1, v2, . . . , and vk . The subtrees rooted at them are named as τ1, τ2, . . . , and τk , respectively. For convenience,
the subtrees rooted at s1 and s2 are named as τ0 and τk+1 , respectively. Notice that for 1 ≤ j ≤ k , τj

necessarily contains at least one terminal node, and each leaf node of τj is a terminal node. So, if τj contains
exactly one terminal node, then τj itself is composed of the single node vj . The subtrees τ0 and τk+1 , on
the other hand, may or may not contain terminal nodes. If τ0 does not contain a terminal node, then τ0 is
composed of s1 . If τ0 has nodes other than s1 then each leaf of τ0 is necessarily a terminal node. Due to
symmetry, the arguments for τ0 also hold for τk+1 , with s1 replaced with s2 .

Figure 2. The structure of the socially-optimal subgraph T ∗ of a two-source connection game instance G .

The above ideas suggest the following for the two-source connection game: Notice that T ′ is the s1 − s2

path. If there exists a payment scheme p that builds T ∗ such that no agent i makes multiple stable payments
for i with respect to T ∗ for the edges of T ′ , then there is a 2 -approximate Nash equilibrium payment scheme p̃

that builds T ∗ . However, for a two-source connection game instance, it may be that a payment scheme p may
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not exist such that p builds T ∗ and no agent makes multiple stable payments for her in T ∗ for the edges of T ′ .
To see that, consider the two-source connection game instance given in Figure 1. A socially-optimal subgraph
in that instance consists of the edges b, c , and d . Notice that all the edges of T ∗ are also in T ′ and there
does not exist a payment scheme p that builds T ∗ such that no agent i makes multiple stable payments for i

with respect to T ∗ for the edges of T ′ . We prove the existence of a 2 -approximate Nash equilibrium payment
scheme that builds T ∗ in Section 4 by making use of an additional novel observation about the structure of T ∗ .

4. Existence of 2-approximate Nash equilibrium
This section is devoted to the proof of Theorem 2, which establishes the existence of a 2 -approximate Nash
equilibrium payment scheme that builds the socially-optimal subgraph.

Theorem 2 For any two-source connection game instance G , there exists a 2-approximate Nash equilibrium
payment scheme p that builds the socially-optimal subgraph T ∗ .

As explained in Section 3, without loss of generality, we will assume that T ∗ is composed of a single tree.
We will prove Theorem 2 constructively by presenting a two-phase algorithm. Our algorithm takes as input
the two-source connection game instance G , and the socially-optimal subgraph T ∗ for G . In the preprocessing
step, we apply the edge contraction operation on maximal-length paths of T ∗ of length at least 2 whose all
internal nodes are auxiliary, until T ∗ has no such path. Recall from Section 3 that the structure of T ∗ will
then be as depicted in Figure 2. We will use k to denote the number of internal nodes of the s1− s2 path. The
internal nodes of the s1 − s2 path are named as v1, v2, . . . , vk , and the edges of the s1 − s2 path are named as
e1, e2, . . . , ek+1 , as in Figure 2. The subtrees rooted at the nodes of the s1 − s2 path are, likewise, named as
τ0, τ1, . . . , τk+1 . We use S1 and S2 , in order, to denote the set of terminals that wish to connect to s1 and s2 .

In the first phase of the algorithm (given below as Algorithm 1), we construct payments on the (simple
or compound) edges of the s1 − s2 path (i.e. T ′ ) such that for any agent i , the payment she makes for the
edges of T ′ is no more than a stable payment for her in T ∗ . As we have demonstrated in Section 3, with the
game instance depicted in Figure 1 as an example, there may not exist any payment scheme p that builds T ∗

such that the total payment of each agent i on the edges of T ′ is no more than a stable payment for her with
respect to T ∗ . Lemma 2 below shows that Algorithm 1 either succeeds in deciding the payment on all the edges
of T ′ , or it succeeds in deciding the payment on all but one of the edges of T ′ . In the former case, we will show
Theorem 2 by using the arguments described in Section 3. In the latter case, we show Theorem 2 by using the
properties of T ∗ given in Lemma 2.

Explanation of Algorithm 1 : Algorithm 1 maintains a queue named Q that is initialized to be empty.
Algorithm 1 first loops through the subtrees attached to the internal nodes of the s1−s2 path (τ1, τ2, . . . , τk ) in
the left-to-right order. Recall that each such subtree contains at least one terminal node. At iteration i , exactly
one terminal in τi builds an edge of the s1 − s2 path, i.e. pays the building cost of this (simple or compound)
edge. If all the terminals in τi wish to connect to s1 , then one of them builds an unbuilt edge of the s1 − s2

path that is at the left of vi . Notice that there is only one such edge. This is because exactly i of the edges of
the s1 − s2 path are to the left of vi , and exactly i− 1 of them are already built in the previous iterations of
the for loop. If all the terminals in τi wish to connect to s2 , then one of them builds the edge immediately to
the right of vi , i.e. ei+1 . Notice that ei+1 has not been built in the previous iterations of the for loop. If τi

has at least one terminal that wishes to connect to s1 , and at least one terminal that wishes to connect to s2 ,
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Algorithm 1
1: Initialize Q as an empty queue
2: for i = 1 to k do
3: if S1 ∩ τi ̸= ∅ AND S2 ∩ τi ̸= ∅ then
4: Make tl ∈ S1 ∩ τi build the left-most unbuilt edge of the s1 − s2 path
5: Q.enqueue(tr ∈ S2 ∩ τi)
6: else if S1 ∩ τi ̸= ∅ then
7: Make tl ∈ S1 ∩ τi build the left-most unbuilt edge of the s1 − s2 path
8: else
9: Make tr ∈ S2 ∩ τi build ei+1

10: end if
11: end for
12: if S2 ∩ τ0 ̸= ∅ then
13: Make tr ∈ S2 ∩ τ0 build the unique unbuilt edge of the s1 − s2 path
14: else if S1 ∩ τk+1 ̸= ∅ then
15: Make tl ∈ S1 ∩ τk+1 build the unique unbuilt edge of the s1 − s2 path
16: else if Q is not empty then
17: Let tr ← Q.dequeue()
18: Make tr build the unique unbuilt edge of the s1 − s2 path
19: end if

then one of the terminals that wish to connect to s1 builds an unbuilt edge of the s1 − s2 path that is at the
left of vi , and one of the terminals that wish to connect to s2 is enqueued to Q for payment afterward.

At the termination of the for loop, exactly k agents built a distinct edge of the s1−s2 path that is along
the unique path between her terminal and source nodes in T ∗ . Therefore, all such agents made at most one
stable payment with respect to T ∗ so far. Let el be the unique edge of the s1 − s2 path that is not built upon
the termination of the for loop. Notice that if there exists a terminal node tr in τ0 that wishes to connect to
s2 , then tr can built el with a payment of no more than one stable payment for her with respect to T ∗ since
el is on the unique tr − s2 path in T ∗ . Similarly, el can be built by a terminal node tl in τk+1 that wishes
to connect to s1 with a payment of no more than one stable payment for her with respect to T ∗ . We next
show that any terminal node tr enqueued to Q can also build el with a payment of no more than one stable
payment for her with respect to T ∗ . Let tr ∈ τi be a terminal node that is enqueued to Q at iteration i of
the for loop. Note that exactly i of the edges of the s1 − s2 path are to the left of vi , and in the first i − 1

iterations of the for loop exactly i− 1 of those edges are built. At iteration i , a terminal tl ∈ τi(tl ̸= tr) builds
the remaining edge of the s1 − s2 path that is at the left of vi . Therefore, all the edges of the s1 − s2 path
that are to the left of vi are already built at the end of iteration i . Since el is not built upon the termination
of the for loop, it must be the case that el is to the right of vi . But then, el is along the unique tr − s2 path
in T ∗ , and tr can build el with one stable payment for her with respect to T ∗ . The if-else statement below
the for loop conditions on these three cases. Therefore, if el is not built at the termination of Algorithm 1, it
must be the case that all the terminals in τ0 wish to connect to s1 , all the terminals in τk+1 wish to connect
to s2 , and for 1 ≤ j ≤ k , all the terminals in τj wish to connect to the same source.

Our final remark in the analysis of Algorithm 1 is about the terminals in a subtree that is to the right of
el . Let l ≤ j ≤ k . Exactly j edges of the s1 − s2 path are to the left of vj , and exactly j − 1 of those edges
are built in the first j − 1 iteration of the for loop. If there was a terminal in τj that wishes to connect to
s1 , the left-most unbuilt edge, i.e. el , would be built at iteration j of the for loop. Since el is not built upon
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the termination of the for loop, all the terminals in τj wish to connect to s2 . All the findings obtained in the
analysis of Algorithm 1 are banded together in Lemma 2 below.

Lemma 2 For each agent i , the payment assigned to her for the edges of T ′ by Algorithm 1 is no more than
one stable payment for i with respect to T ∗ . Moreover, when Algorithm 1 terminates either k + 1 or k edges
of T ′ are built. Assume exactly k edges of T ′ are built upon the termination of Algorithm 1, and let el denote
the edge of T ′ that is not built. Then, all of the following statements are true.
(S1) All the terminals in τ0 wish to connect to s1 .
(S2) For 0 ≤ j ≤ k + 1 , all the terminals in τj wish to connect to the same source.
(S3) For j ≥ l , all the terminals in τj wish to connect to s2 .

The second phase of our algorithm consists of contracting nodes of the input graph and running the
ADTW algorithm for a subset of players on the contracted graph. The proof relies on Lemma 2 and the
following fact. For any subtree of T ∗ rooted at a node of the s1 − s2 path, the minimum-cost Steiner tree that
connects all the terminals in this subtree, and the root of the subtree, is the subtree itself. This statement is true
since otherwise, replacing this subtree with the minimum-cost Steiner tree of the aforementioned nodes in T ∗

would give a tree cheaper than T ∗ that connects all the terminals and the source nodes, which will contradict
T ∗ being the socially-optimal subgraph.

We first consider the case, where all k + 1 edges of T ′ are built upon the termination of Algorithm
1. In this case, we fix the payments for the edges of T ′ and contract the nodes of T ′ into a single node v .
Recall that both source nodes and possibly some terminal nodes are now contracted into v . The connectivity
requirements of the agents whose terminals are contracted into v are already satisfied. However, all the agents
whose terminals are not contracted into v now wish to connect to v . So, at the second phase of the algorithm,
all we need is to find a Nash equilibrium payment scheme for the resulting multicast game and this can be done
by running the ADTW algorithm since the edges of T ∗ \ T ′ is a socially-optimal subgraph for the resulting
multicast game.

We now consider the case, where exactly k edges of T ′ are built upon the termination of Algorithm 1.
We fix the payments for the edges of the vl − s2 path and contract the nodes vl, vl+1, . . . , vk , and s2 into a
single node s̃2 . We next find a Nash equilibrium payment scheme for the multicast game played by the agents,
whose terminals reside in a subtree rooted at a contracted node. Recall from Lemma 2 that all those agents
wish to connect to s̃2 , and the union of the subtrees τl, τl+1, . . . , τk+1 is a socially-optimal subgraph of this
multicast game. Therefore, a Nash equilibrium payment scheme for this multicast game can be obtained by
running the ADTW algorithm. Since the payments on the edges of the subtrees rooted at some node contracted
into s̃2 are now decided, we fix the payments on those edges and contract all these subtrees into s̃2 as well.

We next fix the payments for the edges of the s1 − vl−1 path and contract the nodes s1, v1, . . . , vl−1 ,
into a single node s̃1 . Recall that for a subtree attached to s̃1 , either all the terminals in this subtree wish
to connect to s̃1 , or all the terminals in this subtree wish to connect to s̃2 . We next find a Nash equilibrium
payment scheme for the multicast game played by the agents that wish to connect to s̃1 . Since the union of the
subtrees those agents reside is a socially-optimal subgraph for this multicast game, this can be done by running
the ADTW algorithm for this multicast game. We then contract these subtrees into s̃1 . Notice that T ∗ , at
this point, is composed of the subtrees rooted at s̃1 (all the terminals in all such subtrees wish to connect to
s̃2 ), and the edge el . Since the resulting game is also a multicast game, and the remaining edges of T ∗ is a
socially-optimal subgraph of this multicast game, a Nash equilibrium payment scheme for this multicast game
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can be decided by the ADTW algorithm. This completes the proof of Theorem 2.

5. Special case: Each nonsource node is a terminal node
This section is devoted to the special case of the two-source connection game, where each nonsource node is
necessarily a terminal node of some agent. For this special case, Theorem 3 below states the existence and
polynomial-time computability of a 3

2 -approximate Nash equilibrium payment scheme that builds T ∗ .

Theorem 3 Let G be a two-source connection game instance such that there are no auxiliary nodes in the input
graph G . A 3

2 -approximate Nash equilibrium payment scheme that builds the socially-optimal subgraph can be
computed in polynomial time.

Proof We first prove that T ∗ can be computed in polynomial time. Let S1 and S2 denote the set of terminals
that wish to connect to s1 and s2 , respectively. Recall that T ∗ is either a single tree, or it is composed of two
trees. If T ∗ is a single tree, then it is a minimum spanning tree of the input graph G , which can be computed
in polynomial time. If T ∗ is composed of two trees (say T ∗

1 and T ∗
2 ), then the vertex set of T ∗

1 is composed
of s1 and S1 , the vertex set of T ∗

2 is composed of s2 and S2 , and T ∗ is the minimum-cost such a forest. The
following algorithm finds T ∗ .

The algorithm first computes the minimum spanning tree T of G in polynomial time and stores it. It
then computes subgraphs G1 = (V1, E1, c1) and G2 = (V2, E2, c2) of G = (V,E, c) that are defined as follows:

• V1 = {s1} ∪ S1 , and V2 = {s2} ∪ S2 ,

• E1 = {e = (i, j) ∈ E : i, j ∈ V1} , and E2 = {e = (i, j) ∈ E : i, j ∈ V2} .

That is, E1 consists of the edges with two endpoints in V1 . Similarly, E2 consists of the edges with two
endpoints in V2 . The building costs of the edges are not changed. Notice that it may be the case that some
edges of G are neither in G1 nor in G2 . Observe that V1 ∩ V2 = ∅ if and only if all the agents sitting at the
same terminal node wish to connect to the same source. If V1∩V2 ̸= ∅ , then the algorithm returns T . If at least
one of G1 and G2 is not connected, then the algorithm returns T . If V1 ∩ V2 = ∅ , and both G1 and G2 are
connected, the algorithm computes the minimum spanning trees T1 and T2 of G1 and G2 , respectively. The
algorithm returns T1 ∪ T2 if c(T1 ∪ T2) ≤ c(T ) , and it returns T otherwise. This algorithm runs in polynomial
time since it is composed of three calls to a minimum spanning tree algorithm (such as Prim’s algorithm, or
Kruskal’s algorithm), and the construction of two subgraphs of the given input graph. The correctness of the
algorithm follows from the fact that it exhaustively considers all possible cases.

We now prove the existence of a 3
2 -approximate Nash equilibrium payment scheme that builds T ∗ . If

T ∗ is composed of two trees T ∗
1 and T ∗

2 , then T ∗
1 is the socially-optimal subgraph for the multicast game of

the agents S1 , and T ∗
2 is the socially-optimal subgraph for the multicast game of the agents S2 . Therefore,

a Nash equilibrium payment scheme that builds T ∗ can be computed by running the ADTW algorithm twice
(once for each tree). Thus, without loss of generality, we will assume that T ∗ is a tree. The structure of T ∗

is as depicted in Figure 2, and additionally, all the edges of T ∗ are now simple edges. We prove the theorem
constructively by presenting an algorithm that constructs a payment scheme that builds T ∗ .

Our algorithm first determines the payments for the edges of T ∗ \ T ′ , i.e. the edges in the subtrees
τ0, τ1, . . . , τk+1 . One agent from each nonroot terminal builds the edge between her terminal node and the
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parent of her terminal node. Notice that each agent builds an edge along the unique path between her terminal
and source node pair in T ∗ , and thus, the payment assigned to each such agent constitutes no more than one
stable payment for her in T ∗ .

Next, we determine the payments on k of the edges of T ′ , i.e. the s1 − s2 path. One agent from each
internal node of the s1 − s2 path (v1, v2, . . . , vk ) builds a single edge of the s1 − s2 path. Assignment of the
edges to the agents is done in a way similar to what is done in the for loop of Algorithm 1. That is, we loop
through these terminals in left-to-right order and process terminal vi at iteration i of the loop. The processing
of vi is done as in the following. If vi is the terminal node of an agent that wishes to connect to s1 , then that
agent builds the left-most unbuilt edge of the s1− s2 path. Otherwise, vi is the terminal node of an agent that
wishes to connect to s2 , and that agent builds ei+1 . Since agents build edges along the unique path between
their terminal and source node pairs in T ∗ , the payment assigned to each agent at that stage of the algorithm
constitutes no more than one stable payment for her in T ∗ .

At that point of the algorithm, all the edges of T ∗ , except one edge of the s1 − s2 path, are built, and
no agent made more payment than one stable payment for her in T ∗ . Let el be the edge that is not built yet.
We say that an agent i witnesses an edge e of T ∗ if e is along the unique path between si and ti in T ∗ . Let
r be the number of agents witnessing el . Notice that r ̸= 0 since otherwise, removal of el from T ∗ creates a
cheaper subgraph that satisfies the connectivity requirements of all the agents, which contradicts T ∗ being the
socially-optimal subgraph. If r ≥ 2 , the agents witnessing el will share its cost equally, i.e. each witnessing
agent will pay an amount of c(el)

r toward the construction of el . This payment constitutes no more than 1
r

stable payment for each witnessing agent in T ∗ , and thus, the payment scheme given is a (1 + 1
r ) -approximate

Nash equilibrium, where 1 + 1
r ≤

3
2 as desired.

We now consider the case r = 1 . Let agent i be the only agent that witnesses el . Let edge eo be the
edge that agent i built in the previous stages of the algorithm. We make agent i build el instead of eo . Notice
that this payment constitutes a stable payment for agent i in T ∗ since el is also along the unique path between
si and ti in T ∗ . Let r′ denote the number of agents witnessing eo . If r′ ≥ 2 , then the payment scheme
where the agents witnessing eo share the cost of eo equally is a (1 + 1

r′ ) -approximate Nash equilibrium as we
described above. If r′ = 1 we make agent i build both eo and el . All we need is to show that this payment
constitutes a stable payment for agent i in T ∗ . Notice that the connectivity requirements of all the agents,
except i , are satisfied in T ∗ \ {eo, el} . Let agent i play her best response strategy to the strategies of the other
agents, i.e. build the path between si and ti with the lowest modified cost. If the modified cost of this path
is cheaper than c(eo) + c(el) , this will contradict with T ∗ being the socially-optimal subgraph. Therefore, the
best response of agent i to the strategies of the other agents is to build both eo and el . And thus, building
both eo and el is a stable payment for agent i in T ∗ . Notice that the payment scheme constructed in the case
r′ = 1 is an exact Nash equilibrium. This completes the proof.

2

6. Conclusion and Future Research Directions
We studied the arbitrary-sharing connection game under the restriction that there are exactly two source nodes.
We proved the existence of a 2 -approximate Nash equilibrium payment scheme that builds the socially-optimal
subgraph. In the further restricted setting where there are no auxiliary nodes, we proved the polynomial-time
computability of a 3

2 -approximate Nash equilibrium payment scheme that builds the socially-optimal subgraph.
One evident direction for future research is investigating the existence of approximate Nash equilibrium payment
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schemes with a lower approximation ratio than shown in this paper.
Another direction for future research, one that may be quite interesting, is considering restrictions on

the strategy space for the arbitrary-sharing network formation games. For these games, since the strategy
space is extensive, it is rare to find results in the literature proving the nonexistence of an α -approximate Nash
equilibrium for some α . But suppose that attention is confined to the payment schemes that satisfy (P2), i.e.
when agent, say i , makes positive contributions only along a simple si− ti path. The graph in Figure 1 has no
auxiliary nodes and the payment scheme constructed by the algorithm given in Section 5 necessarily satisfies
(P2). For the game instance depicted in Figure 1, it is easy to see that no payment scheme that satisfies
(P2) is an α -approximate Nash equilibrium solution for any α < 3

2 . Thus, the result in Theorem 3 is tight
under the additional restriction that payment schemes satisfy (P2). But now consider the payment scheme for
which the payments of agents 1 and 2 for a, b, c, d are ( 12 ,

3
4 , 0,

1
4 ) and ( 12 ,

1
4 , 0,

3
4 ) , in order. It can be verified

that this payment scheme is a 6
5 -approximate Nash equilibrium, and hence, in a sense, it is closer to a Nash

equilibrium. But under this payment scheme, agents are contributing to the costs of the edges that they are
not using, and such behavior is not expected from strategic agents. Therefore, future research may consider
restricting payment schemes by the condition (P2). From a technical point of view, as exemplified above, this
restriction will make it easier to prove tight existence of approximate Nash equilibrium results.
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