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Abstract: Large-scale deployment of renewable energy sources (RESs) contributes to fluctuations in the system
frequency due to their inherent reduced inertia feature. Time delays have emerged as a major source of concern in
microgrids (MGs) as a result of the broad adoption of open communication networks since significant delays inevitably
reduce the controller’s performance and even cause instabilities. In this article, a frequency-domain direct method is
used to evaluate the impact of the virtual inertia (VI) control on the stability delay margins of MG with communication
delays. By avoiding approximation, the approach first removes transcendental terms from characteristic equations and
turns the transcendental characteristic equations into regular polynomials. With this method, roots of the original
characteristic equation on the imaginary axis correspond to exactly the positive real roots of the new regular polynomial
not including any exponential term. This new polynomial can be used to find out whether the system stability is delay-
dependent or not and enables us to compute stability delay margin for the delay-dependent stability case. The proposed
analytical method is utilized for evaluating stability delay margins with regard to system parameters for various values
of proportional-integral (PI) gains where the MG is marginally stable. Moreover, quantitative effect of virtual inertia
and damping gains is comprehensively investigated. Based on the results, it is concluded that incorporating VI control
enhances stability delay margins and enhances the MG’s stability performance. Theoretical delay margin results are
verified using time-domain simulations and quasipolynomial mapping-based root finder (QPmR) algorithm.

Key words: Communication time delays, microgrids, renewable energy sources, stability delay margin, virtual inertia

1. Introduction
Escalating concerns over environmental effects caused by traditional power generation head to the high level
penetration RESs such as solar and wind powers, and distributed generators (DGs) for instance small thermal
power plant into power systems [1, 2]. The large-scale penetration of DGs/RESs reduces the number of
traditional generating units that provide immediate preliminary response and reserve power for frequency
management. However, it results in significant frequency fluctuations and weakens the system stability and
resiliency. Additionally, due to the utilization of power electronics interfaces, DGs/RESs-based generation has
no or extremely low inertia and damping [3].

There is no rotating mass in power-electronics interfaces, which is critical for providing inertia and
damping qualities during a disruption. The deficiency of system inertia and damping cause an increase in the
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rate of change of frequency (RoCoF), resulting in sudden frequency fluctuations with bigger amplitudes and
load-shedding perhaps even for minor disruptions. Excessive RoCoF may occur if generation entities are not
built to ride through, resulting in cascaded tripping. If system inertia drops below a particular value, the huge
generation drop will cause a swift frequency decrease; similar to what would happen in frequency load-shedding,
consequential to instability, cascading outages, and power blackouts. Furthermore, power electronic circuits
connected to nonsynchronous generators are instantly delivered into electrical grid as a power disturbance,
causing in a momentous drop in system inertia, which has a major impact on frequency stability, dynamic
performance, and reliability [1, 4]. Furthermore, the intermittent nature of RESs, which results in unanticipated
power swings, affects the system’s dynamic performance [4, 5].

Virtually synthesizing extra inertia and damping, sanctioning for substantial DGs/RESs contribution in
system operation, is one strategy for stabilizing modern power systems in reaction to stability issues posed by
system inertia and damping reduction [6–8]. Different topologies have been suggested to simulate virtual inertia
[1, 4]. These topologies are all based on the same foundation. However, the level of precision with which they are
implemented varies. Virtual inertia emulation topologies can be classified into three categories: i) Synchronous

generator model − based topology mimics virtual inertia based on complete model of synchronous generator
(SG) dynamics, such as the virtual synchronous machine (VISMA) [6] and synchronverter [8]. The dynamics of
an SG are accurately duplicated since both electrical (e.g., winding interaction) and mechanical (i.e. rotational
mass and inertia) components of SG are represented. ii) Swing equation − based topology mimics virtual
inertia according to the SG’s swing equation such as Ise Lab’s topology [9] and synchronous power controller
(SPC) [10]. Hence, only the swing equation is modelled rather than the entire SG to imitate virtual inertia.
iii) Frequency − power response − based topology emulates virtual inertia according to the reaction to the
frequency changes such as virtual synchronous generator (VSG) [7]. Here, the topology utilizes derivative of the
frequency change measurement to imitate the virtual inertia. Among the numerous ways outlined above, the
virtual emulation based on RoCoF of the system is chosen in this article since it is the easiest and very basic
method for simulating virtual inertia.

The insufficient inertia and damping due to the high level integration of RESs into MG systems have
attracted considerable attention in recent years. Authors in [11] proposed an adaptive control technique for
tuning controller gains of the interconnected two-area MG system supported by batteries of electric vehicles
(EVs) and VSG. The study reported in [12] analyzed the robustness of the MG frequency control system for
the tuned VSG parameters using a quantitative feedback theory against load disturbance events and power
fluctuations in RESs. The study in [13] proposed a synthetic inertia technique based on EVs for providing
synthetic inertia services in modern power grids with low inertia in the presence of system uncertainties,
high integration levels of RESs and nonlinearities conventional power generations. Moreover, considering
line impedances of the MG system, authors in [14] proposed a feedforward decoupling strategy based novel
virtual inertia control to alleviate the low inertia problem of MG systems having power converters. The study
presented in [15] reported a hierarchical control scheme based on a distributed controller design to improve
the voltage and frequency stability in the AC/DC multi-area MG systems including VSG control. Finally, the
paper in [16] developed a fuzzy logic controller based emulated inertia controller to estimate the requirement
of the inertial power depending on the frequency deviation. Real-time simulation studies were performed to
validate the effectiveness of proposed controller and to illustrate the superiorities of the proposed technique
on the conventional emulated inertia control. The recent studies estimate the virtual inertia and damping
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constants in MG systems by using various techniques and investigate the robustness of the grid frequency
against uncertainties in RESs, parametric uncertainties of MG system and load variations.

Apart from diminished inertia, the communication time delays in MGs pose a significant threat to system
stability. To manage control actions and maintain system stability and operation, the MGs are equipped
with a variety of communication networks. The widespread use of communication networks for regulating
system frequency and maintaining dynamical stability in modern power systems has been unavoidable with the
advent of new control techniques in the frequency control service. Phasor measuring units (PMU) and open
communication networks became widely employed in wide-area measurement/monitoring systems (WAMS).
Consequently, time delays like measurement and transmission delays are unavoidable [17, 18]. When such time
delays reach the upper bound called the stability delay margin, they are known to reduce damping performance
of the control system and perhaps even lead to instability [19, 20]. Time delays linked to communication
networks are generally disregarded in MG stability studies since dedicated networks with short delays are
typically employed for sending data and control signals. Nevertheless, when open and distributed communication
channels are employed in MGs, temporal delays of 5–15 s are seen [19, 20]. A variety of factors determine the
size of communication delays. Telephone lines, power line carriers, fiber-optic cables, and other communication
mediums, as well as network load, transmission protocol, and phasor package size, are all aspects to consider.
Consequently, transmission delay within a particular range may vary at random. Hence, determining the delay
margin is crucial in the stability study of time-delayed MGs. The capability to design a controller that assures
system stability even when delays are uncertain is made possible by knowing delay margins.

There are various methods available to compute stability delay margins. These techniques are divided
into two main groups: time-domain based indirect methods and the frequency-domain based direct methods.
The time-domain indirect methods based on Lyapunov stability theory and linear matrix inequalities (LMIs)
were applied to the delay margin computation of LFC systems not including VI control. It is well-known in
the literature of the time-delayed systems that the time-domain indirect methods give conservative stability
delay margins as compared to the frequency-domain direct method [21, 22]. The frequency-domain techniques
aim to locate all crucial purely imaginary roots of the characteristic equation. Schur-Cohn method [23, 24],
elimination of transcendental components from the characteristic equation [25], Rekasius substitution [26, 27]
are among the most well-known and widely used frequency domain techniques for computing delay margin in
power systems. In recent years, various studies have examined stability delay margins of several systems not
including VI control such as MG LFC systems [28, 29], wind turbine systems [30], conventional LFC systems [31]
and modern LFC systems enhanced by electric vehicles [32, 33] by using Rekasius substitution and direct method
based on the elimination of exponential terms. From a computational point of view, when both methods are
compared, Rekasius substitution has the following disadvantages: i) A pseudo-delay term must be introduced for
exponential delay terms in the characteristic equation, ii) Routh-Hurwitz method must be applied to determine
the purely imaginary roots and the corresponding delay margins, which requires significant computational effort
[29, 33]. Because of these reasons, in this study, the direct method based on the elimination of exponential
terms is utilized for delay margins computation. For time-varying delays, frequency domain techniques cannot
be utilized to analyze the stability of time-delayed systems; instead, time-domain indirect approaches should
be used. Even if exact delay margins for constant delays may be achieved, this is the downside of frequency
domain direct techniques.

The effects of time delays in the demand response loop on system frequency response are examined using
a modified LFC model of single-area power system that includes demand response and virtual inertia [34]. [35]
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presented robust virtual inertia control for MG with low inertia to reduce unwanted frequency measurement
delay impacts and improve MG frequency stability. A new virtual inertia control approach was developed in
[36], which introduces a virtual damper to the existing virtual inertia control strategy to mitigate the effects of
time delay caused by cyber-attacks on the isolated MG’s LFC loop. Due to the single-phase structure of the grid
and communication delays, [37] proposed the use of plug-in hybrid electric vehicles to stabilize frequency in MGs
and/or weak grids with insufficient inertia. [38] presents a means for computing and correlating the upper limit
on virtual inertia gain to the phase-locked loop low pass filter’s cut-off frequency, which is used to represent the
delay indirectly. The issue of developing a virtual inertia control system according to a robust model predictive
controller that takes into account time delays in MGs was recently addressed in a new published article [39].
The literature (e.g., [37–39]) that considers virtual inertia and communication time delay has one or more of
the following limitations: the stability delay margin is not computed, Padé approximation of time delay was
utilized instead of the exact value, and the impact of allocating virtual inertia control and load disturbance in
control area has yet to be quantified or compared. To the best knowledge of the authors, no study has been
conducted to quantify the impact of virtual inertia parameters on stability delay margin computation of MGs
with communication time delay, which is the main contribution of this article.

This article studies the impacts of virtual inertia parameters on stability delay margin, which designates
the upper bound of time delay of the MG with VI control (MG-VI). The direct method calculates delay margins
with regard to system parameters for wide range of the PI controller gains of the system. The stability delay
margins of the system are then calculated to analyze the impact of inertia and damping parameters on stability
and dynamics of the system. The verification of the accuracy of stability delay margin is investigated via
time-domain simulations [40] and quasipolynomial mapping-based root finder (QPmR) algorithm [41] over a
wide range of the PI controller gains. The results clearly reveal that with the integration VI control to the
MG system, stability delay margins considerably increase, indicating that frequency stability is enhanced when
compared to a MG system without VI loop.

2. Time-delayed MG-VI system model

Figure 1 depicts a schematic diagram of an islanded MG that contains microgrid central controller (MGCC),
DGs/RESs, energy storage system (ESS), small-scale power plant, domestic loads and a VI model. The MGCC
collaboratively controls all DGs/RESs and small power plant to maintain the system frequency and voltage in
an acceptable range. Through communication networks represented by the dotted line in Figure 1, MGCC is
responsible for the integrity and harmonization of the entire system. ESS is charged or discharged based on its
state of charge (SOC), as shown by the bidirectional power flow. Domestic loads consume power in MGs, while
DGs inject power. The solid line in Figure 1 indicates the power exchange between DGs, ESS, and domestic
load groups.

Figure 2 shows a simplified dynamical model of an islanded MG system where the linearized models of
each component are utilized. This model is based on [3] and is utilized to study the impact of VI on the system’s
stability, performance, and resilience. In this MG, generation units and their installed capacities are selected as
solar power plant of 7.5 MW, wind power plant of 8.5 MW, and thermal power plant of 15 MW. In addition,
the MG system has residential loads of 5 MW and commercial-industrial loads of 10 MW. Because of high-level
penetration of power electronic devices connected to the MG, an ESS of 4.5 MW is added to the system taking
to consideration the obstacles related to low inertia and insufficient damping of the system. The base power is
15 MW [3]. In the islanded MG, ∆ Pm , ∆ Pg , ∆ f , ∆ Pv , ∆ PL and ACE are the deviations in mechanical
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output of generator, governor output, frequency, the valve position and domestic load, respectively. Tg , Tt ,
TWT , TPV , M , D , R and β represent time constant of the governor and turbine, wind turbine, solar system,
the inertia constant, damping coefficient, speed drop of the control area and frequency bias factor, respectively.
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Figure 1. Schematic diagram of MG system.
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Figure 2. The dynamical model of islanded MG.

To control the frequency, Figure 2 demonstrates three distinct control level schemes named primary,
virtual inertia, and secondary. The primary control loop of a small-scale thermal power plant conducts the initial
control activity and controls the governor and synchronous generator inertia locally for frequency regulation.
Second, an inertia control loop is used as a supplementary control to deliver virtual inertia and damping values

2225



HASEN et al./Turk J Elec Eng & Comp Sci

using the ESSs via a derivative control technique df /dt that mimics the prime mover’s behavior. Finally, the
secondary control loop employs the load frequency control (LFC) mechanism to improve frequency stability
and eliminate steady state error. Using the communication networks with low-bandwidth, MGCC transmits
the area control error (ACE) signals to each DG to reinstate the system frequency. The total time delay
resulted from receiving/transmit the control signals is expressed by an exponential term of e−sτ in Figure 2.
Proportional-integral (PI) controller is deployed by the MGCC as follows:

GC(s) = KP +
KI

s
, (1)

where KP and KI are the gains of MGCC PI controller. The dynamic model of the virtual inertia control
system is displayed in Figure 3. The virtual inertia control system contains an energy supply, an inverter,
and appropriate virtual inertia emulation control unit. Using the derivative technique described in [42, 43],
the virtual inertia component is constructed by computing the RoCoF for adjusting the excess power to a
set-point of the MG-VI system during a disturbance. The virtual damping component is utilized for a speedy
settling/stabilization period according to the system’s frequency fluctuations. Consequently, the RoCoF is used
to dynamically regulate active power using an inverter-based ESS. Thus, the MG-VI system is able to accurately
simulate virtual inertia power with damping, enhancing system inertia, damping, and frequency stability. The
basic algorithm of virtual inertia control governs the required inertia KV I to be applied to the grid and provides
the extra power transfer when the system frequency and RoCoF surpass a predetermined limit.
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Figure 3. Dynamic frequency response structure for virtual inertia control.

∆PV I = KV I

(
d
∆f

dt

)
+DV I (∆f) , (2)

where DV I is the virtual damping constant and KV I is the virtual inertia constant. To develop the
dynamic model of virtual inertia control shown in Figure 3, the dynamic characteristics from (2) for mimicking
virtual inertia and damping are merged as (i) inverter-based energy storage’s first order transfer function, and
(ii) droop characteristic of virtual inertia. Hence, the dynamic equation [3, 5] can be used to express the virtual
inertia power.

∆PV I (s) =
sKV I +DV I

1 + TINV

(
∆f (s)

RV I
,

)
(3)

where TINV is the time constant of inverter-based energy storage and RV I is the virtual inertia droop constant
for regulating active power with regard to frequency control. Finally, using the linearized first-order transfer
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functions, the characteristic equation of the MG with VI could be computed as follows:

∆(s, τ) = P (s) +Q(s)e−sτ = 0 , (4)

where P (s) and Q(s) are polynomials of s and given as follows:

P (s) = p7s
7 + p6s

6p5s
5 + p4s

4 + p3s
3 + p2s

2 + p1s
Q(s) = q4s

4 + q3s
3 + q2s

2 + q1s+ q0 ,
(5)

where p and q coefficients depending on parameters of the MG are given in (15) of Appendix.

3. Delay margin computation using direct method
The objective of the stability analysis of time-delayed systems is to determine if the system stability is dependent
on the delay or not. If the system is stable for all finite delays, then the system is said to be delay-independent
stable. For delay-dependent stable systems, however, the system stays stable for as long as τ < τ∗ , where
τ and τ∗ denote the delay and stability delay margin, respectively. For τ > τ∗ cases, the system becomes
unstable. This means that for the system to stay stable, the overall time delay should not be greater than the
delay margin. To assess the stability of the MG, it is necessary to estimate delay margins for given system and
controller parameters. For the system to be asymptotically stable, all roots of the characteristic equation in
(4) must be located in the left half of the complex plane. Because of the exponential component of e−sτ , the
characteristic equation in (4) is a transcendental equation, which means the polynomial might have an infinite
number of finite roots. Subsequently, calculating their roots has become a difficult task. To calculate delay
margin τ∗ results for which the characteristic polynomial of (4) contains roots (if any) on the imaginary axis,
however, computing all roots are not necessary.

The characteristic equation ∆(s, τ) = 0 is an inherent function of s and τ . It is assumed that the
delay-free (τ = 0) MG system is stable. This is a realistic assumption since the stability of the delay-free
system could be assured by the appropriate selection of the system and controller parameters. Assume that for
some finite value of τ , ∆(s, τ) = 0 contains a root on the imaginary axis at s = jωc . Meanwhile, complex
roots perpetually occur as a complex conjugate symmetry, the equation ∆(−s, τ) = 0 would consist the similar
root at s = jωc for the same time delay τ . Hence, the task is now reduced to finding τ such that ∆(s, τ) = 0

and ∆(−s, τ) = 0 have the same root at s = jωc . This consideration is expressed as follows:

P (jωc) +Q(jωc)e
−jωcτ = 0

P (−jωc) +Q(−jωc)e
jωcτ = 0 .

(6)

By eliminating the exponential e−sτ and esτ terms in (6), the following augmented characteristic equation
of ωc

2 is obtained.

W
(
ω2
c

)
= P (jωc)Q(−jωc)−Q(jωc)P (−jωc) = 0

= m14ωc
14 +m12ωc

12 +m10ωc
10 +m8ωc

8 +m6ωc
6 +m4ωc

4 +m2ωc
2 +m0 = 0 .

(7)

The augmented characteristic equation coefficients in terms of the coefficients of P (s) and Q(s) polynomials
are provided in (16) of Appendix. When the transcendental term is removed from the characteristic equation in
(4), the resulting equation is a regular polynomial represented in (7). The magnitude of the purely imaginary
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roots s = ±jωc of the original characteristic equation in (4) is precisely equal to the positive real roots in ωc

(7). Finding positive real roots of (7) is significantly simpler than computing imaginary roots of (4). Depending
on the roots of (7), two stability occurrences can be witnessed. Those are as follows:
i) If the augmented characteristic equation of (7) does not have any positive real roots for all finite delays τ ≥ 0

the system is said to be delay − independent stable . This implies that all the roots of (4) are in the left half
stable plane for all finite delays τ ≥ 0 .
ii) If the augmented characteristic equation of (7) has at least one positive real root, the system is then said to
be delay − dependent stable . This case indicates that roots of (4) cross the imaginary axis at s = ±jωc for a
finite stability delay margin τ∗ .

For the positive real root jωc of the augmented characteristic equation in (7), using the characteristic
equation of (4), an analytical formula could be derived to compute the stability delay margin of τ∗ as follows
[25, 31]:
The positive real root of the augmented polynomial of W

(
ω2
c

)
is first substituted into (4)

∆(jωc, τ
∗) = P (jωc) +Q(jωc)e

−jωcτ
∗
= 0 . (8)

Next using the Euler identity of e−jωcτ
∗
= cos(ωcτ

∗)− j sin(ωcτ
∗) in (8) the exponential term is expressed as

e−jωcτ
∗
= −P (jωc)

Q(jωc)
= cos(ωcτ

∗)− j sin(ωcτ
∗) . (9)

From the expression in (9), it is clear that

cos(ωcτ
∗) = Re

[
−P (jωc)

Q(jωc)

]
, sin(ωcτ

∗) = Im
[
P (jωc)
Q(jωc)

]
Tan(ωcτ

∗) =
Im[P (jωc)

Q(jωc)
]

Re[−P (jωc)
Q(jωc)

]
.

(10)

Finally, from (10), a general formula for the stability delay margin is determined as

τ∗ = 1
ωc
Tan−1

(
Im[P (jωc)

Q(jωc)
]

Re[−P (jωc)
Q(jωc)

]

)
+ 2rπ

ωc
, r = 0, 1, 2, . . . . . . ,∞ . (11)

By substituting the polynomials P (jωc) and Q(jωc) into (11), the following formula for the stability delay
margin of the MG-VI system is derived:

τ∗ =
1

ωc
tan−1

(
t11ωc

11 + t9ωc
9 + t7ωc

7 + t5ωc
5 + t3ωc

3 + t1ωc

t10ωc
10 + t8ωc

8 + t6ωc
6 + t4ωc

4 + t2ωc
2

)
+

2rπ

ωc
, r = 0, 1, 2, . . . . . . ,∞ . (12)

The corresponding coefficients are given in (17) of Appendix.
Furthermore, the root tendency (RT) at s = jωc must be defined. The RT is calculated using root

sensitivity, which allows us to see if the root of (4) crosses the imaginary axis when τ increases or not. Nonzero
sensitivity is required to cross the imaginary axis, as seen below.

Re

[
ds

dτ

]
s=jωc

̸= 0 , (13)
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where Re (•) stands for the real part of a complex variable. The sign of root sensitivity is referred to as RT
[25, 27, 31].

RT |s=jωc
= sgn

{
Re

[
ds

dτ

]
s=jωc

}
= sgn

[
W ′ (ωc

2
)]

, (14)

where the prime denotes the derivative of (7) with respect to ωc
2 . The derivation of the RT expression of (14)

is provided in [27, 31]. The RT derivation of (14) allows a way to figure out which way the roots are moving as
τ rises from τ1 = τ∗ −∆τ to τ1 = τ∗+∆τ , 0 < ∆τ ≪ 1 . When RT = +1 , the roots at s = ±jωc cross the
imaginary axis towards the right half plane to become unstable. When RT = −1 , on the other hand, the roots
migrate towards the stable left half plane.

4. Results and discussion

The parameters of the MG-VI system used for this study are given in [3]. Using time-domain simulations
[40] and the QPmR algorithm [41], the accuracy of theoretical delay margins for various PI controller gains is
validated.

M = 0.164, D = 0.016, R = 2.4, β = 0.99, TPV = 1.9, TW = 1.4, Tg = 0.1, Tt = 0.4, TINV = 10s.

4.1. Illustration of delay margin computation

The impact of VI the stability delay margins of MGs for a wide range of PI controller gains is investigated.
The disturbance effects of the RESs and loads are considered load variation (∆ PL = 0.1pu), wind speed
variation (∆ PW = 0.01pu), and solar radiation variation (∆ PPV = 0.01pu). The computational process of
the stability delay margin and verification study include the following next five presented in the following for
(KP = 0.2,KI = 0.2):
Step 1: Obtain the characteristic equation of (4) for the chosen system parameters and PI controller gains.
The characteristic polynomial is found to be:

∆(s, τ) =

( (
0.4188s7 + 6.2457s6 + 24.1830 s5 + 65.9101s4 + 69.8379s3 + 29.00752s2 + 3.9184s

)
+
(
12.6403s4 + 29.5860s3 + 23.2658s2 + 6.7954s+ 0.4752

)
e−sτ

)
= 0 .

Step 2: Determine the augmented characteristic equation of (7). This equation is as follows:

W (ωc) =

 0.1754ωc
14 + 18.7541ωc

12−180.0001ωc
10

+1165.6ωc
8 + 955.9235ωc

6 + 142.9144ωc
4

−8.7113ωc
2−0.2258

 = 0 .

Step 3: Determine all positive real roots, ωc > 0 , of the augmented polynomial found in Step 2. The
corresponding positive real root is computed as ωc = 0.2462rad/s . Note that all the remaining roots of (7) are
either complex or real negative.
Step 4: For the root ωc = 0.2462rad/s found in Step 3, compute stability delay margin using (12) and RT
using (14). The delay margin and RT are obtained as

τ∗ = 1
ωc
tan−1

(
−5.29ω11

c +130.64ω9
c+546.84ω7

c+379.76ω5
c+72.76ω3

c+1.86ωc

66.56ω10
c −260.11ω8

c−327.47ω6
c−115.7ω4

c−12.84ω2
c

)
= 8.77s

RT |s=jωc
= sgn

[
W ′ (ωc

2
)]

= +1 .
Step 5: Confirm the accuracy of the delay margin using time domain simulation and QPMR algorithm.
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4.2. Delay margin results of MG with VI control for different controller gains

Table 1 shows stability delay margins over a range of KP = 0.1−1 and KI = 0.1−1 for the MG without VI. The
numbers in the table indicated with an asterisk (*) show that the system is unstable for τ = 0 , implying that the
delay-free system is unstable for the corresponding parameter values. The impacts of VI control on the stability
delay margin are explored by choosing the virtual inertia and damping parameters as (KV I = 1.6, DV I = 1.2).
For the same set of PI controller gains as in Table 1, stability delay margins are shown in Table 2.

Table 1. Stability delay margin values for different PI controller parameters of the MG without VI (KV I = 0, DV I = 0).

τ∗ (s) KI

KP 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1 7.221 3.333 1.988 1.252 0.709 0.307 0.128 0.031 * *
0.2 7.490 3.438 2.005 1.136 0.441 0.248 0.143 0.071 0.018 *
0.3 6.867 0.627 0.450 0.336 0.250 0.181 0.125 0.078 0.039 0.005
0.4 0.331 0.292 0.251 0.211 0.172 0.135 0.101 0.070 0.043 0.017
0.5 0.221 0.198 0.174 0.150 0.126 0.103 0.080 0.059 0.039 0.020
0.6 0.160 0.145 0.128 0.112 0.096 0.079 0.063 0.048 0.033 0.019
0.7 0.122 0.110 0.098 0.086 0.074 0.061 0.049 0.038 0.026 0.015
0.8 0.094 0.085 0.075 0.066 0.057 0.047 0.038 0.029 0.020 0.011
0.9 0.073 0.066 0.058 0.051 0.043 0.036 0.028 0.021 0.013 0.006
1 0.057 0.051 0.045 0.039 0.033 0.026 0.020 0.014 0.008 0.002

Table 2. Stability delay margin values for different PI controller parameters of the MG with VI (KV I = 1.6, DV I = 1.2).

τ∗ (s) KI

KP 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1 27.277 8.631 4.249 2.705 1.905 1.404 1.051 0.782 0.569 0.402
0.2 28.003 8.769 4.350 2.787 1.969 1.450 1.080 0.795 0.572 0.409
0.3 28.517 8.590 4.246 2.714 1.898 1.366 0.972 0.671 0.475 0.354
0.4 28.777 7.942 3.834 2.381 1.551 0.894 0.560 0.427 0.343 0.280
0.5 28.713 0.687 0.587 0.508 0.442 0.386 0.337 0.294 0.256 0.222
0.6 0.389 0.368 0.344 0.320 0.295 0.271 0.246 0.223 0.200 0.179
0.7 0.283 0.269 0.254 0.239 0.224 0.208 0.193 0.177 0.162 0.147
0.8 0.221 0.211 0.200 0.190 0.179 0.168 0.156 0.145 0.134 0.123
0.9 0.179 0.171 0.163 0.155 0.147 0.138 0.129 0.121 0.112 0.104
1 0.148 0.142 0.136 0.129 0.122 0.115 0.109 0.102 0.095 0.088

It is clear from Tables 1 and 2 that with the integration of the virtual inertia and damping into the MG
system, stability delay margin values considerable increase for all selected PI controller gains. For example, as
seen in Table 1, for the controller gains of (KP = 0.2,KI = 0.2), the delay margin is computed as τ∗ = 3.438s

when the VI control loop is not used (KV I = 0, DV I = 0). The stability delay margin is determined as
τ∗ = 8.77s when the VI control with the parameters of (KV I = 1.6, DV I = 1.2) is implemented. This is a
significant enhancement in the delay margin and in the stability of the MG system. Tables 1 and 2 also show
that such an enhancement is achieved for all selected PI controller gains. Note that larger delay margins indicate
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more stable MGs. Moreover, delay margins in Tables 1 and 2 illustrate that, with an increase in KI , the delay
margin τ∗ decreases when KP is kept constant. This justifies that an increase in KI leads to a less stable MG
system. For fixed KI , the impact of KP on delay margin consists of two trends. The delay margin increases
with a rise in KP for the smaller values of KP . However, τ∗ decreases for the larger values of KP for all
quantities of KI . Furthermore, for the larger values of KP , a small increase in KP may cause a significant
decrease in τ∗ when KI is fixed. When KP is held constant, the data from both tables show that when KI is
increased, τ∗ decreases. This explains why a rise in KI causes the system to become less stable.

As shown in Table 2, stability delay margins significantly increase when the VI control is integrated
into the MG. It is also essential to investigate the individual impact of VI control parameters, virtual inertia
and damping, on the stability delay margin. For that purpose, firstly, virtual damping values are fixed at
(DV I = 0.5, DV I = 1.0 and DV I = 1.5) and the effect of virtual inertia on the stability delay margin is examined
for the virtual inertia varying in an interval of KV I ∈ [0− 2] and PI controller gains of (KP = 0.2,KI = 0.2).
As seen in Figure 4, the stability delay margin rises with an increase in virtual inertia for all virtual damping
values. Secondly, for the three different fixed virtual inertia values (KV I = 0.5,KV I = 1.0 and KV I = 1.5),
stability delay margins are computed for virtual damping changing in an interval DV I ∈ [01.2] for the same
PI controller gains of (KP = 0.2,KI = 0.2). The stability delay margin increases as the virtual damping
parameter increases, as displayed in Figure 5. These results indicate that the virtual inertia and damping
values significantly increase the stability margin of MG system, emphasizing the positive impacts of the VI
control loop on the stability of the MG system.
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Figure 4. The impact of virtual inertia on the marginal time delay values.

The verification studies by both QPmR algorithm and time-domain simulations are implemented to prove
the accuracy of stability delay margins for the controller gains of (KP = 0.2,KI = 0.2) and the VI controller
parameters of (KV I = 1.6, DV I = 1.2). For these parameters, the theoretical delay margin is computed as
τ∗ = 8.77s using the direct method as shown in Table 2. Figure 6 illustrates frequency responses for a small
disturbance in the load demand and complex root distributions of the MG system for three different time delays,
τ∗ = 8s , τ∗ = 8.77s and τ∗ = 10s . As shown in Figure 6a, when the time delay is less than the delay margin
τ = 8s < τ∗ = 8.77s , all the dominant poles of the MG-VI system computed by the QPmR algorithm are in
the stable left half plane of the complex plane, indicating that the system is stable. The frequency response
shown in the right-bottom corner of Figure 6a also proves that the MG-VI system is stable due to the decaying
oscillations in the frequency response. Recall that the system should be marginally stable for (τ∗ = 8.77s) .
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Figure 5. The impact of virtual damping on the marginal time delay values.

Figure 6b shows that the MG-VI system has a pair of complex conjugate roots on the imaginary axis and
sustained frequency oscillations are observed, proving the marginal stability. Moreover, the complex roots on
the imaginary axis, s = ±jωc = ±j0.2462 rad/s computed by the direct method is exactly the same as one
determined by the QPmR algorithm as shown at top-right corner of Figure 6b. Finally, when the time delay is
larger than the delay margin (τ∗ = 8.77s < τ = 10s) , the MG-VI system has a pair of complex poles in the
right-half plane of the complex plane and the system becomes unstable due to the growing oscillations in the
frequency response as shown in Figure 6c.

Finally, simulation studies are carried out to emphasize the stabilizing effect of virtual inertia and damping
on the MG system as given in Figure 7 that compares frequency responses of the MG system with and without
VI control loop. Recall that for the MG without VI, the stability delay margin is τ∗ = 3.44s for KP = 0.2 ,
KI = 0.2 as shaded in Table 1 and the system is marginally stable as depicted in Figure 7. When a VI control
loop is integrated into the MG, oscillations in the system frequency response are promptly dampened, and the
transient dynamics are greatly enhanced. As shown in Figure 7, the performance criteria such as settling time,
overshoots, and undershoots have significantly improved.

5. Conclusion
This paper has investigated the effects of VI control on stability delay margins of MGs. An analytical method
not using any approximations has been utilized to evaluate the delay-dependency of stability and to calculate
delay margins. Stability delay margins have been calculated for a wide range controller gains. The results show
that theoretical delay margins are exactly the same as those by simulations and the QPmR algorithm. From
the results, the following comments and observations could be made:
i) For all PI controller gains, with integration of VI control to the MG system, stability delay margins have
been significantly enhanced.
ii) The destabilizing of time delays in MGs could be reduced with the use of VI control.
iii) A better frequency response could be obtained in MGs with time delays and RESs.
iv ) Stability delay margins decrease with an increase in the controller gain. Furthermore, a small rise in integral
controller gain may lead to a steep decline in the delay margin.
The computation of all stabilizing controller gains for MGs using stability boundary method and robust delay-
dependent stability analysis are put in perspective as future work.
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Figure 6. Dominant roots distribution and frequency responses.
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Appendix

P (s) and Q(s) polynomials of (4) coefficients are:

p7 = MRTINV TgTPV TtTW

p6 = RTgTPV Tt (MTINV +MTW +KV ITW +DTINV TW )+
MTINV TW (RTgTPV +RTgTt +RTPV Tt)

p5 = RTgTt (MTINV +MTW +KV ITW +DTINV TW )+
RTgTPV Tt (KV I +M +DTINV +DTW +DV ITW )+
MRTINV (TgTPV + TPV Tt) +MTINV TW (RTg +RTPV +RTt) +
RTWTPV (MTt +MTg +DTtTINV ) + RTWTPV (DTgTINV +KV ITt +KV ITg)

p4 = RTINV (MTt +MTW +DTtTW ) + TtTWR (KV I +M) + TINV TPV TW+
RTgTPV (KV I +M +DTINV ) + (MRTg +MRTPV ) (TINV + Tt + TW )+
(RTg +RTPV ) (KV ITt +KV ITW +DTINV Tt +DTINV TW )+
TPV TWR (D +DV I) (Tg + Tt) +RTgTt (D +DV I) (TPV + TW )

p3 = DV IRTgTt + (TPV + TW )DV IRTg + (TPV + TW )DV IRTt + (TPV TW )DV IR+
DRTgTt + (TINV + TPV + TW )DRTg + (KV I +M)RTg + (KV I +M)RTt+
TINV TPV + TINV TW + (MTINV +MTPV +MTW + JV ITPV + JV ITW )R+ TPV TW+
(TINV TPV + TINV TW + TPV TW )DR+ (TINV + TPV + TW )DRTt

p2 = (TINV + Tg + TPV + Tt + TW )DR+ TINV + TPV + TW+
(KV I +M +DV ITg +DV ITPV +DV ITt +DV ITW )R

p1 = DR+DV IR+ 1
q4 = βRKPTINV TpvTw

q3 = [TINV Tpv + TINV Tw + TpvTw]βRKP + βRKITINV TpvTw

q2 = [TINV + Tpv + Tw]βRKP + [TINV Tpv + TINV Tw + TpvTw]βRKI

q1 = βRKP + [TINV + Tpv + Tw]βRKI

q0 = βRKI .

(15)

The coefficients of W (ω2
c ) in (7) are given as:

m14 = p7
2

m12 = p6
2 − 2p7p5

m10 = p5
2 + 2p7p3 − 2p6p4

m8 = p4
2 − q4

2 − 2p7p1 + 2p6p2 − 2p5p3
m6 = p3

2 − q3
2 + 2p5p1 − 2p4p2 + 2q4q2

m4 = p2
2 − q2

2 − 2p3p1 − 2q4q0 + 2q3q1
m2 = p1

2 − q1
2 + 2q2q0

m0 = −q0
2 .

(16)

The coefficients of the formula in (12) are given as:

t11 = −p7q4
t10 = −p7q3 + p6q4
t9 = p7q2 − p6q3 + p5q4
t8 = p7q1 − p6q2 + p5q3 − p4q4
t7 = −p7q0 + p6q1 − p5q2 + p4q3 − p3q4
t6 = p6q0 − p5q1 + p4q2 − p3q3 + p2q4
t5 = p5q0 − p4q1 + p3q2 − p2q3 + p1q4
t4 = −p4q0 + p3q1 − p2q2 + p1q3
t3 = −p3q0 + p2q1 − p1q2
t2 = p2q0 − p1q1
t1 = p1q0 .

(17)
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