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Abstract: Chemical-induced disease (CID) relation extraction has been pivotal in the understanding of biological
processes. A CID relation between a chemical and disease entity may be extracted either from a single sentence or from
two or more adjacent sentences. We use ‘intrasentence level’ to refer to the mention of the desired entities in the same
sentence and ‘intersentence level’ to refer to the mention of these entities in two or more adjacent sentences. This study
proposes a three-phase architecture for extracting CID relations from biomedical literature by considering both sentence
levels and additionally the combination of these two sentence levels which we describe as the ‘joint level’. In phase 1,
we construct relation instances at the intra- and intersentence levels which are subsequently combined to form the joint
level. In phase 2, we extracted features specifically for an individual relation instance at the three levels. At each of
these levels, we trained three classifier models that consist of the combination of two classifiers. We used the training
dataset for training and later classified the CID relation instances using the test dataset. Phase 3 consists of two steps;
in step 1, the classifier outputs from both the intra- and intersentence levels are combined and in step 2, the results from
step 1 are combined with the results from the classifier trained at joint level using a prediction probability-based voting
algorithm to determine the final result. Using the BioCreative V corpus for validation, we obtain results that outperform
all the state-of-the-art systems for CID relation extraction on the standard chemical-disease relation corpus.
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1. Introduction
The chemical-induced disease (CID) relation extraction task deals with the relations between a chemical and a
disease. The interactions between these entities can be referred to either as a biomarker relation where a disease
is associated with a chemical or as a molecular mechanism relation where the root of a disease can be attributed
to the effect of a chemical [1]. The development time and the risks associated with the process of drug/chemical
discovery make it very vital to mine the existing CID information that is hidden in biomedical texts [2]. This
resulted in the study of extracting potential information on the relationships between chemical and pathologies
[1]. Bioinformatics databases such as Comparative Toxicogenomics Database have made manual annotation
one of their important tasks. Here, they annotate any possible chemical-disease relations in unstructured texts
into a structured information in order to simplify the identification of probable toxicity and improve relation
∗Correspondence: styllochiks@gmail.com
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extraction tasks [3]. However, the financial implications of performing these manual annotations and the ever
increasing number of biomedical literature makes this attempt expensive to sustain [4, 5].

A variety of methods such as intrasentence, machine learning, pattern recognition, rule- and knowledge-
based approaches have been employed for relation extraction over the years [6–12]. Protein-protein interaction
[12, 13], as well as some other related studies, have aimed at extracting relations or identifying relevant concepts
[7, 13–15]. However, the absence of a comprehensive benchmarking dataset has been an obstacle when comparing
different computational systems and methods employed to advance the existing ultramodern systems [1]. In
2015, BioCreative V proposed a challenge which is a major formal evaluation proceedings for biomedical natural
language processing research [16]. The challenge proposed was for the automatic extraction of chemical-disease
relations in biomedical texts [1]. One subtask of that challenge is the CID relation extraction task. The
BioCreative V challenge was designed to provide useful assistance in literature-based biocuration using two
different requirements: i) That the text-mined entities and relations are normalized into concept identifiers
provided in the database for easy use in database curation, and ii) To give biocuration groups real-time web
service access to the mined results without any other cost in the use of technical infrastructure or text-mining
tools [1]. Through these requirements, the challenge helps to advance the ultramodern systems in the biomedical
domain through interoperability and scalability [1].

In this paper, our proposed CID relation extraction approach is an expansion and improvement on the
performance of our previous architecture, relSCAN [17]. This improved system, relSCAN+ performs relation
extraction at multiple mention levels and then utilizes a probability-based voting algorithm to combine the
outputs from these mention levels. This improvement increases the system’s generalization ability for the CID
task by producing an improved precision and F-score. We describe the ‘intrasentence level’ as a situation where
a chemical and disease entity mentions occurs in the same sentence and the ‘intersentence level’ as the situation
where a chemical and disease entity mention occurs in two or more adjacent sentences. In both systems, the
candidate relation instances are constructed on the ‘intrasentence level’, ‘intersentence level’; in this proposed
system, an additional ‘joint level’ which in this study refers to the combination of the intra- and intersentence
levels is introduced. A classifier combination using simply extracted features that are specific to the individual
relation instances at the different sentence levels is employed and the final extraction of CID relations is produced
by using a maximum prediction probability-based voting algorithm to combine information from the different
levels.

The proposed architecture has three phases. In the first phase, relation instances at three levels (intrasen-
tence, intersentence and joint mention levels) are constructed after text processing. In the second phase, the
combination of two classifiers, the J48 decision tree (J48) and the support vector machine (SVM) are trained
and used to classify the CID relation instances extracted from all three levels using a set of extracted features
particular to the individual relation instances at the different sentence levels. In the third phase, we combine
the classifier outputs from the intra- and intersentence levels to produce a full set of CID relations and by
using a voting algorithm which is based on maximum prediction probability, they are then combined with the
classifier results from the joint level to get the final CID relation predictions.

To our best knowledge, this is the first time a CID relation extraction system is developed to combine
the candidate relation instance at multiple mention levels. This approach is validated using the BioCreative
V chemical-disease relation corpus and the experimental results show the efficiency of our proposed improved
architecture. The contributions of this paper can be summarized as follows: i) We developed a system which
was able to expand the architecture from our previous work [17] in order to improve the high-performing CID
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relation extraction system. Our previous system (represented as setting 1 in this work) achieved an F-score of
65.1% after combing the outputs from the intra- and intersentence levels after classification. In the proposed
system, we created a subarchitecture (setting 2) which combined the relation instances from the intra- and
intersentence levels before classification to achieve an F-score of 63.2%. In the proposed architecture, the
results from both settings were combined to produce an improved performance in both precision and F-score
compared to our previous work. ii) The proposed architecture proposes the use of a novel maximum prediction
probability-based voting algorithm to combine the results from two relation mention levels (settings 1 and 2)
and this further enhanced the performance of our proposed system to an improved F-score of 65.32

1.1. Related work
Generally, relation extraction tasks are performed on the intrasentence level, however, in order to advance
relation extraction systems, more innovative approaches are being studied and employed to tackle the growing
number of available annotated corpora [18]. In some other domains [10, 19] as well as in CID task [2, 9, 20–22],
relation extraction is usually handled as a classification task and most of the proposed approaches employed
machine learning methods. During the chemical-disease relation BioCreative V challenge, the participating
teams employed several machine learning techniques such as logistic regression [22], maximum entropy [23, 24],
SVM [25], LIBSVM [26] and naïve Bayes [27].

The CID task has been generally expressed as a binary classification task that predicts the presence of
an induction relation between a chemical and disease pair in an article [2, 8, 20, 24, 28, 29]. The BioCreative V
corpus makes the CID relations available at the document level, however, most CID relation extraction systems
limit their CID relation extraction tasks to intrasentence level [11, 22, 30, 31]. However, this leads to the loss
of some intersentence level CID relations as they account for one-third of the total CID relations existing in the
BioCreative V corpus [18]. This has motivated some systems to perform relation extraction on a document-level
in order to extract the CID relations on both the intra- and intersentence levels [2, 20, 21]. Furthermore, some
systems perform the CID relation extraction separately on both levels and then merge the results to get the full
CID relation [8, 20, 24, 28, 32].

In relation extraction, some of the feature categories used include statistical, contextual, and dependency
that can be extracted manually by the use of systems or some natural language processing toolkits, for
example, full parsers, dependency and synthetic parsers. There has been a successful implementation of different
dependency parsers by multiple systems in the extraction of meaningful features such as sentence root-node,
path-of-speech tags and paths, heights and shortest paths [2, 10, 24, 33, 34]. Despite the successful use of
extracted features, in practice feature extraction for relation extraction still remains a trial-and-error skill-
dependent task [20] and this has led to the use of knowledge-based [2, 9, 21] and rule-based [11] systems. A
multiple classifier system implementing genetic algorithm as its optimization technique [35] has proven to be
effective approach to CID relation extraction task. Rule-based systems produce highly competitive performances
[11], however, their demand for a domain expert to define the heuristic rule set for target tasks and the massive
computational time renders them impractical. In order to avoid the manual generation of features and rules
some deep neural networking [20] and its derivatives convolutional neural network [8, 36, 37] and recurrent
neural network [30] models which have the ability to learn feature representations have been implemented with
some degree of success. Some recent relation extraction approaches include the use of semantic similarities
between the dependency phrases amongst two entity mentions in a sentence and the relation phrase present
in the knowledge base in order to filter out existing wrong labels during extraction [38] and the use of several
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high-confidence clause patterns to generate seeds integrated into a bootstrapping process for relation extraction
[39].

2. Material and methods
2.1. Proposed architecture

This work is an advancement of our previous work [17] where in phase 1 as shown in Figure 1, the text processing
module transforms the input data into sentences. This is followed by the construction of candidate relation
instances using the predefined entities in the input data. In phase 2, features are extracted for all candidate
relation instances. Subsequently, a label (YES or NO) is added to each candidate relation instance indicating
the existence of a true relationship between the two entities paired according to the gold standard data. In
phase 3, our previous architecture is improved and in this phase, in order to obtain the final CID predictions
from the proposed architecture. In this phase, we combine the outputs from the intra- and intersentence levels
to generate the results for setting 1 and then we introduce a novel approach where a maximum prediction
probability-based voting algorithm is used to combine the results from settings 1 and 2 and produce the final
CID prediction of our proposed architecture.

Figure 1. Proposed architecture.

In the testing stage, setting 1 shows the architecture used for presenting results from combining the
outputs from the intra- and intersentence levels; setting 2 shows the architecture used for presenting the results
of the joint level and setting 3 is the proposed architecture that combines results from both settings 1 and 2
using a maximum prediction probability-based voting algorithm.

2.1.1. Phase 1
The documents are the input to phase 1, each consisting of only a title and an abstract. In the text processing
step, we segment the abstracts and titles into sentences and then replace all entity mentions with placeholders.
After the text processing stage, the construction of the relation instances is performed at two different mention
levels, intra- and intersentence levels. During the construction of the relation instances, the number of sentences
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used to generate a given relation instance is different at the two sentence levels. For constructing relation
instances at the intrasentence level, only a single sentence that contains the two entity mentions is used.
However, at the intersentence level, since the entity mentions may span multiple sentences, we utilize two or
three adjacent sentences to generate a particular relation instance. These multiple sentences used to generate a
relation instance in the intersentence level are then combined to form a composite sentence. Figure 2 presents
an example to illustrate the construction of the relation instances across the intrasentence, intersentence and
joint levels.

Figure 2. An example of the construction of candidate relation instances at different levels. Sent1, Sent2 and Sent3
denote the sentences in a document; E1 and E2 denote the entity mentions present in a given sentence and E1’ denotes
the appearance of the entity E1 in another sentence, Sent3; in the intra- and intersentence levels, the entities paired are
the candidate relation instances extracted at those levels. Their combination produces the joint level. The three different
levels are individually passed to phase 2.

As reported in Figure 2, after the construction of the candidate relation instances at the two different
levels, they are merged in order to construct the joint level. Thus we create three datasets where the candidate
relation instances at the intra- and intersentence levels are nonoverlapping sets and the joint level which is the
union of the first two datasets. The pair of chemical and disease mentions are unordered, indicating that their
order of appearance in the text does not affect the possibility of a CID relation between them.

An example of a valid CID relation on the intrasentence level can be described with an excerpt from
the document with PMID: 354896. The CID relation is between the chemical lidocaine and the disease cardiac
asystole.

”Lidocaine-induced cardiac asystole”.

On the intersentence level, the pair of interacting entities relate over multiple sentences. Some examples
of a valid CID relation on this level can be viewed from the excerpt of the document with PMID: 3187073. We
will express two CID relations that exists between the chemical 5-FU and the diseases atrial fibrillation and
ventricular fibrillation.

”The most common signs of cardiotoxicity were chest pain, ST-T wave changes and atrial fibrillation. This
was followed by ventricular fibrillation in one patient and sudden death in another. It is concluded that

patients on 5-FU treatment should be under close supervision and that the treatment should be discontinued
if chest pain or tachyarrhythmia is observed.”

More details on text processing, relation instance construction (intra- and intersentence levels) and feature
extraction processes can be found in our previous work [17].
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2.1.2. Phase 2
Each of the three datasets (intrasentence, intersentence and joint levels) that consist of the candidate relation
instances and their extracted feature sets are employed for training using two combined machine learning
algorithms namely SVM and J48. Thus, three classifier models are formed as shown in Figure 1. Bui et al. [10]
discussed that in order for the strength of the learning method to be increased and the computational efficiency
improved, the features extracted per relation instance have to be distinguishing. Therefore, even though the
feature types used for all three mention levels are exactly the same, the features extracted per relation instance
are particular to the individual entity and the collective relation information of both entities present in the
sentences considered. In the intersentence case, the composite sentences as discussed in subsection 3.1.1 are
used for feature extraction in the same manner as the single sentences in the intrasentence level. Details of the
machine learning algorithms or base classifiers and features are discussed in subsection 2.2.

2.1.3. Phase 3
Firstly, the outputs of the classifiers from the intra- and intersentence levels are combined to form the dataset
that has the same set of candidate relations as the joint level dataset. Since there are no overlapping of the
candidate relation instances in both mention levels, this operation is used to produce the complete relation
instances in the dataset. Aside from the merging of the outputs from both sentence levels, no postprocessing
or filtering of the results is performed. The results obtained after the merging process are then combined with
the results from the joint level by using a voting algorithm to produce the final CID prediction of our proposed
architecture. Figure 3 presents a graphical description of the processes involved in phase 3 using the same
example given in Figure 2.

Figure 3. Generation of the final CID prediction.

In Figure 3, the documents labelled intrasentence level, intersentence level and setting 2 are the classifier
outputs of the three classifiers as shown in Figure 1. In all documents given in Figure 3, the third columns rep-
resent the actual labels that signify the presence of a true CID relation between the candidate relation instances
or a lack of and the fourth columns represent the classification prediction labels. For the intrasentence level,
intersentence level, settings 1 and 2 documents, the additional fifth column shows the prediction probabilities of
the classifiers employed. The final CID predictions document is formed by the voting algorithm that combines
the outputs from settings 1 and 2 using the prediction probability per relation instance.
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Voting algorithm The voting algorithm used in the proposed system is a type of decision-making tech-
nique which is based on the prediction probability generated from a classification output. The voting algorithm
considers every instance from the output separately and it uses a simple but effective approach for finding the
maximum prediction probability based on the confidence of the decision made for each instance between the
two settings. During the combination of the results from both settings, the voting algorithm is only applied
when the classification predictions for a given relation instance from both settings are different. After the com-
bination process, the final set of CID predictions by the proposed model is generated and evaluated. Algorithm
1 describes the voting algorithm process during the combination of settings 1 and 2.

Algorithm 1 Algorithm for the voting process.
PSet1, PSet2: predictions of settings 1 and 2, respectively.
PrSet1, PrSet2: prediction probabilities of settings 1 and 2, respectively.
F1Set1, F1Set2: F-score of settings 1 and 2, respectively.
Dp: the prediction decision of the proposed system.
N: the number of candidate relation instances.
for each relation k=1 to N

if PSet1(k) == PSet2(k)
Dp(k) = PSet1(k)

else
if PrSet1(k) ≥ PrSet2(k)

if PrSet1(k) > PrSet2(k)
Dp(k) = PSet1(k)

else
if F1Set1(k) > F1Set2(k)

Dp(k) = PSet1(k)
else

Dp(k) = PSet2(k)
end if

end if
else

Dp(k) = PSet2(k)
end if

end if
end for

2.2. Base classifier and features
The proposed architecture employs two machine learning classifier algorithms: SVM and J48. The base classifiers
used in all settings are trained using the same feature categories which have been successfully implemented for
relation extraction task in our previous work [17].

2.2.1. Classifier algorithms

SVM is one of the most commonly used machine learning methods for relation extraction tasks in biomedical
domain [2, 10, 25, 40]. The J48 is the implementation of the C4.5 algorithm by Quinlan [41] and an extension
of the conventional decision tree algorithm (that is Iterative Dichotomise 3). The C4.5 algorithm possesses
a good combination strength of both error rate and speed [42]. The J48 offers some advanced developments
such as its ability to process both numeric and discrete data, produce easily interpreted rules, prune trees after
they are created and handle missing attribute values [41, 43]. We use the Waikato Environment for Knowledge
Analysis (WEKA) toolset for training the classifiers. We combine both the SVM and J48 classifiers by using
the ‘class vote’ option (weka.classifiers.meta.Vote.classifiers) and the ‘average of probabilities’ combination rule.
The SVM classifier is used with default polynomial kernel and the complexity parameter C is tuned to 0.6 by
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using CVParameterSelection function. The J48 is used in its default settings with a confidence factor of 0.25,
batch size of 100 and the minimum number of instances per leaf set at 2.

2.2.2. Features used
As discussed in subsection 3.1.1, in the intrasentence level, a relation instance is found in a single sentence,
whereas in the intersentence level, a relation instance is found after two or three sentences are merged into a
composite sentence. During the feature extraction, the single sentence and the composite sentence are used in
the same manner. The feature set used in this work is a combination of dependency, statistical, and contextual
information.

The feature sets used in this work are retrieved from our previous work [17]. The dependency tree
generated using Spacy parser is used to extract the dependency features. A sample input sentence and the
dependency tree derived from it are shown in Figure 4.

Figure 4. A sample of a simplified sentence (I) and the derived dependency parse tree (II). The simplified sentence is
generated from the original sentence “Nicotine-induced nystagmus correlates with midpontine activation”.

It should be noted that the order of appearance of the entities is not relevant in the identification of the
CID relations. Their order is merely used to provide unique indices to the placeholders (e.g. E1, E2) as shown
in Figure 4. Additionally, the uniqueness of the placeholders enables the original entity to be referenced and
identified. The features extracted are as follows:

Dependency: This feature gives detailed and useful information about any possible CID relation existing
between entities [8, 44]. Using the dependency tree such as presented in Figure 4, the path between the first
candidate entity in the relation instance E1 and the sentence root node (correlates) is given as P1, while P2 is
the path from the root node to second entity E2. The heights which measure the distance between the entity
mentions and the sentence root node are extracted as shown in Figure 4. H1 and H2 are the distances between
the sentence root node and E1 and E2, respectively. For example, using the sample sentence in Figure 4, the
extracted dependency features are P1: VBZ, NN, VBN, NN; P2: VBZ, NN, null, null; H1: 3; H2: 1.

Contextual: The placeholders of the candidate relation instances E1 and E2 are replaced by the original
entity names and labelled as Ent1 and Ent2. A clue word (R1) is extracted based on the four different sentence
forms during relation instance construction [17]. For example, using the sample sentence in Figure 4, the ex-
tracted contextual features are Ent1: nicotine; Ent2: nystagmus; R1: correlates.
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Statistical: These features represent and describe entities or tokens in two forms: either in a frequency
(numeric) or in a binary representation of 1 or 0 (Boolean). In the Boolean representation, 1 denotes ‘true’
while 0 denote ‘false’. The number of clue words that is extracted from a relation instance is R2. The number
of tokens between E1 and E2 is D. The number of tokens between R1 and Ent1 is D1, while D2 is the token
distance between R1 and Ent2. The other statistical features used in our work are presented in Table 1. We
define a context window around an entity mention. The context window contains four words on each side of
the entity mention. In the intersentence case, there are no crossing of sentence boundaries since the sentences
that make up this level are merged into a single composite sentence.

Given the sample sentence in Figure 4, the extracted statistical features are: R2: 2; D: 1; D1: 2; D2: 0;
N1: 2; N2: 1; N3: 1; NV: 2; NV2: 1; T1: 1; T2: 1; T3: 1; S1: 0; S2: 0; S3: 0; S4: 0; S5: 0; S6: 0; S7: 1; S8: 1;
Label: Yes.

Table 1. Statistical features.

No. Features Type
1. The number of clue words that is extracted from a relation instance is R2. The

number of entities, the number of E1, and the number of the E2 present in the
sentence are represented as N1, N2, and N3, respectively.

Numeric

2. The number of verbs in the sentence is represented as NV and the number of verbs
between the entities as NV2.

Numeric

3. The appearance of E1, E2, and both E1 and E2 in the title are represented as T1,
T2, and T3, respectively.

Boolean

4. S1 and S2 denote the presence of the words ‘increase’ or ‘decrease’ around E1 and
E2, respectively.

Boolean

5. S3 and S4 denote the presence of nouns representing persons such as ‘infants’,
‘adult’, and ‘patient’ in the context window for E1 and E2, respectively.

Boolean

6. The presence of a measurement unit such as ‘mg/kg’, ‘mmol/l’, and ‘mg/dl’ in the
context window for the chemical is represented as S5.

Boolean

7. The adjacency features S6, S7, and S8 show, respectively, whether E1 and E2
are immediately adjacent, separated by exactly one word or there exists a verb
in between them.

Boolean

3. Results and discussion
3.1. Dataset
The BioCreative V corpus [27] contains a total of 1500 MEDLINE articles [18] having only titles and ab-
stracts and are grouped into training, development and test datasets. The entire corpus is manually an-
notated with the chemicals, diseases and their relations; the entity mentions have unique concept identifiers
(http://www.biocreative.org/tasks/biocreativev/track-3-cdr/). Table 2 shows the statistical information on this
corpus [18].

3.2. Evaluation methods
In our study, we utilized recall (R), precision (P), and the F-score (F1) which are the standard metrics used to
evaluate a system’s performance. They are calculated using the parameters, the numbers of true positives (TP),
the numbers of false positives (FP), and the numbers of false negatives (FN). These parameters are generated
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Table 2. Statistics of the BioCreative V corpus.

Dataset No. of articles No. of sentences No. of CID relations
Training 500 4519 1038
Development 500 4395 1012
Test 500 4759 1066

after classification. Based on the context of our study, the TP specifies the number of CID instances predicted
correctly, FP specifies the number of instances incorrectly predicted as CID and FN specifies the number of CID
instances the classifier could not identify correctly. The F-score, which is computed using recall and precision,
is used to evaluate our system’s performance.

Recall(R) =
TP

TP + FN
. (1)

Precision(P ) =
TP

TP + FP
. (2)

F − score(F1) =
2RP

P +R
. (3)

3.3. Results
Table 3 reports the number of relation instances in each sentence level for the training, development and test
datasets. As shown, the distribution of the positive and the negative instances are similar across the datasets.
The positive instances are those entity pairs or candidate relation instances that have been annotated by the
corpus to possess a true CID relation between them, while the negative instances are the entity pairs not
annotated as such.

The system was trained on the BioCreative V training dataset and evaluated using the BioCreative V
development and test datasets. For the performances of the machine learning algorithms when they are used
separately and combined as setting 1 on the intra- and intersentence levels on both datasets are shown in
Table 4. Note that the set of relations in the intra- and intersentence level datasets differ. Furthermore, their
combination contains the complete set of relations in the dataset.

Table 3. Relation instances extracted from the BioCreative V corpus.

Dataset Intrasentence level Intersentence level Joint level Total instances
Positive Negative Positive Negative Positive Negative

Training 277 524 761 3102 1038 3626 4664
Development 244 622 768 3409 1012 4031 5043
Test 315 549 751 3426 1066 3975 5041

The results reported in Table 4 show that at the intrasentence level SVM produce a better recall compared
to the J48 on both the development and test dataset. However, J48 produced a better recall on the intersentence
level and a better precision on the sentence levels individually and when they are combined. The J48 in
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Table 4. Results for setting 1 on the development and test datasets.

Classifier Dataset Development Test
P (%) R (%) F1 (%) P (%) R (%) F1 (%)

SVM
Intrasentence level 51.50 43.80 47.50 47.10 41.80 44.30
Intersentence level 80.70 80.30 80.50 90.50 79.00 84.40
Intra- + Intersentence levels 59.40 52.60 55.80 63.30 56.50 59.70

J48 Intrasentence level 64.40 41.10 50.20 61.90 39.50 48.30
Intersentence level 100 93.40 96.60 100 92.10 95.90
Intra- + Intersentence levels 75.70 53.80 62.90 76.20 55.10 63.90

Setting 1 (SVM + J48) Intrasentence level 66.20 42.10 51.40 63.70 41.30 50.10
Intersentence level 97.50 95.10 96.30 98.60 92.70 95.60
Intra- + Intersentence levels 76.50 54.80 63.90 76.9 56.50 65.10

general outperformed SVM on both the development and test datasets, however, their combination produced
an improved performance compared to when they are used individually.

In order to explain this further, let us again carefully observe Table 4. We will notice that the individual
classifiers used are SVM and J48. The combination of these two classifiers gives us a part of our proposed
algorithm which on Table 4 is labelled as setting 1 (SVM + J48). It can also be observed that despite the J48
classifier performing better (on F1 score) on the intersentence level when compared to setting 1 (SVM + J48),
it was outperformed by setting 1 (SVM + J48) on the Intra-sentence level and overall (inter- + intrasentence
levels). This confirms that setting 1 which is part of our proposed algorithm has an overall better performance
than the J48 classifier.

Additionally, on both datasets, the results obtained on the intersentence levels highly outperform those on
the intrasentence levels. Some systems that performed the CID relation extraction task on both the intra- and
intersentence levels [8, 28, 29, 36] have reported the performance of the intrasentence level to vastly outperform
that of the intersentence level. Gu et al. [8] attributed this to the complex structure of the sentences on
the intersentence level limiting the extraction of traditional features. In the proposed system, we have been
able to develop an approach that handles the sentences on the intersentence level properly, with exceptional
performance on this level. However, on the intrasentence level, the proposed system did not produce the same
performance. One of the reasons for this is that the proposed system is able to extract more productive features
on the intersentence level as compared to the intrasentence level thereby producing a better classification result
for the intersentence level. An additional reason for this is attributed to the limited number of CID relation
instances that span over multiple sentences as shown in Table 3 which leads to a smaller sample size in the
intersentence level that in turn reduces the chances of overfitting and overgeneralization that may lead to errors
during classification. The result for Setting 1 is obtained from evaluating the result produced after merging the
classifier outputs from the intra- and intersentence levels. Table 5 presents the performances of the SVM and
J48 classifiers individually and when they are combined in the classifier model to generate the results for setting
2 on both the development and train datasets. As in setting 1, the J48 outperforms SVM on both datasets,
and the performance when they are combined is better than their individual performances.

The performance of setting 3 (relSCAN+) for the development dataset when settings 1 and 2 are combined
is presented in Table 6. The performance in setting 1 is better than setting 2, however, the proposed architecture
which combines both settings 1 and 2 improves the precision and the F-score despite the fact that it produces
a slight decrease in the recall it as reported in Table 6.
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In Table 7, the performance of the proposed architecture on the test dataset is presented. Based on the
reported results, setting 1 outperforms setting 2. The proposed architecture causes a slight decrease of 0.31%
in the recall, however, it produces a decrease in the number of FP by 6.63% and improves the precision and
F-score by 1.09% and 0.22%, respectively.

Table 5. Results for setting 2 on the development and test datasets.

Classifier Dataset Development Test

Joint level

P (%) R (%) F1 (%) P (%) R (%) F1 (%)
SVM 57.70 49.80 53.40 56.90 50.50 53.50
J48 72.70 50.60 59.70 76.80 52.30 62.20
Setting 2 (SVM + J48) 72.70 52.10 60.70 74.00 55.20 63.20

Table 6. Results for the proposed architecture on the development dataset.

Architecture TP FP FN TN P (%) R (%) F1 (%)
Setting 1 555 171 457 3860 76.50 54.80 63.90
Setting 2 527 198 485 3833 72.70 55.20 60.70
relSCAN+ 546 143 466 3888 79.25 53.95 64.20

Table 7. Results for the proposed architecture on the test dataset.

Architecture TP FP FN TN P (%) R (%) F1 (%)
Setting 1 602 207 464 3768 76.90 56.5 65.10
Setting 2 588 207 478 3768 74.00 55.20 63.20
relSCAN+ 599 169 467 3806 77.99 56.19 65.32

In combining settings 1 and 2 only 5.87% of the total relation instances utilized the voting algorithm and
for these cases, the decision was made by setting 1 52.36% of the times and in general, a correct decision is
made 59.80% of the times.

3.4. Discussion
3.4.1. Comparison with other systems

A comparison of the proposed system with the other state-of-the-art systems on the BioCreative V test dataset
can be seen in Table 8. All the systems reported are evaluated using the gold standard annotated entities.

Table 8. Comparison of related works.

Systems P (%) R (%) F1 (%)
Onye et al. [24] 76.90 56.50 65.10
Xu et al. [22] 60.86 53.10 56.71
Panyam et al. [35] 53.20 69.7 60.30
Zhou et al. [23] 55.56 68.39 61.31
Zhou et al. [36] 60.19 58.16 61.35
relSCAN+ 77.99 56.19 65.32
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Our previous work [17] performed the CID relation extraction task on both the intra- and intersentence
levels using an machine learning model which was feature-based and utilized a classifier ensemble to achieve an
F-score of 65.1%. Xu et al. [32] performed the CID relation extraction task by employing a CRF-based named
entity recognition approach for biological entity names into their machine learning-based system. Their system
produced an F-score of 56.71%. However, to improve their system’s performance, they extracted extra domain
knowledge features from the knowledge-based biomedical database Comparative Toxicogenomics Database [3].
This enhanced their system’s performance by producing an improved F-score of 67.16%. RelSCAN+ does not
utilize any external knowledge, however, it produced results comparable to [32] when their system applied the
external information. Panyam et al. [29] utilized the all path graph kernel which has the ability to work with
arbitrary graph structures to attain an F-score of 65.1% for the intrasentence level, 45.7% for the intersentence
level and 60.3% for the full CID relation extraction task. Compared to [29], the proposed system utilized
more extensive feature categories hence why it vastly outperforms theirs. Zhou et al. [30] performed their
CID relation extraction task on only the intrasentence level and they integrated three models: feature-based,
kernel-based and neural network models into their system. These models were combined to form a uniform
framework which produced an F-score of 56.71%. Unlike [30], relSCAN+ utilized a voting algorithm in its
feature-based and classifier ensemble system but achieves a better result of 65.32% F-score. Zhou et al. [36]
performed the CID relation extraction task on both the intra- and intersentence levels. Their system utilized
the convolutional neural network model which employed a dependency-based and a sequence-based model at
the intrasentence level and just a sequence-based model at the intersentence level. The results of these models
are merged to produce an F-score of 59.16%. Their system further applied some postprocessing rules on the
merged results to achieve an F-score of 61.35%. Compared to [36], our previous work [17] which only performed
merging on the two-sentence levels without any postprocessing produces a better result than theirs, additionally,
relSCAN+ which employed the use of a voting algorithm to combine the results from multiple mention levels
also outperforms theirs. The main findings from our proposed CID relation system can be summarized as
follows: • The use of a maximum prediction probability-based voting algorithm to combine the results from
settings 1 and 2 further improved the performance proposed system on the CID relation extraction task from
65.1% F-score for setting 1 to 65.32% F-score, • The proposed system outperforms the state-of-the-art CID
relation extraction systems that did not utilize any outside knowledge to improve their performance.

3.4.2. Error analysis

We performed error analysis to detect the reasons for the FN and FP in the proposed architecture result based
on the results on the test dataset as shown in Table 7.

Incorrect classification in setting 1: The majority of the false classifications occurs at the intrasentence
level producing 95% and 98% of the total FN and FP, respectively. This may be attributed to the extractable
information at both levels. At the intrasentence level, features are extracted from a single sentence which
limited the extraction of sufficient informative and distinct features whereas at the intersentence level two to
three sentences could be employed, thereby increasing the amount of informative and distinct features available
for extraction.

Incorrect classification in setting 2: In the joint level, the number of FN and FP increased compared to
setting 1 by 14.36% and 3.02%, respectively, which resulted in a drop in the system’s recall ability. This may be
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due to the increase in the complicated structure of the relation instances from the two different sentence levels
degrading generalization performance of the classifier used in the system.

Voting algorithm misclassification: The number of FN and FP detected during the tiebreaking constituted
11.13% and 39.64% of the total FN and FP, respectively, detected when combining settings 1 and 2. The reason
for this is mainly due to the limitation of the voting algorithm employed as its decision-making ability is simply
based on identifying and selecting the maximum prediction probability between the two settings.

4. Conclusion
This study is founded on the observation that chemical and disease relations may be described using one sentence
which mentions both of the entities, a disease and a chemical, explicitly or in some cases in two or more adjacent
sentences that mention the disease and/or chemical. Given the task of extracting CID relations from abstracts,
all candidate relations mentioned in a single sentence (intrasentence level) or in multiple adjacent sentences
(intersentence level) must be considered since both levels are expected to contain more informative and in many
cases distinctive information. The final decision of relation extraction should be based on both sentence levels.

This article proposes an improved machine learning-based classifier ensemble system that automatically
extracts CID relations from three mention levels: intrasentence, intersentence and joint levels. This study
reports that a combination of the inter- and intrasentence level relations after classification (setting 1) produces
a better performance compared to when they are combined before classification (setting 2: joint level). In the
proposed system, in order to determine the final CID predictions, we merged the outputs of the two settings
using a maximum prediction probability-based voting algorithm. This resulted in an increase in both the
precision and F-score compared to the results achieved in setting 1.

The proposed system does not utilize any external data and relies on features extracted solely from
the given dataset. The evaluation benchmark on the BioCreative V corpus has shown that our proposed
architecture performs better than the current systems that do not use external information during the CID
relation extraction.

Despite the success of the proposed system, it can still be improved. Firstly, we aim to find a balance in
which we can develop an improved set of features that would be more suited to the intrasentence case whilst
not weakening the performances of the intersentence case and the overall system. Secondly, we aim to utilize
an adaptive and flexible decision-making voting algorithm that is not limited to prediction probability but has
the ability to compare multiple variables per relation instance in both settings 1 and 2 during the combination
process.
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