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Abstract: In manufacturing industry, assembly line monitoring provides statistical information about overall perfor-
mance and reliability of the legacy machines, ensuring that the machines give maximum yield output. However, most
legacy machines lack internet connectivity and advanced functionality, increasing the difficulty for tracking task. There-
fore, this work seeks to introduce a noncontact acoustic method to track machines rather than the mainstream vibrational
approach. In order to provide accurate tracking of the daily machine operation for our machine tracking system, we
consider scenario of background noises such as environmental sounds from multiple sources as well as neighbouring
machine’s sound. Thus, several neural networks are employed to recognize the machine status accurately. The objective
of our work is to investigate the effect of machine types and states on recognition performance of neural network models
under extremely noisy environments as well as to demonstrate the possibility of recognizing the sound on edge device.
The main contribution of this article is the proposal of lightweight recurrent and convolutional-based models for ma-
chine sound recognition. The experimental results of our extensive testing included with multiple types of machines and
background noises show that the proposed system with gated recurrent unit model has the best recognition accuracy of
F1 score 0.913 with standard uncertainty of 0.026 with decent inference speed on edge device.
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1. Introduction
Since the introduction of artificial intelligence and internet-of-things (IoT) to create the smart factory concept in
Industrial Revolution (IR) 4.0, many private sectors have started to make transition towards the transformation.
The gradual changes give rise to the newer generation of advanced machines with self-monitoring capabilities.
Unfortunately, small and medium enterprises could not afford the inexpensive machines while containing
abundance of legacy machines that are without network connectivity and advanced functionality, stunting
the revolutionary growth. In manufacturing industry, assembly line monitoring ensures optimum yield output.
Tracking operation states of legacy machines can then give insight on the overall performance and reliability of
the machines statistically, which motivates the production of this legacy machines monitoring work.

Our former operation status monitoring work had successfully demonstrated the possibility of tracking
machine via acoustic approach, replacing the conventional vibration approach to mitigate the problems of
∗Correspondence: jwlim@utar.edu.my
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vibration sensor [1]. Due to the choice of recognition method, the work also selected best feature extraction
technique to accommodate with sound similarity matching. Unfortunately, similarity matching recognition
method is inapplicable in real practice due to restrictions such as vulnerability to background noises, prerequisite
of sound preprocessing and tuning before tracking two or more machines via single source of audio and the
inevitability of constructing the correct sound template under influences of noisy environment. The weaknesses
of the method heavily deteriorated the recognition accuracy, which inspires the subsequent work that proposed
combining multilayer perceptron (MLP) method along with temporary wireless vibration sensor to overcome
the problem of manual labelling [2]. The work also demonstrated the possibility of identifying two types of
simultaneously operating machines via single recording source. However, the work focused more on identifying
best MLP parameters on recognizing machine sound and lacked detail about the impact of multiple machine
types and interchanging machine states towards recognition performance.

The accomplishment made by latest studies led to the conclusion that sound recognition method plays
a significant role in accurately tracking machines’ daily behaviors in machine tracking systems. Only MLP was
considered in the past for tracking machines’ states. Therefore, this work attempts to substitute MLP with two
different branches of neural network models in sound recognition method. On the one hand, there is recurrent-
based model specialized in dealing with time series dataset sequences. On the another hand, convolutional-based
model capitalizes in handling with images data. From another point of view, sound is made up of time-series
acoustic signal. That alone is sufficient for recurrent-based model to provide better performance over MLP
because recurrent-based model can learn and remember historical information in time-series sequences unlike
MLP. Moreover, the accumulation of sound signal can be compressed and transformed into a visual image called
spectrogram which can fed into convolutional-based models as input data. Both types of models could provide
even greater recognition performance in comparison to MLP.

The primary objective of this work is to assess the recognition performance of these recurrent-based and
convolutional-based models against MLP for acoustic signals produced by the machines. The work also intends to
ascertain the effect of machines’ type on recognition performance as well as the effect of multiple operating states
on recognition performance under presence of neighbouring machines and background noises. Additionally,
the work investigates the possibility of recognizing sound on edge device for real-time monitoring use. The
experiments conducted in this work will be tested with more variants of background noises in comparison to
previous work to thoroughly examine the noise tolerance of the recognition models.

The paper presents work with a few contributions. Our work proposes a lightweight recurrent-based and
convolutional-based neural network model that requires significantly less computational cost that can be adapted
into the noncontact machinery tool acoustic tracking system for machine sound recognition application. The
acoustic signature of a sound sample can be recognized without any complicated signal preprocessing or feature
extraction techniques that incurs additional computational cost unlike any sound and vibration approach shown
in past works. After the sound is successfully recognized by the system, it can be used by the manufacturing
stakeholders in order to accurately identify the status of a machine and statistically study overall equipment
effectiveness (OEE) of a legacy machine in construction industries.

The content of the paper is structured as follows. Section 2 covers related literature studies that comprise
possible existing methods that can be used to recognize machine sounds. Section 3 details the methodology
that includes the process workflow and experimental setup that is used to evaluate different types of sound
recognition methods. Section 4 describes and analyses the experimental results. Section 5 concludes the work.
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2. Related literature

Most machines emit vibration and acoustic signals during operation. Signal can be recognized using different
signal recognition methods. The properties of most machine sound signals are stationary and some of them are
periodic, but the sound recorded are likely filled with background noises, thus nonstationary in real practice.
Thus, we refer to any signal recognition method in the literature that is usable with acoustic and vibration
signal.

The first known method that was explored by past researchers is unsupervised learning. Unsupervised
learning techniques usually refer to the thresholding or template matching technique [3]. The advantage of
thresholding technique is no prior requirement of labelled data whilst its disadvantage is the susceptibility
to background noises. Because of that, it is very difficult to construct a unique acoustic profile in a noisy
environment. An extension from the thresholding-based technique is the acoustic fingerprinting with database
matching. The Shazam-based technique [4] could be extended with the combination of image processing
technique. The technique included the construction of a constellation map from fast Fourier transform (FFT)
which constitutes numerous fingerprints which then can be stored in the database. Although the extended
technique is typically used for music recognition, recent work authored by Siriphun and his colleagues [5] used
the technique to classify drone types. However, the extended technique likewise possesses the same weaknesses
in comparison to baseline technique. Furthermore, the extended technique requires maintenance of a fingerprint
database that expends storage space, as well as relying on database searching and matching processes. The
computational cost incurred by the processes increases as the amount of fingerprint steadily increases in the
database, creating an obstacle to recognize sound in real time when the edge device has weak processing power.
Alternate unsupervised learning approach is with clustering algorithms that can be used to group the captured
audio into operation states respectively [6]. Other than clustering, there is also statistical model like Hidden
Markov Model which forms a good pair with MFCC in recognizing speech [7] and also well versed in identifying
underwater acoustic signals [8]. However, both clustering and statistical model approaches suffer from the
presence of background noises too.

The second method is with supervised learning, which were used by most papers that monitor machine
with vibration signal in the last few years. Most vibrational monitoring papers had demonstrated effective
supervised learning techniques on different implementations such as troubleshooting bearing and engine fault
conditions [9, 10] and estimating bearing’s life expectancy [11, 12]. However, the common methodology detailed
in these papers included complex signal preprocessing and feature manipulation processes which depends much
on domain-related expertise knowledge due to the applied feature extraction techniques. The processes can
either add to computational cost or lead to information loss in the signal, which deems those vibration-based
supervised learning techniques unfitting for our work. Moreover, vibration sensor must be closely attached with
target machine to obtain readings. Although there was a finding that included wireless workaround [13] for
vibration sensor, the sensor can expire within a short period due to harsh industrial environment that harbors
some operating machines. On top of that, there are not enough spaces to compensate for sensor retrofitting
and wiring. Therefore, we dive into supervised learning techniques that are generally used for sound recognition
such as support vector machine and random forest. They were used for drone and drill sound recognition,
which is similar to our target [14, 15]. Additionally, the state-of-the-art sound recognition approach usually
involves the use of neural network models. The advantages of using neural network models are the avoidance of
expert knowledge requirement as well as feature manipulation processes and robustness to background noises.
Despite all the advantages, the acoustic data must also be labelled and of excellent quality in order to provide
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distinguishable acoustic features for neural network models. Out of all types of neural network, recurrent
neural network (RNN), especially long short-term memory (LSTM) and convolutional neural network (CNN),
are mostly used for sound recognition. RNN can take account into past information while CNN is able to
consider spatial information. Through vibration signal, Xiao et al. [16] used bidirectional LSTM to classify
fault condition of rotating machines while Xu et al. [17] used CNN for bearing fault diagnosis. Zhao et al.
[18] used both types of neural network for remaining useful life prediction (RUL) of engine. Similarly, Que et
al. [19] used gated recurrent unit (GRU) for predicting bearing’s RUL. Since neural networks are used more in
recent years and offer better performance, our scope is limited on several neural networks-based techniques in
this work.

3. Methodology
This section will be broken down into two parts. The experimental setup that is used to evaluate the performance
of varying models is shown first. We later elaborate each process’s workflow, parameter configuration, and
specification details of the workstation used for model training.

3.1. Experimental setup

Prior IoT architecture [2] identified wireless vibration sensor node with battery supply as the medium for
providing ground truth for acoustic data while main sound sensor node was used for recording acoustic dataset.
To evaluate the feasibility of the proposed monitoring system, we create a series of experiments to test the
neural network models on different types of machine sounds. We only focused more on recording long hours
of acoustic data with a simplified setup. Thus, the vibration sensor is not included for our experimental setup
but we rather use predefined class labels to annotate our dataset. The sound sensor used for recording is an
external microphone board, Seeed Respeaker 2-Mics Pi HAT which is embedded upon Raspberry Pi 3A+, the
edge device. The reason why the microphone board serves as the main choice is because the external board
is low-cost and yet it provides portability with the edge device and great sound recording quality which is
comparable to most high-end USB microphones found in the market. The device is then positioned 30 cm
away from the sound source just so that the sound has significantly higher louder volume level as there are a
lot of loud background sounds in a real-world environment. Additionally, the sound recorded is approximately
ten times more than what is produced in a factory, which is 80 dB [20]. The position of the setup, especially
the microphone board, is fixed throughout the sound recording. Figure 1 briefly describes the details of the
experimental setup and process flows. Each process will be elaborated in the following subsections respectively.

3.2. Processing acoustic dataset
For our experiment, the mono channel sound recorded has 22.05 kHz sampling rate and 16-bit depth in the form
of uncompressed WAV format. Multiple environmental noises are recorded and added into the training data in
preprocessing step to enhance the generalization of the models to the noises. The process of adding multiple
background noises and the noises overlapping each other in different time interval on the intended machine
sound is done every time after long hour recording and splitting of an individual machine sound. The machine
sound is only segmented into 3-s length of audio samples, which approximately 2.5 MB is produced per minute
of recording. After that, the edge device will extricate the acoustical information using Mel Frequency Cepstral
Coefficient (MFCC) feature extraction techniques. Compared to the wholly sound data, the extracted feature
has far more reduced sizes. MFCC will return a 2-dimensional vector that has 1690 values, with 13 coefficients,
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Figure 1. Experimental setup.

2048 samples (0.093s) of windows size, and 512 samples (0.023 s) of hop-length. The two-dimension vector is
then flattened and fed into the neural network models as input data. For data labelling process, the numeric
labels are converted into one-hot vector representations.

3.3. Mel frequency cepstral coefficient computation flow
Firstly, the incoming raw audio signal is segmented into multiple overlapping short frames. Hanning windows
function is then applied onto the frames to reduce spectral leakage, which is the scenario depicting the energy
misdistribution from certain frequency to another frequency. We subsequently used short-time Fourier transform
for creating power spectrogram rather than FFT to assume periodicity of acoustic signal over short time.
Subsequently, the following Equation 1 is used for the conversion of Hertz frequency to Mel frequency, which
constructs the triangular frequency band of filters. Logarithm at base power of 10 will be computed over
the filter bank output, creating Mel filter banks. Discrete cosine transform is performed next in order to
reduce correlation between filter bank coefficients. Finally, after mean normalization, the output will contain
the selected number of coefficients, becoming MFCC feature vector representation. This further reduces the
original size of 3-s audio chunk with 22.05 kHz sample rate (2.52 MB) to approximately 136 kB per minute of
recording. The important flows for MFCC computation are noted as shown in Figure 2.

m = 2595log(1 + f/700). (1)

Figure 2. MFCC computation steps.
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3.4. Neural network model training and inferencing operation statuses

There are four different neural network models available for machine sound recognition, namely MLP, LSTM,
GRU, and CNN. The models are trained using Tensorflow 2.6.0 via Keras backend on a high-end processor
pairing with graphics card. The models are trained in the workstation with the following specifications: i7-8700
CPU, Nvidia RTX 2070 GPU, 16 GB ram memory and 2TB storage capacity. For each sound, all the models
are tested separately for the sound. The individual model has almost the same parameters in order to fairly
compete with each other. Each model has two hidden layers and 52 nodes in each layer in order to equally
compete with each other in terms of architecture and not affected by differences in parameter. For all the
models, softmax activation function in the output nodes as categorical cross entropy loss function is used. The
only difference is the activation function in the hidden layers. For MLP and CNN, the activation function is
ReLU while Tanh for recurrent-based models so that the recurrent-based models can take advantage of GPU
acceleration to speed up the training duration. Additionally, for CNN, the hidden layer has the kernel size of 3.
There are two choices of optimizer: stochastic gradient descent (SGD) and adam. For our objective, we intend
to find out the best model, which is why we are using the most basic optimizer instead of the developed one.
Due to the choice of using SGD that has low convergence rate, feature scaling is performed on the train data
and then the test data in order to increase the convergence rate. After the models are being trained, the trained
models are downloaded from the workstation. For ease of inference, the trained models are in Tensorflow Lite
format and typically has a size of less than 3 MB in total for each model. Any of the future audio recorded
will be similar to the training samples, they are cut into 3-s length audios and converted into MFCC feature
representation with identical parameters as acoustic data that was used for model training.

4. Experimental results and discussions

The responsibility of better handling of operation status tracking task wholly depends on finding the better
neural network models, which is the biggest influencing factor towards better recognition accuracy. There
are a total of three experiments we are going to conduct in order to search for better models. Prior study
demonstrated the possibility of tracking both simultaneously running machines but did not consider the element
of background noise heavily. Therefore, in order to better evaluate the noise robustness for the trained models,
the work attempts to use noise contaminated training data as input data as well as noise contaminated testing
data throughout most of the experiments as the recording obtained from actual factory environment is very
noisy. The first experiment identifies the recognition performance of different types of neural network models
against varying types of machines as well as different noise conditions while the second experiment focuses
on distinguishing operating states of individual machines. The experiment detailed in Section 4.1 is a binary
classification problem which recognizes two operating states for a machine. For the subsequent experiment
discussed in Section 4.2, the recognition task is converted into a multiclass classification problem, which drives
the flexibility of the model to handle the task of handling multiple operating states.

4.1. Experiment A: determining suitable neural network models for machine status tracking
system

For this experiment, there are 15 different types of machine sounds, which are angle grinder, bulldozer, diesel
generator, diesel locomotive, rotary tool, drill, heater, heatgun, honda generator, humidifier, makita angle
grinder, nebulizer, paper machine, shredder, and wood shredder. Therefore, there is a total of 20.5 h of sound
recording data available for model training and testing. The ratio proportion of individual machine audio data
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is broken down as the following. The data is divided into approximately 51.2% training dataset and 26.8%
testing dataset. Another 22.0% is taken out to validate the models. There are only two output nodes for each
neural network model in this experiment because the model is trained to decide whether a machine is running
or stopped. For each machine, there will be 1 h of audio training data is made up of a) one set of 15 min
audio where both machines are running simultaneously, b) one set of 30 min audio where each of the machines
running separately respectively, c) one set of 15 min without the sound of both machines. We also add multiple
background noises into the training data as well as other overlapped machine sound to evaluate the viability of
our sound recognition models.

On the other hand, we record a total of 22 min for the testing data. it contains a) one set of 4-min
audio where both machines are running simultaneously, b) one set of 4-min audio where secondary machine is
running, c) one set of 7 min where the primary machine is running, d) one set of 6 min without the sound of
both machines, e) one set of 1 min of silence. Similar to what we had done to the training data, we add the
testing data too with background noises but the added noises for testing data are unseen and independent of the
noises in the training data. The details about how the audio of the machine pairs are combined are represented
in Tables 1 and 2. The audio of silence, as well as the secondary machine, is added in test data to ensure that
the primary machine sound is correctly recognized despite the presence of other environmental sound. Each
model is reinitialized, trained, and evaluated with shuffled data for a total of 450 times; 30 times on each of the
machine sounds.

Table 1. Composition of training data.

Training duration (min)
0–5 5–10 10–15 15–20 20–25 25–30
30–35 35–40 40–45 45–50 50–55 55–60
Primary machine (0–30), X (30–60)
X BGN1
X BGN2 BGN2 X BGN2 BGN2
X X BGN3 BGN3 X X
X X X BGM1 BGM1 X

*BGN1: Background noise 1 (Environmental sound 1); BGN2:
Background noise 2 (Excavator 1); BGN3: Background noise 3
(Human talking voice 1); BGM1: Secondary machine 1

Table 2. Composition of test data.

Testing duration (mins)
0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–11
11–12 12–13 13–14 14–15 15–16 16–17 17–18 18–19 19–20 20–21 21–22
Primary machine (0–11), X (11–22)
X BGN4
X BGN5 BGN5 X BGN5 BGN5 X X X X X
X X BGN6 BGN6 X X BGN6 X BGN6 X X
X X X BGM2 BGM2 X X BGM2 X BGM2 X
X X X X X BGN7 X X BGN7 BGN7 BGN7

*BGN4: Background noise 4 (Environmental sound 2); BGN5: Background noise 5 (Excavator 2); BGN6: Background
noise 6 (Human talking voice 2); BGM2: Secondary machine 2; BGN7: Raining; X: Silent

Table 3 shows the recognition performance for individual machine sounds. As the table shows, all
the machine sounds can be recognized by various model types correctly. Bulldozer, however, shows better
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performance on recurrent-based models such as LSTM and GRU. The average F1 score of each model types
is then summarized into the bottom part of Table 3 which shows the overall results in monitoring operation
status of the machines via the proposed sound recognition approach. Due to the total number of machine
sounds being tested for each model, we can only take account of the model performance by using the F1
score. It is being summarized up in the form of average, minimum, and maximum, which the latter shows
the lowest and highest recognition performance boundaries of an individual model can achieve. The last two
columns show precision and recall, respectively, and they are calculated with Equations 2–4, respectively. The
definitions of true-positive (TP), false-positive (FP), true-negative (TN), false-negative (FN) are provided as
follows. TP indicates the running state of a machine identified correctly, FP indicates the running state of
a machine misidentified, TN indicates the stopped state of a machine identified correctly, FN indicates the
stopped state of a machine misidentified. In terms of recognition performance, GRU performs the best among
the models. The lowest boundary of F1 score for all the models are the F1 score owned by drill due to the
outdoor environmental noises, except for MLP, which has bulldozer machine as lowest boundary F1 score.

Table 3. Overall recognition performance of different neural network models on test data.

Machine sound types Model types
MLP [2] LSTM [16] GRU [19] CNN [17]

Angle grinder 0.995 0.978 0.984 0.984
Bulldozer 0.675 0.802 0.806 0.715
Diesel generator 0.983 0.989 0.988 0.993
Rotary tool 1.000 1.000 1.000 1.000
Drill 0.738 0.719 0.753 0.735
Heater 0.905 0.892 0.921 0.906
Heatgun 0.999 0.992 0.980 0.993
Honda generator 0.823 0.851 0.844 0.852
Humidifier 0.780 0.800 0.801 0.795
Makita angle grinder 1.000 1.000 0.998 1.000
Nebulizer 0.798 0.863 0.943 0.895
Paper machine 1.000 0.997 0.999 1.000
Shredder 0.718 0.750 0.776 0.742
Wood shredder 0.974 0.971 0.978 0.973

Average F1 score 0.888 0.902 0.913 0.901
Standard uncertainty 0.018 0.034 0.026 0.029
Precision 0.958 0.954 0.958 0.957
Recall 0.867 0.885 0.897 0.885

Italic font means minimum and maximum f1-scores of individual machines for the specific
model.

f1score = 2 ∗ (precision ∗ recall)/(precision+ recall). (2)

precision = truepositive/(truepositive+ falsepositive). (3)

recall = truepositive/(truepositive+ falsenegative). (4)
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Next, we attempt to use the best performing neural network model, which is GRU model in order to
evaluate the usability of the model in recognizing the individual machine sound correctly if there is more than
one machine. The performance is evaluated based on accuracy in possible scenarios that consist of different
combinations of the machine sounds. Nevertheless, the background noises present are identical to the evaluation
for the machine sounds recorded in Table 4. The result shown in the result of Table 4 shows decent performance
across GRU model, demonstrating the adaptability of our model in tracking target machine sound with the
presence of one or more than one background machines as well as handling the silent scenario.

Table 5 specifies the average training and inference duration of all machines’ sounds in each model. The
training duration of the individual model is calculated by averaging up the time it takes to train each machine
sound dataset of 42 min, while the inference duration of the individual model is calculated by averaging up the
time it takes to infer each machine sound dataset of 22 min. Among the models, unexpectedly, the MLP model
has the fastest training and inference duration since it has the simplest model structure.

Table 4. Recognition performance under combination of three machine sounds with GRU model.

Combination/machine Angle grinder (A) Rotary Tool (B) Shredder (C)
Silent 66.70% 100.00% 81.67%
A 100.00% 100.00% 70.00%
B 100.00% 100.00% 61.67%
C 97.50% 97.50% 80.00%
BC 72.50% 100.00% 100.00%
AC 100.00% 100.00% 22.50%
AB 100.00% 100.00% 100.00%
ABC 100.00% 100.00% 100.00%
Total average accuracy (run) 100.00% 100.00% 73.13%
Total average accuracy (stop) 84.18% 99.38% 80.84%

Table 5. Training and inference duration of different models.

Models Training duration Inference duration
(Workstation)

Inference duration
(Edge device)

Duration (s) Standard
uncertainty

Duration (s) Standard
uncertainty

Duration (s) Standard
uncertainty

MLP [2] 2.591 0.052 0.010 0.000 0.292 0.069
LSTM [16] 18.174 0.315 1.765 0.006 17.121 0.884
GRU [19] 15.712 0.053 1.704 0.005 15.469 0.133
CNN [17] 3.203 0.043 0.032 0.000 0.822 0.196

*Bold font means best performance for the specific model.

4.2. Experiment B: handling multiple operation states of individual machine
Different machines have different numbers of operating states. Therefore, when the operation state of a machine
is changed during daily operation, the machine will exhibit different behavior, and in turn, different sounds are
produced. To evaluate the viability of the model in recognizing these behaviors, two machines with multiple
operating states are selected with the presence of background noises and another machine running background.
Like the previous experiment, each state is treated like different machine sounds but were trained together as a
single model with different number of output nodes in a model. Therefore, if there are five different operating
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states, there are five different datasets dedicated for each operating state, which are then accumulated together
to create one complete dataset for one model. Air circulator will have 2 h of sound data, and rotary tool will
have 3 h of sound data to ensure that the proportion of the dataset is equally distributed based on the number
of operating states, that is half hour of data for each state.

The result in Table 6 is again denoted by f1-score, which shows the performance evaluation against
two different machine sounds with multiple operation states in the form of speed changing. Despite using
different neural network models, air circulator has moderately low performance across three different states:
low-, medium-, and high speed. This can be observed from the results shown in Table 6 that air circulator
low-speed state is the only one that has many incorrect predictions, resulting in lower f1-score. This correlates
with the statement mentioned previously in Section 3, whereby the sound sensor has limitation regarding sound
volume level of the targeted machine state. It has the problem of recognising sound that has low amplitude
which causes the background noises to dominate the audio source. Therefore, the recognition performance will
drop tremendously. Additionally, the neural network models do not have much performance difference. The
subsequent Table 7 also provides the similar observation as seen in Table 6 from the performance of individual
machine sounds with every model. Nevertheless, GRU performs the best for recognising air circulator, whereas
MLP performs the best for recognising rotary tool. The models are then utilized to produce the results in
Table 8 that gives gradually lower recognition performance as the noises becoming louder which is indicated by
decrease in signal-to-noise ratio (SNR). This leads to the conclusion that machine types is more of a primary
factor rather than operating states, showing more distinct performance across different models.

Table 6. Performance comparison of different neural network models on different operating states/speed changes.

Machines’ states Models
MLP LSTM GRU CNN

Air Circulator - Low Speed 0.372 0.368 0.381 0.383
Air Circulator - Medium Speed 0.598 0.626 0.604 0.615
Air Circulator - High Speed 0.611 0.614 0.604 0.607
Air Circulator - Stopped 0.872 0.862 0.886 0.872
Rotary Tool - Speed 1 0.893 0.864 0.879 0.896
Rotary Tool - Speed 2 0.913 0.909 0.914 0.923
Rotary Tool - Speed 3 0.985 0.953 0.985 0.980
Rotary Tool - Speed 4 0.979 0.945 0.970 0.956
Rotary Tool - Speed 5 0.952 0.882 0.951 0.931
Rotary Tool - Stopped 0.991 0.895 0.990 0.998

*Bold font means minimum and maximum f1-scores < tally with Table 3 of individual
machines < tally with Table 3 for the specific model.

5. Conclusion and future work
The proposed work highlights the design of a scalable sound recognition model in IoT architecture which is
capable of recognizing different types of machines’ sound in factory. With simulation of real-life environmental
scenarios: environmental noises mixed with machine sounds and targeted machine sound with overlapped
neighbouring machine sounds in background, we tested out different types of models on multiple machine sounds
in factory. The experimental result reveals that GRU model has the best performance in terms of recognition
accuracy with moderate training time and overall fast inference time. It is also shown that even though the
training data has extreme background noises as well as neighbouring machine sounds, the inference accuracy

2382



LIM et al./Turk J Elec Eng & Comp Sci

Table 7. Overall performance comparison of machine operating states/speed changes across different models.

Models Sounds Average F1 score Standard uncertainty

MLP [2] Air circulator 0.613 0.011
Rotary tool 0.952 0.010

LSTM [16] Air circulator 0.617 0.017
Rotary tool 0.908 0.043

GRU [19] Air circulator 0.625 0.009
Rotary tool 0.948 0.019

CNN [17] Air circulator 0.619 0.010
Rotary tool 0.947 0.014

Table 8. Performance comparison of machines’ operating states on best performing models with difference in SNR.

Machine sounds SNR (dB)
0 –5 –10 –15 –20

Air circulator (GRU) 0.625 0.377 0.300 0.317 0.312
Rotary tool (MLP) 0.952 0.834 0.623 0.406 0.272

is still performing at a promising level and suitable for real-time monitoring purpose. The only limitation is
that if the volume level in sound recording is very low and the sound sensor lacks the proper sensitivity level
to record the sound, the recognition accuracy significantly deteriorates as seen from the experimental result of
distinguishing multiple operating states. There are two extension opportunities that stemmed from the current
work in the future. It is observed that training in a high specification workstation is fast. Therefore, training
process for model can also be done by the edge device, which further reduces the bandwidth consumption
that requires downloading model and processing power that trains model from the cloud in order to recognize
machine sounds. The proposed system is also shown to be competent for accurate and real time machine status
monitoring task, however it is yet to be tested in actual factory environment, which we are keen to explore in
our future work.
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