
Turk J Elec Eng & Comp Sci
(2022) 30: 2086 – 2096
© TÜBİTAK
doi:10.55730/1300-0632.3926

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Comparison of ML algorithms to distinguish between human or human-like
targets using the HOG features of range-time and range-Doppler images in

through-the-wall applications

Yunus Emre ACAR1,∗, İsmail SARITAŞ1, Ercan YALDIZ2
1Department of Electrical and Electronics Engineering, Faculty of Technology,

Selçuk University, Konya, Turkey
2Department of Electrical and Electronics Engineering, Faculty of Engineering and Natural Sciences,

Konya Technical University, Konya, Turkey

Received: 31.01.2022 • Accepted/Published Online: 02.06.2022 • Final Version: 28.09.2022

Abstract: When detecting the human targets behind walls, false detections occur for many systematic and environmental
reasons. Identifying and eliminating these false detections is of great importance for many applications. This study
investigates the potential of machine learning (ML) algorithms to distinguish between the human and human-like targets
behind walls. For this purpose, a stepped-frequency continuous-wave (SFCW) radar has been set up. Experiments
have been carried out with real human targets and moving plates imitating a regular breath of a healthy human.
Unlike conventional methods, human and human-like returns are classified using range-Doppler images containing range
and Doppler information. Then, the histogram of oriented gradients (HOG) features of the range-Doppler images are
extracted, and the number of these features is reduced by principal component analysis (PCA). Finally, popular ML
algorithms are executed to distinguish the human and human-like returns. The performances of the ML algorithms are
compared for both range-time and range-Doppler images with or without HOG features. Experiments have indicated
that the HOG features of the range-Doppler profiles provide the best results with the support vector machine (SVM)
classifier with an accuracy of 93.57%.
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1. Introduction
Radar systems have emerged at the beginning of the 20 th century for maritime applications and gained great
importance during World War I and World War II by evolving into supersecret technologies. Although radar
systems have frequently used for military purposes until the 1970s, they have reached a wide range of civilian
applications in line with the developments in electronics technology. In the last decade, remote sensing of
humans has been one of the most popular applications standing out the radar technology. Many radar-based
systems have been introduced for various human-targeted applications such as range detection, positioning, vital
signal monitoring, and classification [1–5]. Continuous-wave (CW) radars have been used to monitor vital signs
at first, whereas ultrawideband (UWB) radar has been extensively studied for distance detection [6–10]. On
the other hand, frequency-modulated continuous-wave (FMCW) radars and stepped-frequency continuous-wave
(SFCW) radars have come to the fore with the capability of distance and velocity detection recently [11–15]. In
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SFCW radars, wider bandwidth provides higher range resolution, while FMCW radars can operate with shorter
observation times due to shorter frequency sweeping periods [16]. Although these two structures have different
advantages and disadvantages, they are very similar in hardware configuration. Both FMCW and SFCW radars
can be built in homodyne or heterodyne structures. Heterodyne structures provide easier solutions to DC noise
and clutter rejection by reducing the high-frequency return signal to an intermediate frequency, while homodyne
structures are advantageous in hardware complexity, cost, and physical size since they reduce the return signal
directly to the baseband [17].

In this study, considering the information given above, a radar structure that can detect human targets
has been created for through-the-wall applications to distinguish the human and human-like returns. In our
previous work [18], the radial distances and respiration rates of the targets have been determined for the line of
sight scenarios. The structure has been rearranged for detecting targets behind obstacles by adding baseband
amplifiers and filters. The main goal of this work is to distinguish between human and human-like target returns
to eliminate the possible false detections. For this purpose, a moving plate platform imitating human chest
wall motion has been used for the human-like returns. Human and moving-plate targets have been evaluated
as two separate classes. Range-Doppler profiles of the targets have been recorded as images to be used in the
classification process. Histogram of oriented gradients (HOG) has been extracted as features. PCA has been
applied to these features to reduce the size keeping only the components that explain 95% of the variance. The
performance of the popular ML algorithms has been compared among themselves.

The organization of the rest of the article is as follows. Section 2 presents the hardware and system
parameters. The experiments and results are discussed in Section 3 with a comparison of the popular ML
algorithms. Finally, Section 4 summarizes and concludes the paper.

2. Materials and methods
In this part of the paper, the hardware of the created radar structure and the signal processing steps are
presented.

2.1. Hardware of the created radar structures
Distinguishing the returns of the human and human-like targets behind walls has been focused on as a two-
class classification problem. Because most of the applications require the range and Doppler frequency of the
targets, a method has been proposed for the SFCW radar structure providing these. The radar hardware is a
modified version of the radar system created in [18]. Since through-the-wall scenarios are studied, it is required
to enhance the returning signals. Two identical instrumental amplifiers have been added to amplify and filter
the baseband signals to compensate for the weakening caused by the wall. The complex-baseband structure has
been kept to utilize both magnitude and phase of the returns to prevent the null points and improve the noise
figure [19, 20]. The hardware has been set up in homodyne configuration to lessen cost and complexity. The
employed radar structure is illustrated in Figure 1.

A vector network analyzer (VNA) generates the required stepped-frequency RF signal. The frequency of
the RF signal sweeps between 2 and 4 GHz as an increasing ramp form with a period of 0.7032 s for 101 sweep
points. These setups bring a high FFT resolution for range-FFT while still adequate for Doppler FFT [18]. RF
power divider splits the sweeping signal into two branches. One of the branches is used for the transmitting
side, whereas the other one provides a reference for the receiving end for IQ demodulation. The frequencies of
the receiving signals are directly downconverted to the baseband after the mixing stage. The resulting baseband
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Figure 1. The experimental radar set-up.

signals are amplified around 20 dB by the instrumental amplifiers.
A moving plate platform is created to imitate a regular chest wall to obtain human-like returns. In

literature, it is common to assume that the respiration rate is around 0.2 Hz–0.35 Hz for adults [21–23]. Thus,
the platform has been set to move 1 cm back and forth with a period of 4s. The image of the platform is given
in Figure 2.

Figure 2. Moving-plate platform imitating the regular chest wall motion [18].

2.2. Proposed method

The signal processing steps of the proposed method begin after digitizing the baseband signals. For an
observation time of To and sampling frequency of Fs , the length of the recorded baseband signals is To× Fs .
For the i th frequency return, the normalized baseband signals can be expressed as follows:

Ii[n] = cos

(
−4π

λi
(R+ x[n])−∆ϕ[n]

)
, n = 1, 2, · · · , To × Fs, (1)
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Qi[n] = sin

(
−4π

λi
(R+ x[n])−∆ϕ[n]

)
, n = 1, 2, · · · , To × Fs, (2)

where λi is the instantaneous operating wavelength, R is the nominal distance between the radar and the
target, x[n] is the micromotion of the target, and ∆ϕ[n] is the residual phase noise. Since the same signal
source is used in both transmitting and receiving sides, ∆ϕ[n] can be omitted due to the range correlation
effect [16]. Thus, the phase of the baseband signals becomes proportional to the range and micromotion. It
is possible to create a complex-valued matrix by combining and reshaping the baseband signals. The phase of
this signal, containing the range and micromotion information, can be extracted by applying IFFT (inverse fast
Fourier transform) to the rows of this matrix. The created complex signal Ci[n] can be expressed as in (3)

Ci[n] = e
j
(
− 4π

λi
(R+x[n])

)
, n = 1, 2, · · · , To × Fs. (3)

It should be noted that the range resolution is directly proportional to the instantaneous bandwidth, which is
too narrow in continuous-wave radars compared to the UWB radars. Fortunately, joint processing of discrete
samples improves the range resolution by N in SFCW structures. The enhanced range resolution ∆Re is
expressed as [16]

∆Re =
c

2N∆f
, (4)

where c is the propagation speed of the wave, ∆f is the frequency step for N sweeping frequency points.
IFFT is one of the simplest and favorite methods for joint processing and phase extraction. First, the complex
signal Ci[n] is placed in the rows of the matrix in case each row corresponds to the consecutive sweep returns.
The resulting matrix becomes a complex-valued matrix. The rows and columns of the matrix are sampled
with ADC’s sampling period and sweeping period, respectively. The range and micromotion information are
extracted by applying IFFT to the rows of the matrix, and a range-slow time profile is obtained. By a further
phase extraction, performing fast Fourier transform (FFT) through the slow-time axis of this profile, the range-
Doppler profile is created. The steps from complex-valued matrix generation to obtaining the range-Doppler
matrix are illustrated in Figure 3. As examples, range-Doppler and range-slow time images for a target located
at 2.5 m are given in Figure 4.

Figure 3. The steps to create the range-Doppler matrix.
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Figure 4. (a) range-slow time image, (b) range-Doppler image for a target at 2.5 m

In the created range-Doppler matrix, the highest peak corresponds to the reflection from the wall.
Together with this strong echo, the presence of noise and clutters also necessitate additional filtering operations.
Two-line delay cancellation is applied to the range axis as a moving target indicator (MTI) to suppress the wall
and emphasize the targets behind it. Sequentially, the slow time axis of the matrix is filtered with a 32nd order
low pass filter. After filtering operations, the gray-colored radar images are obtained by normalizing the matrix
values to the range of 0 to 1. The last step of the proposed method is to extract the features to input to the
classifiers.

HOG, one of the popular tools by the nature of using the gradient distribution in complex form, is used
for feature extraction. First, the radar images are binarized. Then, the binarized images are divided into
subimages, and complex-valued gradients are calculated for each subimage as given in (5) and (6).

∇f(x, y) =

[
gx
gy

]
=

[
f(x+ 1, y)− f(x− 1, y)
f(x, y + 1)− f(x, y − 1)

]
. (5)

g = gx + jgy, (6)

where f(x, y) represents any subimage, g is the complex-valued gradient, and gx and gy are the gradients in x

and y directions, respectively. The histograms are formed as the distribution of the amplitudes of the complex-
valued gradient g for predefined angle values. The final HOG feature is a vector that is the concatenation of
each histogram. The whole signal processing steps of the proposed method are summarized in Figure 5.

Figure 5. The signal processing steps of the proposed method.

2090



ACAR et al./Turk J Elec Eng & Comp Sci

3. Experiments and results

While detecting the targets behind walls, ghost targets may appear at locations where there should be none
[18]. This paper investigates the discrimination performance of the ML algorithms for this problem. Synthetic
ghost targets have been created with moving plates imitating human breathing. A total of 140 observations
have been recorded at 70 different locations for human and human-like targets. A 20-cm wall has been created
with gas concentrate blocks as the obstacle between the radar and the targets. The attenuation of the wall has
been recorded as around 10 dB for the operating bandwidth of 2–4 GHz. Wall attenuation has been measured
as given in Figure 6.

The radar was placed next to the wall and worked for target detection for an observation time of 30
s. The recorded baseband signals have been converted into radar images to be classified. First, popular ML
algorithms have run with range-slow time images. Then, Doppler-FFT has been applied to range-slow time
images as an additional phase extraction. The resulting range-Doppler images have been evaluated as inputs for
the classifiers. Both image types have been used directly in their vectorized form or with their HOG features.
The performances of the classifiers have been compared for each input type. A total of 80% of the input images
have been used for training while the rest have been kept for the testing phase. Five-fold cross-validation has
been preferred to validate that the classifiers learn all images. The experiment environment and measurement
setup are shown in Figure 7.

Figure 6. The atteunation of the wall (1–5 GHz).

Figure 7. Experiment environment and the measurement setup (o: target locations)
.
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It has been investigated how additional phase extraction and HOG+PCA affect classification performance
and fit which ML method best. Classifiers have run for both range-slow time and range-Doppler images to see
the effect of the additional phase extraction. The m-by-n image is converted into a vector with a length of
m × n. Well accepted ML classifiers such as decision trees (DTs) [24], support vector machines (SVMs) [25],
k-nearest neighborhoods (KNNs) [26], and ensemble approaches [27, 28] are used for distinguishing the human
and human-like returns by using these vectors. The algorithms have been executed with different parameters.
The settings providing the best results for each method are tabulated in Table 1.

Table 1. Parameter settings providing the best results for each ML algorithm.

Decision tree SVM KNN Subspace
discriminant

Settings maximum # of splits:
”4”

kernel function:
”quadratic”

# of neighbors:
”10”

learner type:
”discriminant”

split criterion: ”Gini’s
diversity index”

box constraints
level: ”1”

distance metric:
”cosine”

# of learners:
”30”

surrogate decision
splits: ”off”

multiclass method:
”one-vs-one”

distance weight
”equal”

subspace dimentsion:
”6912”

The performances of the classifiers are compared with common metrics like accuracy, specificity, sensi-
tivity, and F1 score. These metrics are represented as given below.
•Accuracy = (TP + TN)/(TP + FP + FN + TN)

•Specificity = TN/(TN + FP )

•Sensitivity = TP/(TP + FN)

•Precision = TP/(TP + FP )

•F1score = 2× (Sensitivity × Precision)/(Sensitivity + Precision)

Here, true positive (TP) and true negative (TN) values give the number of correctly classified human
and human-like returns, respectively. On the other hand, false positive (FP) and false negative (FN) values
correspond to the misclassified returns. The performances of the best classifiers in each ML group are given in
Table 2.

Table 2 indicates the effect of additional phase extraction. The performances of the classifiers are shown
for both input types. As seen from Table 2, the performances of the classifiers are improved with additional phase
extraction, Doppler-FFT. Providing the range-Doppler images rather than range-slow time images has improved
the accuracy and F1 score values with an average of %5.36 and %5.26, respectively. Although the accuracies
and F1 scores seem satisfactory, differences between sensitivity and specificity values point to an unbalanced
training for all methods and each input type. According to these results, additional phase extraction improves
the accuracy of distinguishing the human and human-like targets but cannot solve the tendency to unbalanced
learning.

In the second scenario, HOG features of the images are input to the classifiers rather than the direct use
of the vectorized images. The cell size, which determines the size of the subimages, is determined as 4-by-4
by trial and error. The length of the feature vector is reduced by PCA by keeping only the components that
explain 95% of the variance. The results are given in Table 3 for both input types.

Table 3 shows us that HOG feature extraction fits better with range-Doppler images rather than range-
slow time images. Compared to the direct use of range-slow time images, the proposed approach increases
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Table 2. Performance comparison of the MLs for two input types.

Input ML Accuracy Sen. Spec. F1 Score TP TN FP FN

Range-ST

Coarse
Tree

73.57 70.00 77.14 72.59 49 54 16 21

SVM
(Quadratic)

86.43 87.14 85.71 86.52 61 60 10 9

KNN
(Cosine KNN)

87.86 82.86 92.86 87.22 58 65 5 12

Ensemble
(Subspace
Discriminant)

85.71 84.29 87.14 85.51 59 61 9 11

Range-Doppler

Coarse
Tree

83.57 77.14 90.00 82.44 54 63 7 16

SVM
(Quadratic)

90.71 88.57 92.86 90.51 62 65 5 8

KNN
(Cosine KNN)

88.57 84.29 92.86 88.06 59 65 5 11

Ensemble
(Subspace
Discriminant)

92.14 88.57 95.71 91.85 62 67 3 8

Table 3. Performance comparison of MLs when HOG+PCA applied to input images.

Input ML Accuracy Sens. Spec. F1 Score TP TN FP FN

Range-ST
with
HOG+PCA

Coarse
Tree

80.71 78.57 82.86 80.29 55 58 12 15

SVM
(Linear)

84.29 85.71 82.86 84.51 60 58 12 10

KNN
(Medium KNN)

81.43 82.86 80.00 81.69 58 56 14 12

Ensemble
(Subspace KNN)

85.00 85.71 84.29 85.11 60 59 11 10

Range-Doppler
with
HOG+PCA

Coarse
Tree

80.71 84.29 78.67 77.14 59 54 16 11

SVM
(Linear)

93.57 94.29 92.96 92.86 66 65 5 4

KNN
(Medium KNN)

87.14 87.14 87.14 87.14 61 61 9 9

Ensemble
(Subspace KNN)

92.86 94.29 91.67 91.43 66 64 6 4

the obtained maximum accuracy from 87.86% to 93.57 %. Moreover, Table 3 also indicates that the proposed
approach provides balanced learning for both classes. When evaluating Tables 2 and 3 together, it is seen
that the feature extraction with HOG+PCA cannot improve the accuracy and F1 score for all methods. The
approach fits best with SVM with range-Doppler images. The performances of the classifiers are shown in
Figures 8 and 9 to visualize Tables 2 and 3.
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Figure 8. Performance comparison of the MLs for two input types.

Figure 9. Performance comparison of MLs when HOG+PCA applied to input images.

4. Conclusion
This study presents an approach for distinguishing the human and human-like returns for through-the-wall
detection. Unlike most classification studies, SFCW radar structure is preferred rather than CW radars that
use micro-Doppler signatures. In CW radars, the time-frequency map is the radar output for the classifiers.
Although the time-frequency map is very distinctive and suitable for classification problems, it does not contain
the range information of the targets. This is an issue that limits the technology for the future work of multiple-
target classification.

In this study, the potential of using the range-Doppler images has been investigated for classification
problems. First, an SFCW radar structure has been created with IQ demodulation that helps to prevent the
possible null points in range. Then, the processed baseband signals have been converted into a complex-valued
matrix. After applying IFFT through the rows of this matrix, the range-slow time images are formed. KNN has
provided the best accuracy of 87.86% for human and human-like targets classification. When input images have
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been changed to range-Doppler images, the accuracy has increased to 92.14% with the ensemble of subspace
discriminant classifiers. However, the unbalanced learning problem has continued. Additional feature extraction
has been applied with HOG+PCA to solve this problem. According to the results, HOG+PCA fits best with
SVM for the range-Doppler images. The accuracy has increased to 93.57%. While the accuracy has increased,
the sensitivity and specificity have reached 94.29% and 92.96%, respectively. These results show that the
classifier has learned both human and human-like returns. The study demonstrates using the range-Doppler
images with HOG+PCA has a magnificent potential for future works of multiple target detection with the
ability to distinguish the human and human-like targets by the range and Doppler information.
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