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Abstract: A reliable and accurate short-term load forecasting (STLF) helps utilities and energy providers deal with
the challenges posed by supply and demand balance, higher penetration of renewable energies and the development of
electricity markets with increasingly complex pricing strategies in future smart grids. Recent advances in deep learning
have been successively utilized to STLF. However, there is no certain study that evaluates the performances of different
STLF methods at an aggregated level on different datasets with different numbers of daily measurements.

In this study, a deep learning STLF architecture called Load2Load is proposed for day-ahead forecasting. Different
forecasting methods have been evaluated and compared on two datasets with different temporal resolutions and features.
An additive ensemble method as well as a selective ensemble method that selects the outputs of different forecasters in an
hourly manner are proposed. Moreover; a modified sequential forward feature selection algorithm is proposed, resulting
in better performance with a much smaller number of features.

Numerical results show that the proposed Load2Load architecture has a competing performance compared to
other advanced forecasters. When used together with the proposed ensemble methods, Load2Load can significantly
improve the forecasting performance. The proposed feature selection algorithm results in better performance for the
majority of the cases while reducing the dimensionality. According to the results with two different datasets; the proposed
methods are shown to be robust to temporal resolutions, feature types and sequence lengths.

Key words: Day-ahead electrical load forecasting, aggregated-level forecasting, deep learning, forecaster ensemble,
generative adversarial network, feature selection

1. Introduction
The accurate estimation of electrical load demand can be greatly beneficial in the optimal planning of energy
systems and in making proper operational decisions. Electricity load forecasting can be classified into three
main categories, according to the period as long-term: 1-50 years; mid-term: one month to one year; short-term:
estimates of the day or week ahead of electricity consumption. Huge number of operating decisions require STLF.
In general, STLF supports power system operation management planning, scheduling of distributed generation
plants, contingency and load flow analysis at power systems and maintenance activities. STLF is particularly
important for maintaining power supply-demand balance for electric energy utilities. STLF can mainly be
carried out in two categories: the aggregated level and the building (individual) level. The aggregated level
forecasting gives an estimate of the total load demand for a group of users in a particular level such as system
level and regional level.
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1.1. Related work

A variety of STLF methods are used for electrical load forecasting which is generally based on statistical or
machine learning approaches [1–8]. Time series methods [9] and multiple linear regression (MLR) methods
[10] are within the scope of the statistical methods. In the early times of load forecasting studies, time series
approaches were widely applied especially at the peak load forecasting studies [11]. MLR is still preferred today,
however usually outperformed by more advanced machine learning techniques.

Machine learning techniques such as artificial neural network (ANN), which has been started to be used
in the early 90’s [12], regression tree [13], support vector machine (SVM) [14], k-nearest neighbors (kNN)
algorithm [15], recurrent neural network (RNN) [16], convolutional neural network (CNN) [17] and different
machine learning-based ensemble models have been gaining much interest recently due to suitability to learn
complex and nonlinear relationships hidden in data and their satisfying performance especially in high accuracy,
particularly in the field of STLF [18].

It could be seen from the past studies that, an insufficient number of aggregated-level load estimation
studies have been performed when compared with household-level studies until recent times. With the devel-
opment of smart meters and thus the increase in data sizes in the smart grid, aggregated load forecasting based
on smart meters data has become one of the most popular topics of recent years [19].

A review and analysis study of regression and machine learning models on STLF of Kensington Campus
and Tyree Energy Technologies Building (TETB) at the University of New South Wales (UNSW) which are
considered as commercial buildings can be found in [6]. In that study, regression models have been reviewed.
The models have also been tested on the data of commercial buildings. It has been seen that most of the machine
learning models outperformed the MLR models. However, regression models have shown better performance
compared to machine learning models on forecasting daily peak electricity demand. In [20], a feed-forward
deep neural network (DNN) model has been compared with some of the trend machine learning models like
random forest and gradient boosting machine models. It has been shown that the deep model outperformed
these models in terms of forecasting accuracy for three Chinese cities’ electricity demand data.

In [18], a comparison between three forecast methods; namely MLR, random forest (RF), and gradient
boosting (GB) on hourly load forecasting of southern California has been performed. It is concluded that GB
model has generally outperformed the MLR and RF models. A review of the most widely used machine learning
models such as SVM, kNN, random forest and ANN on STLF at microgrid level has been presented in [21].
A comprehensive comparison study of 24-h-ahead STLF [7] groups the methods into three main categories;
namely the time series model, classical regression models, and the deep learning models. This study has been
realized as a 24-h-ahead STLF study of provincial load in Jiangsu Province, China. The results interestingly
showed that linear models and their variants; which are MLR, multivariate adaptive regression splines (MARS)
and support vector regression (SVR) with the linear kernel outperformed other models. Moreover, a layer-wise
trained DNN has forecasted more accurately than shallow ANN but still could not provide a higher accuracy
than linear models.

ML methods such as ANN, MLR, adaptive neuro-fuzzy inference system (ANFIS) and SVM have been
investigated to forecast electricity demand in Cyprus for both short- and long-term period [22]. The results have
indicated that ANN has showed better performance in prediction errors (0.97%, 1.67%) and root mean square
error (RMSE) of (7.67, 14.91) than other models in short-term period. In [23], the authors have developed an
LSTM-RNN-based univariate model to forecast the aggregated demand of France metropolitan’s in short- and
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medium-term time horizons. They have compared their model with common machine learning approaches and
have indicated that LSTM-based model outperformed other models which is optimized with hyper-parameter
tuning. Moreover, by utilizing the best features, optimal lags, layers, and training various LSTM configurations
they have increased the accuracy even more.

Choi et al. proposed an STLF method based on residual network (ResNet) and LSTM [24]. ResNet is
utilized to extract latent features of daily and weekly load data. Then, LSTM is applied to train the encoded
feature vector with and make prediction suitable for volatile load data. The proposed model is compared
with other deep learning models, which are multi-layer perceptron (MLP), ResNet, LSTM and ResNet/MLP
combined model. The results show that the proposed model has 21.3% mean absolute percentage error (MAPE)
improvement overall. In this proposed study, ResNet is directly used for regression to forecast the load, different
from [24].

A method based only on input data for consumption in Czech Republic is described by Uher et al.
[25]. Additional influences such as temperature, wind, gross domestic product are ignored. Local polynomial
regression, ANN, Gaussian process, linear regression, and polynomial regression techniques are used to create a
predictive model. The best results are obtained with a local polynomial regression algorithm. Daily prediction
RMSE is reported as 5.77%.

A probabilistic forecasting framework based on Bayesian neural networks (BNNs) with optimized initial-
ization for one-day ahead forecasting of operational demand across the National Electricity Market (NEM) of
Australia is studied in [26]. MAPE values are reported for different regions separately such as NSW (5.18%),
VIC (6.40%), QLD (4.06%), SA (8.91%), TAS (4.21%). Average MAPE for all regions is 5.75%.

A recent study presents an adaptive hybrid ensemble, CMKP-EG-SVR for STLF problem [27]. For
this purpose, median filtering is utilized at an initial phase of data preprocessing to reduce the high-frequency
parts while detecting and correcting the outliers and missing data. Pearson’s correlation, kNN algorithm and a
particular calendar grouping based on day-type encoding are used for selecting relevant features and extracting
similar patterns. The electricity demand data from the Australian state of New South Wales are employed
for an extensive evaluation under both normal and anomalous load conditions. MAPE values in the range of
1.03%-4.26% are reported.

A load forecasting model to introduce a feature extraction module that is combined with the variational
mode decomposition (VMD) and the variational autoencoder (VAE) is proposed in [28]. In this combination,
VMD is utilized for decomposing the load series and VAE is used to eliminate the redundant information
from each decomposed series. The proposed model is shown to achieve accurate predictions with two real
data sets from China, reporting MAPEs for one-step-ahead prediction to be 1% (Nanjing) and 0.8% (Taixing),
respectively.

Turkey’s 24-h-ahead load forecasting without meteorological data is studied in [29]. ANN, wavelet
transform and ANN, wavelet transform and radial basis function (RBF) neural network (NN), empirical mode
decomposition (EMD) and RBF NN structures are used for STLF procedures. The average MAPE result over
2009 and 2010 for ANN is 3.74, wavelet transform and ANN is 3.96, wavelet transform and RBF NN is 2.95,
EMD and RBF NN is 3.58.

Deep learning has been successfully used for STLF in recent times. A survey of deep learning studies
on solar load forecasting has been carried out by Akinola et al. [30]. A comparison of stacked denoising auto-
encoder (SDAE) and CNN deep learning architectures is available by Chelabi et al. [31]. Feedforward and
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recurrent neural networks, sequence-to-sequence models and temporal CNNs along with architectural variants
on four real-world datasets are experimented for one-day-ahead prediction in [32].

Electrical load data is proposed to be transformed from 1D series to 3D images and the problem is
transformed from future series forecasting to missing patch inpainting in [33] for STLF. An RNN is presented
to model the temporal trends in the series by convolutional operations on the spatial neighbourhood in the
images.

Generative adversarial networks (GAN) have recently been studied by a number of works for electrical
load forecasting. Different GAN architectures are compared in [34] such as conditional GAN (cGAN), deep
convolutional GAN, least squares GAN and Wasserstein GAN (WGAN) for day-ahead electric demand fore-
casting. The proposed GAN models provided an average MAPE of 4.99%. Comparison of normalizing flows
with GANs and variational autoencoders is provided in [35] for weather-based photovoltaics, wind power and
load forecasting scenarios. A new method called E-GAN which combines a physics-based model (EnergyPlus)
and a data-driven model (GAN) to predict the daily power demand for buildings at a large scale is proposed
in [36]. E-GAN is reported to predict power demand with 5% MAPE. DeepAR and Wavenet architectures are
investigated as the representative of deep generative models for the purpose of STLF in [37]. Deep generative
models are reported to perform better compared to other baseline models such as ARIMA, machine learning
and baseline neural networks. Huang et al. [38] utilize Wasserstein GAN for multinodes interval electric vehicle
day-ahead charging load forecasting. MAPE value of 17.7% is reported.

A Bayesian training method to enhance the robustness of deep-learning-based load forecasting models
towards adversarial attacks is proposed in [39]. Bayesian training is reported to improve the load forecasting
robustness against various attacking objectives without compromising the prediction performance.

In the author’s previous study [40], a deep RNN Bi-LSTM model was developed to forecast 24-h-ahead
aggregated load profile for the purpose of operational scheduling in a reconfigurable microgrid (MG). The results
showed that the RNN Bi-LSTM model outperformed other methods in the recent literature such as feed-forward
neural network (FFNN), deep CNN, Copula deep belief network (DBN), and parallel CNN-RNN.

2. Proposed work

In this study, day-ahead electrical load forecasting is in focus, by implementing and comparing the performance
of numerous forecasting techniques. Contributions with respect to the author’s previous work [40] is summarized
in what follows.

A new STLF architecture called Load2Load based on a GAN model is proposed. To the best of our
knowledge, this is the first time such an architecture is used for numerical regression, specifically STLF. Different
model designs that are better suitable for different kinds of forecasters have been proposed and investigated.

In addition to Czech data consisting of 24 measurements per day, Australian data consisting of 48
measurements per day is utilized for evaluation. Because each dataset has its own dynamics with the features;
a modified sequential forward feature selection algorithm is proposed, resulting in better performance for some
of the forecasters, with much smaller number of features.

Ensembles of the same kind of forecasters with different hyper-parameters, as well as different kinds of
forecasters are examined. A selective ensemble technique is proposed, which selects the outputs of different
forecasters in an hourly manner. According to the experimental results; the proposed ensemble method shows
that, Load2Load can improve the results when used together with other architectures.
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The rest of the paper is organized as follows. Section 2.1 describes the forecaster architectures and
Section 2.2 depicts the model designs of those architectures as utilized in this work. Section 2.3 describes the
proposed ensemble strategy. Feature selection is explained in Section 2.4. Experimental protocol and the results
are given in Section 3. Finally, conclusions are provided in Section 4.

2.1. Forecaster architectures
Forecasters take as input last six days’ hourly data of the features, where the sequence length s is 144 for hourly
measured data (Czech data) or 288 for half-an-hourly measured data (Ausdata). Load2Load is proposed in this
work and compared with several different forecasters whose architectures are designed and optimized for STLF.
H depicts the number of forecasts per day where H = Hmeasured , Hmeasured is the number of measurements per
day in the database (24 for hourly measured Czech data or 48 for half-an-hourly measured Ausdata). Adjustable
parameters of the forecasters are determined according to the protocol defined in Section 3.2, using a separate
subset of data.

2.1.1. Load2Load
A network called Load2Load which takes as input a sequence image and outputs the forecasted sequence as an
image is proposed. To the best of our knowledge, this is the first time such an architecture is used for numerical
regression, specifically STLF. Load2Load network both learns a mapping from the input sequence image to the
output sequence image and a loss function to train this mapping. This is done by learning a structured loss that
penalizes a structure that differs from the current output and the desired output. The idea of GAN in general
is learning to generate new data with the same statistics as the training set [41]. There are two components in
a GAN. The generative network generates new samples while the discriminative network discriminates them.
The two models are trained simultaneously in an adversarial process where the generator seeks to create better
forgery samples and the discriminator seeks to better identify the forgery samples.

The discriminator is a deep CNN that performs conditional-image classification. It can take the input
sequence and the corresponding forecast sequence and then predicts the likelihood of whether the target image
is a correct or incorrect forecast sequence. Input and forecast sequence images are fed as two channels of a single
image. Because only one feature sequence is to be forecasted, forecast input sequence is repeated vertically to
be compatible with the first channel input number of features. During forecasting, generated image row-base
average is calculated to decide final forecasts through repeated forecasts in the image. The discriminator model
is trained on real and generated sequence images.

The generator is an encoder-decoder model using a U-Net architecture. It takes a source image and
generates a target image. This is achieved by downsampling the input to a bottleneck layer (encoder), then
upsampling the bottleneck representation to the size of the output (decoder). The U-Net model uses skip-
connections between the encoding layers and the corresponding decoding layers. The generator model is trained
from the discriminator model. It is updated to minimize the loss predicted by the discriminator for generated
sequences that are marked as real. As a result, it learns to generate more realistic sequence images. The
generator is updated to minimize the loss between the generated sequence image and the target sequence image
as well.

Overall Load2Load model stacks the generator on top of the discriminator. A source sequence is an input
to the generator and to the discriminator, while the output of the generator is connected to the discriminator as
the corresponding target sequence. The discriminator finds the probability that the output is a correct forecast
sequence of the source.
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The trained Load2Load function is FLoad2Load(x̂) for some test sample x̂ . Figure 1 demonstrates the
discriminator and Figure 2 demonstrates the generator of the proposed Load2Load components.

Decision output

Input sequence of 
features

Forecast sequence of features 
repeated vertically

Convolution layer, sizes
(from left to right):
64, 128, 256, 512, 1

Batch normalization layer

Leaky ReLU layer

Figure 1. Discriminator of Load2Load architecture.
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layer, sizes (top to bottom): 
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Concatenate

Figure 2. Generator of Load2Load architecture.

2.1.2. Other architectures
Logistic regression model Logistic regression model (LRM) describes a linear relationship between a
dependent variable y and one or more independent variables (features) matrix X of observations.

K-nearest neighbors kNN is a nonparametric supervised machine learning algorithm that can be used to
solve both classification and regression problems. In kNN regression, the output value is the average of the
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values of k nearest neighbors. In this work, the simplest kNN architecture of k = 1 and Euclidean distance as
the metric is utilized.

Support vector regression SVM works well for support vector classification (SVC) or SVR. For SVR,
ν -SVR [42] is chosen as a linear SVM solver which is faster to train with a less number of support vectors.

Regression tree Regression tree is a decision tree for which the output can take continuous values. Regression
tree provides promising results where rule-based decisions can be drawn from the data.

Convolutional neural network CNNs have shown great performance on signal processing, classification,
representation learning as well as many other tasks. Two different CNNs CNN1 and CNN2 are considered and
additive ensemble of them (Section 2.3.1) is investigated, shown as CNNs = CNN1 ⊞ CNN2 in the results.

Throughout the text; CL denotes the convolution layer, REL denotes rectified linear unit (ReLU) layer,
APL denotes average pooling layer, MPL denotes max pooling layer, BL denotes batch normalization layer, DL
denotes dropout layer, FL denotes fully connected layer and RL denotes regression layer.

CNN1 consists of the following layers: CL (8 filters), BL, REL, CL (16 filters), BL, REL, MPL, CL (32
filters), BL, REL, MPL, CL (64 filters), BL, REL, FL (5096), FL (512), FL (144), RL.

CNN2 consists of the following layers: CL (8 filters), BL, REL, APL, CL (16 filters), BL, REL, APL,
CL (32 filters), BL, REL, CL (32 filters), BL, REL, DL, FL (144), RL.

Recurrent neural network RNN is a kind of neural network that allows previous outputs to be used as
inputs while having hidden states. RNN is suitable for sequence inputs because they can process input of
any length. Two RNNs of bidirectional long short-term memory layers (BiLSTM) with similar structures but
different numbers of hidden units are considered. In RNN1 , number of units in BiLSTM layer is 30 whereas
in RNN2 number of units in BiLSTM layer is 100. Additive ensemble of RNN1 and RNN2 (Section 2.3.1) is
investigated, shown as RNNs in the results.

Throughout the text; SL denotes the sequence input layer, BiL denotes BiLSTM layer. The proposed
RNN consists of the following layers: SL, BiL, FL, RL.

Feedforward artificial neural network Feedforward ANN is a simple type of ANN where the connections
between the units do not form a cycle. Two different ANNs are proposed. ANN1 is a simple ANN with one
hidden layer of 12 hidden units, whereas ANN2 is a more complex ANN with five hidden layers with a decreasing
number of hidden units as 50, 40, 30, 20 and 10. Additive ensemble of ANN1 and ANN2 (Section 2.3.1) is
investigated, shown as ANNs in the results.

Residual network ResNet consists of the main branch with convolutional, batch normalization, and ReLU
layers connected sequentially; in addition, residual connections that bypass the convolutional units of the main
branch [43]. The outputs of the residual connections and convolutional units are added element-wise. In the
skip connections where the layer activations in the convolutional units change the size, the activations in the
skip connections also change size. The width of the proposed ResNet model is three. Figure 3 demonstrates
the proposed ResNet model.
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Figure 3. ResNet architecture.

2.2. Forecaster model designs

Forecaster architectures are designed with two different schemes depending on the characteristics of the fore-
caster. Input sequence of features are either represented in s×f 2D (for CNN and RNN) or as a stacked vector
of length s× f in 1D (for other forecasters), where s is the sequence length and f is the number of features.

2.2.1. Model1

Model1 forecasts the next day’s all hourly values at one shot. Such day-ahead models are trained only to predict
the sequences that start the first hour of a new day (i.e. from 00:00 to 23:00), but not in-between sequences
(such as from 14:00 to the following day’s 13:00) as the goal is to forecast all hourly values of the next day,
reducing the amount of training data. Only one forecaster of a kind is trained that constitutes the Model1 .
Load2Load, ResNet, CNN, and RNN forecasters are built following this approach.

2.2.2. Model2

This model forecasts the next day’s all hourly values utilizing specialized forecaster instances for each hour of
the next day. In total, H different forecasters {Model21 ,Model22 , ...,Model2H} are trained that constitute
Model2 . Like Model1 , only the sequences that start the first hour of a new day are utilized in training. MLR,
SVR, kNN and tree forecasters are built following this approach.

2.3. Forecaster ensemble

Two different ensemble methods are investigated and found to be useful. The first one is based on weighted sum
of the predictions and the second one is specifically proposed for the problem which selects different forecasters
based on the hour to be predicted.
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2.3.1. Additive ensemble
Additive ensemble fuses the outputs of different forecasters following a weighted sum rule and is denoted with
⊞ :

Fadd(x̂) = F1(x̂)⊞ F2(x̂)⊞ ...⊞ FN (x̂) =

N∑
k=1

wkFk(x̂), (1)

where Fk is the forecast output of the particular forecaster model k (e.g., CNN, RNN...), wk is the corresponding

weight (0 ≤ wk ≤ 1 and
∑N

k=1 wk = 1) and N is the total number of considered forecasters.
The ensemble problem is translated into optimizing the weights wk for the best forecasting performance.

However, one can simply set the weights as wk = 1/N to obtain the average of forecasts obtained from all
forecasters. In this study, fusion weights wk are optimized according to the validation set performance. Utilized
optimization process is based on a brute-force search of the best-performing weight set within the sensitivity of
0.05 . This value is heuristically selected as a smaller value would yield to overfitting to the validation set and
a slower search; whereas a bigger value may end up missing the best weight set.

The additive ensemble is used both to improve the same kind of forecasters (e.g., ensemble of FRNN1
⊞

FRNN2
(RNNs)) and to improve the performance of different kinds of forecasters (e.g., FRNNs ⊞ FSV R ).

2.3.2. Selective ensemble
From the hourly error analysis performed on the validation set; it has been observed that among two of the
well-performing forecasters (SVR and RNN), SVR performs relatively better for the hours where the values do
not deviate much from day to day and RNN performs relatively better for the hours where the values tend
to deviate more from day to day. Depending on this observation, a selective ensemble is proposed for the
above-mentioned forecasters:

Fsel(x̂
h) = ERNN (h)FRNN (x̂h) + ESV R(h)FSV R(x̂

h), (2)

where h is an integer denoting the forecasted hour (0 ≤ h < H ), x̂h is some input test sample which specifically
represents an observation at hour h (previous s hours’ p features), FRNN is the forecasting function of RNN,
FSV R is the forecasting function of SVR, E ’s are the selective ensemble functions,

ERNN (h) =
{ 1 for h ∈ Hsel

RNN

0 otherwise
, (3)

ESV R(h) = 1− ERNN (h). (4)

Set of hours to be selectively forecasted by RNN, Hsel
RNN is experimentally found from the validation set

and depends on the database and the forecasted feature, as detailed in Section 3.4. Selective ensemble is denoted
with ⊡ and investigated to further improve the best performing forecasters, for example additive ensemble of
RNNs (FRNN1

⊞ FRNN2
) and SV R as (FRNN1

⊞ FRNN2
)⊡ FSV R .

2.4. Feature selection
Feature selection on the validation set based on a modified sequential forward selection algorithm is proposed.
Feature selection is analyzed only with SVR for the speed and performance advantages according to validation
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set tests with the expectation of generalizing well to other forecasters with the same feature subset. Mean
absolute error (MAE) metric is used to compare the performance of candidate features k̂ for its simplicity. The
proposed algorithm consists of the following steps:

Algorithm 1 Feature selection
Initialize the feature set Z ← ∅ and the residual feature set R← ϵ where ϵ is the complete set of features
while R ̸= ∅ do

k ← argmink̂MAE(FSV R(XZ∪k̂)) where MAE is the function that measures the MAE of the given
model using forecast outputs and X is the observations matrix in the validation set with the denoted feature
subset

if MAE(FSV R(XZ∪k)) < MAE(FSV R(XZ)) then
Update Z ← Z ∪ k , R← R\k

else
return the feature set Z

end if
end while

3. Experimental results

3.1. Datasets
3.1.1. Czech data
Czech data is a one-h-resolution (24 measurements per day) dataset that consists of year, day, month, hour,
wind power plant (WPP), photovoltaic power plant (PVPP), pumping load, load, wind speed, temperature,
direct horizontal radiation and diffuse horizontal radiation features from 01.01.2012 to 31.12.2016 in the Czech
Republic. The goal is to predict the electrical energy demand. Year information is not used in experiments;
hence the considered features are:

1) Day 2) Month 3) Hour 4) WPP 5) PVPP 6) Load(pumping) 7) Load 8) windspeed (10m) 9) temperature
10) radiation (direct horizontal) 11) radiation (diffuse horizontal)

3.1.2. Ausdata
Ausdata is a thirty-min-resolution (48 measurements per day) dataset that consists of day, month, year, hour,
dry bulb temperature, dew point, electric price, system load, wet bulb temperature, and humidity features from
01.01.2006 to 31.12.2010 in Australia; provided by Australian Energy Market Operator (AEMO) and Bureau of
Meteorology (BOM) for Sydney/New South Wales (NSW). For predicting the electrical energy load using this
dataset, the following features are considered:

1) Day 2) Month 3) Hour 4) DryBulb 5) DewPnt 6) ElecPrice 7) SYSLoad 8) WetBulb 9) Humidity
Complete electrical load plots of the two datasets are given in Figure 4. Months are separated with

vertical lines for better visualization.

3.2. Cross validation
Days are divided into five equi-sized folds for cross validation. In each test, one of the folds is left out for testing
and all other folds are used for training the models. First fold is devoted for development purposes;
including ensemble weight optimization, selective ensemble hours, model hyper-parameter optimization, and
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Figure 4. Complete electrical load plots of the two datasets.

feature selection. Results obtained by testing this fold are only utilized for development purposes, though it is
used for training the models for other tests, just like other folds have participated in the training.

Analyses that have been performed for development purposes; namely hourly analysis (Section 3.4, used
to decide the selective ensemble hours), feature selection analysis (Section 3.5, used to decide the best feature
subset) are shown in the figures as the result of the first fold without cross-validation. Detailed results of
selective ensemble and feature selection can be observed in tables under Section 3.6 as the average and standard
deviation of the remaining four cross-validation tests. All the forthcoming error metrics consist of the average
of all days, in the included test sets or validation set depending on the purpose.

3.3. Error metrics
For the sake of training and testing the forecasters, the data is normalized for some observation i of some
feature k , Xik by:

Xiknormalized
= (Xik − µ(Xk))/σ(Xk), (5)
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where µ(Xk) is the mean and σ(Xk) is the standard deviation of feature k overall the data. The results with
such normalized data are reported.

3.4. Hourly analysis
Hourly error analysis, the baseline for selective ensemble, for day-ahead forecasting of different forecasters is
performed on the validation set using the full set of features as shown in Figures 5 and 6 for Czech data and
Ausdata load forecasting; respectively. Results consist of the average of all day-ahead predictions on certain
hours overall the validation set which covers a complete year.
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Figure 5. Hourly plot of average day-ahead MAE metrics for load feature on Czech database validation set
(1st test fold over 5 folds in total).
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(a) Results for RNN’s ensemble, SVR, CNN’s
ensemble and tree.
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Figure 6. Hourly plot of average day-ahead MAE metrics for load feature on Ausdata database validation set
(1st test fold over 5 folds in total).

It can be observed that in both datasets, load forecasting errors have two peaks centered around 7:00
and 17:00 (7 × 2 = 14 and 17 × 2 = 34 for 30-min-resolution Ausdata), starting and ending of work hours
where load becomes unstable. Best performing forecasters are Load2Load, RNN, ResNet, CNN and SVR.
RNN can perform the best for the most challenging hours although SVR can outperform RNN for more stable
hours. Load2Load can perform well especially on Ausdata for unstable hours. According to the results, Hsel

RNN

described in Section 2.3.2 for load feature on Czech database is determined to be {6, 7, ..., 21, 22} .
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3.5. Feature selection analysis

Feature selection is experimented on the Czech dataset and Ausdata. A maximum of 8 features are added to
the feature set using the proposed modified sequential forward feature selection algorithm.

Selected features for the Czech dataset with the order of selection are load, pumping load, hour, tem-
perature, PVPP, and radiation diffuse horizontal. Month and day are also considered as the next best features
with the order but this increased the errors, so not selected.

Selected features for Ausdata with the order of selection are load, wetbulb, and month. Hour, day,
DryBulb, humidity, and DewPnt are also considered as the next best features with the order but increased the
errors, so not selected.

3.6. Detailed results

Load forecasting results for the Czech dataset are provided in detail in Table 1 for day-ahead full set of features
and selected features subset. Load forecasting results for Ausdata are provided in detail in Table 2 for day-ahead
full set of features and selected features subset.

Table 1. Czech dataset load forecasting results.
Features: All features Selected features
Model MAE MAPE MAE MAPE
Mean 87.15± 0.00% 31.21± 0.00% 87.15± 0.00% 31.21± 0.00%

Random 117.85± 1.17% 42.57± 0.35% 116.76± 0.66% 42.13± 0.30%

ANN1 (1) 20.15± 1.24% 9.28± 1.72% 18.95± 1.52% 8.61± 1.73%

ANN2 (2) 24.06± 1.90% 10.87± 2.12% 19.58± 1.70% 9.01± 1.74%

SV R (3) 13.12± 0.56% 5.48± 0.62% 12.90± 0.47% 5.37± 0.61%

kNN (4) 42.78± 2.19% 19.03± 2.23% 27.23± 1.92% 11.99± 1.12%

LRM (5) 23.35± 1.21% 9.80± 0.92% 15.65± 1.01% 6.55± 0.43%

Tree (6) 18.21± 1.16% 7.49± 0.81% 17.81± 0.90% 7.33± 0.81%

RNN1 (7) 16.78± 1.43% 7.10± 0.83% 19.42± 1.54% 8.21± 1.29%

RNN2 (8) 12.46± 1.60% 5.33± 0.30% 12.95± 1.37% 5.75± 1.24%

CNN1 (9) 15.99± 1.50% 6.85± 0.99% 15.18± 1.23% 6.65± 1.14%

CNN2 (10) 22.83± 1.66% 9.91± 1.40% 18.03± 2.00% 7.83± 1.01%

Load2Load (11) 20.63± 1.26% 9.58± 1.99% 20.18± 3.21% 8.73± 1.58%

ResNet (12) 14.96± 1.98% 6.25± 0.70% - -
1⊞ 2 (ANNs) (13) 18.93± 1.10% 8.74± 1.60% 17.00± 1.24% 7.79± 1.53%

7⊞ 8 (RNNs) (14) 12.46± 1.60% 5.33± 0.30% 12.95± 1.37% 5.75± 1.24%

9⊞ 10 (CNNs) (15) 16.00± 1.49% 6.85± 0.99% 15.26± 1.27% 6.67± 1.12%

3⊡ 14 (16) 12.02± 1.39% 5.05± 0.30% 12.40± 1.18% 5.33± 1.03%

16⊞ 13 11.95± 1.14% 5.13± 0.32% 12.04± 0.73% 5.22± 0.86%

16⊞ 15 11.68± 1.10% 4.95± 0.39% 12.00± 1.03% 5.15± 0.92%

16⊞ 11 11.96± 1.30% 5.09± 0.37% 12.12± 1.34% 5.21± 0.85%

16⊞ 12 11.67± 1.37% 4.90± 0.36% - -
16⊞ 13⊞ 15 11.61± 1.06% 4.95± 0.38% 11.88± 0.72% 5.14± 0.83%

16⊞ 13⊞ 15⊞ 6 11.49± 1.07% 4.87± 0.37% 11.72± 0.70% 5.04± 0.79%

16⊞ 13⊞ 15⊞ 6⊞ 11 11.46± 1.08% 4.86± 0.36% 11.77± 1.00% 5.07± 0.75%

16⊞ 13⊞ 15⊞ 6⊞ 12 11.42± 1.22% 4.80± 0.36% - -
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Table 2. Ausdata load forecasting results.
Features: All features Selected features
Model MAE MAPE MAE MAPE
Mean 79.24± 0.00% 46.21± 0.00% 79.24± 0.00% 46.21± 0.00%

Random 111.88± 0.41% 59.42± 0.18% 111.60± 0.58% 59.37± 0.30%

ANN1 (1) 29.38± 2.41% 12.06± 0.60% 22.42± 1.87% 9.42± 0.93%

ANN2 (2) 32.69± 4.70% 14.06± 1.85% 26.79± 1.29% 11.60± 0.95%

SV R (3) 20.12± 1.85% 7.83± 0.65% 18.05± 1.34% 7.02± 0.63%

kNN (4) 43.60± 2.17% 17.97± 1.43% 31.06± 1.84% 12.40± 1.32%

LRM (5) 418± 161% 155± 57% 22.03± 1.90% 8.29± 0.77%

Tree (6) 22.34± 1.59% 8.54± 0.84% 21.67± 1.53% 8.25± 0.83%

RNN1 (7) 20.71± 1.42% 8.18± 0.77% 24.24± 0.97% 9.65± 0.66%

RNN2 (8) 19.37± 1.10% 7.69± 0.77% 20.12± 0.90% 7.90± 0.81%

CNN1 (9) 19.10± 2.40% 7.58± 1.01% 18.76± 1.95% 7.44± 0.92%

CNN2 (10) 22.11± 1.39% 8.97± 0.55% 20.63± 1.18% 8.25± 0.62%

Load2Load (11) 22.48± 2.27% 8.85± 0.91% 21.02± 0.74% 8.19± 0.03%

ResNet (12) 20.13± 1.44% 8.00± 0.73% - -
1⊞ 2 (ANNs) (13) 26.86± 2.00% 11.37± 0.68% 21.85± 1.39% 9.27± 0.66%

7⊞ 8 (RNNs) (14) 19.34± 1.25% 7.62± 0.74% 20.12± 0.90% 7.90± 0.81%

9⊞ 10 (CNNs) (15) 19.08± 2.41% 7.58± 1.01% 18.73± 1.93% 7.43± 0.92%

3⊡ 14 (16) 18.73± 1.34% 7.32± 0.75% 18.95± 0.99% 7.36± 0.82%

16⊞ 13 18.43± 1.31% 7.28± 0.72% 18.22± 0.98% 7.30± 0.63%

16⊞ 15 17.46± 1.89% 6.89± 0.84% 17.46± 1.55% 6.84± 0.82%

16⊞ 11 18.15± 1.50% 7.10± 0.72% 18.02± 0.82% 6.97± 0.62%

16⊞ 12 17.50± 1.39% 6.89± 0.71% - -
16⊞ 13⊞ 15 17.47± 1.91% 6.90± 0.84% 17.35± 1.43% 6.83± 0.76%

16⊞ 13⊞ 15⊞ 6 17.23± 1.84% 6.77± 0.80% 17.19± 1.41% 6.75± 0.74%

16⊞ 13⊞ 15⊞ 6⊞ 11 17.26± 1.90% 6.79± 0.82% 17.12± 1.38% 6.72± 0.71%

16⊞ 13⊞ 15⊞ 6⊞ 12 17.15± 1.78% 6.75± 0.78% - -

Table 3. Total numbers of learnt parameters.
Features: All Selected All Selected
Forecaster Czech data Ausdata
ANN1 19K 11K 32K 11K
ANN2 84K 48K 134K 48K
SVR 33,321K 16,642K 115,450K 32,388K
SVR (#SVs) 877 803 928 781
kNN 35K 35K 70K 70K
LRM 152K 83K 498K 166K
Tree 6K 8K 7K 9K
RNN1 10K 9K 10K 8K
RNN2 90K 86K 88K 83K
CNN1 26,196K 14,454K 49,752K 14,505K
CNN2 347K 181K 1343K 665K
Load2Load (gen) 61,426K 61,426K 61,426K 61,426K
Load2Load (total) 64,184K 64,184K 64,184K 64,184K
ResNet 27K - 89K -
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3.7. Computational complexity

The total numbers of learnt parameters for each model in each case are shown in Table 3. Average numbers of
support vectors (SVs) are provided as well. Forecaster networks having FLs before the output are affected by
sequence length s , similarly, networks having SL or input FL are affected by the number of features f in terms
of the number of parameters.

3.8. Discussions

It can be observed that among the forecasters for day-ahead forecasting; best single forecasters are generally
SVR and RNN, followed by CNN and tree (Table 1). The selective ensemble is shown to further improve the
forecasters that usually provide the best results (namely RNNs and SVR). Overall best results are obtained
with the additive ensemble of many useful forecasters, e.g., ((FRNN1 ⊞ FRNN2) ⊡ FSV R) ⊞ Ftree ⊞ (FCNN1 ⊞
FCNN2) ⊞ (FANN1 ⊞ FANN2) . According to Table 2; the best performing forecasters are CNN (forecasters 9,
10, and 15), RNN (forecasters 7, 8, and 14) and SVR (forecaster 3) on Ausdata. RNN is performing slightly
worse than CNN in this case. Overall, the proposed ensemble methods are shown to reduce errors. The same
trend follows regardless of feature selection.

The proposed Load2Load model, although originally designed for image generation purposes, can give
competing results when utilized for STLF. It can help improve the results when used together with the proposed
ensemble techniques. Using the mean values or random values for forecasting results in around four to five times
higher errors, showing the significance of the proposed forecasters.

According to the feature selection experiments over Czech data for load, individual forecaster errors can
be decreased with a reduced (six) number of features. However, RNN has a slightly increased error which results
in a slightly increased ensemble error overall. Most individual forecasters can still provide better results with
the selected features. Feature selection is found most useful in Ausdata, resulting in an overall decrease in error
rate only with three selected features. As can be seen from the tables; ResNet model can not be trained with
much fewer features, using the exact same model.

Compared with the previous work [40], better results are obtained with a very similar experimental
setup on the same test set using Czech data. The only difference is that in the proposed work the first test
fold is assigned for development purposes and thus excluded from cross-validation test results. For simplicity,
only normalized test data MAPE is considered in the proposed work column of the comparison table (Table
4). It should be noted that a direct comparison is impossible with previous studies other than [40] as the
data, considered date interval, experimental protocol and even the reported error metrics can have significant
variability. A detailed comparison with similar works can be found in [40].

Table 4. Day-ahead STLF MAPE results comparison.

Model Dataset Proposed work Previous work
RNN Czech 5.33± 0.30% 5.59± 0.62% [40]
ANN Czech 8.74± 1.60% 8.61± 1.15% [40]
Best ensemble Czech 4.80± 0.36% 5.77% (RMSE) [25]
Best ensemble Australia 6.75± 0.78% 4.06% to 8.91%[26]
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4. Conclusions and future work
In this work, the performance of different forecasting techniques for day-ahead load forecasting is evaluated and
compared. Different deep architectures as well as conventional machine learning methods are investigated. The
proposed Load2Load model, although originally designed for image generation purposes, can give competing
results. Ensemble of the same kind of forecasters with different hyper-parameters, as well as different kinds
of forecasters are examined. A selective ensemble technique is proposed, which selects the outputs of different
forecasters in an hourly manner. Load2Load model is shown to be complementary when used within the en-
sembles. A modified sequential forward feature selection algorithm is proposed, resulting in better performance
for some kinds of forecasters, with a much smaller number of features.

Performance is evaluated on two different and independent datasets with different features, one consisting
of 24 measurements per day and the other consisting of 48 measurements per day; investigating the effect of
resolution and sequence length. According to the results, the number of measurements and sequence length do
not have a negative impact on the results. The significance of the proposed work has been shown such that the
performance of the proposed architectures has been up to ten times better than random forecasting and mean
forecasting.

More kinds of deep forecasters are planned to be utilized in the future to obtain further improved results.
In addition to short-term forecasting, medium- and long-term forecasting will be investigated using other models
of forecasters.
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