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Abstract: Sign language is a language produced by body parts gestures and facial expressions. The aim of an
automatic sign language recognition system is to assign meaning to each sign gesture. Recently, several computer vision
systems have been proposed for sign language recognition using a variety of recognition techniques, sign languages, and
gesture modalities. However, one of the challenging problems involves image preprocessing, segmentation, extraction
and tracking of relevant static and dynamic features related to manual and nonmanual gestures from different images in
sequence. In this paper, we studied the efficiency, scalability, and computation time of three cascaded architectures of
convolutional neural network (CNN) and long short-term memory (LSTM) for the recognition of dynamic sign language
gestures. The spatial features of dynamic signs are captured using CNN and fed into a multilayer stacked LSTM
for temporal information learning. To track the motion in video frames, the absolute temporal differences between
consecutive frames are computed and fed into the recognition system. Several experiments have been conducted on three
benchmarking datasets of two sign languages to evaluate the proposed models. We also compared the proposed models
with other techniques. The attained results show that our models capture better spatio-temporal features pertaining to
the recognition of various sign language gestures and consistently outperform other techniques with over 99% accuracy.

Key words: Sign language recognition, gesture recognition, sign language translation, action recognition, Arabic sign
language recognition, CNN-LSTM

1. Introduction
Sign language is the main communication language of hearing impaired people. Recently, the World Health
Organization (WHO) declared that more than 450 million people worldwide have a disabling hearing loss which
forms about 5% of the world’s population1. Disabling hearing loss refers to hearing loss in the better hearing
ear greater than 40 decibels (dB) in adults and greater than 30 dB in children. This hard-hearing community
depends primarily on the sign language as a main communication medium. Sign language is geographically
specific; meaning there is no universal sign language but several languages exist around the world with regional
variations such as the Arabic sign language (ArSL), Chinese sign language (CSL), and American sign language
(ASL) [1]. Moreover, some countries may have a common spoken language but different sign languages such
∗Correspondence: hluqman@kfupm.edu.sa
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1World Health Organization (2021). Deafness and hearing loss [online]. Website https://www.who.int/news-room/
fact-sheets/detail/deafness-and-hearing-loss [accessed 22 February 2022].
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as the British sign language (BSL) and ASL with completely different signs for alphabets and digits [2]. The
differences between sign languages are mainly on the gesture meaning and the grammatical structure of sign
sentences.

A sign language adopts manual and nonmanual gestures that are simultaneously employed to convey
the meaning. Manual gestures involve hand movements whereas nonmanual gestures involve facial expressions,
mouth shapes, and body postures [3]. Hand gestures have been the focus of several research as the primary
component of the sign language utilized by individuals to express their thoughts [4]. However, they are typically
accompanied with other gestures such as head movement and facial expressions to complement manual gestures.
Facial expressions have several functions in sign language, e.g., convey emotion and feelings and clarify meaning
or the degree of intense as well as the syntactical and grammatical information in sign language sentences. Sign
language gestures can be static or dynamic depending on the motion usage. Static gestures keep the hand
position fixed during signing and depend on hands and fingers shape and orientation [5]. This type of gestures
is usually used in sign language for digits and alphabets and can be captured by spatial features. In contrast,
dynamic gestures depend largely on the hands’ motion and are most common in signing words/phrases of a sign
language [6].

In the past two decades, a number of techniques have been proposed for automatic recognition of sign
gestures. These techniques can be classified based on the recognized signs into static-based and dynamic-based
recognition systems. The former category targets static signs that do not include motion such as digits and
alphabets. For example, a convolutional neural network (CNN) model was used by Bheda and Radpour [7]
to recognize ASL alphabets with an accuracy of 82.5% reported on a dataset consisting of five signers. The
same dataset was used by Ranga et al. [8] and reported an accuracy of 97.01% using a CNN model with a
different architecture. Another dataset consisting of 20 alphabets performed by 15 signers was used by Munib
et al. [9] and an accuracy of 92.3% was reported using Hough descriptors and neural network classifiers. Another
technique to classify ASL alphabets based on detecting important parts in the image was proposed by Zamani
and Kanan [10]. These parts were fed into principal component analysis (PCA) and a neural network is used
for classification yielding an accuracy of 99.88%. PCA was also used by Pan et al. [11] using Hu moments
and support vector machine (SVM) achieving 94% and 99.8% accuracy on ASL and CSL datasets, respectively.
Other researchers used Zernike moments (ZMs) for recognizing sign language alphabets with better results than
Hu Moments, PCA, and Fourier descriptors [12–14].

In contrary to static-based systems, dynamic-based sign language recognition systems target motion to
sign words, which provides a richer source of information. Most of the early techniques that have been proposed
for dynamic signs depend on extracting statistical and geometric features of signs [15–27] while some of the
recent techniques employed deep learning techniques for signs recognition [28–31]. Ameida et al. [16] reported an
accuracy above 80% on a dataset consisting of 34 signs of the Brazilian sign language by extracting seven features
from depth images to represent the structural elements of the signs. Zaki et al. [22] presented a novel method
for feature extraction of dynamic sign language based on PCA and kurtosis position with motion chain code
(MCC) to represent the shape and orientation of ASL signs to be classified using hidden Markov model (HMM).
Another approach was proposed by Jin et al. [26] based on speeded up robust features (SURF) descriptor from
16 signs of ASL and SVM classifier giving an accuracy of 97.13%. Other classical features extraction techniques
have been used for signs recognition such as dynamic time warping (DTW) [19, 24, 25], histogram of gradients
(HOG) [32], wavelet and combined orientation histogram [33], and hands trajectory [34].
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Liu et al. [35] fed the skeleton joint points of the signer hands captured using Kinect sensor to an LSTM
model consisting of seven layers. This work was evaluated using two datasets consisting of 25K and 125K images
and accuracies of 86% and 64% were achieved, respectively. Huang et al. [29] concatenated skeleton joint points
with color and depth information to form an input consisting of three channels to a CNN model. This technique
was evaluated on a dataset of 25 signs and an accuracy of 94.2% was reported. Integrating different information
channels was also followed by Barros et al. [31]. Sabyrov et al. [36] used logistic regression for Kazakh-Russian
sign language recognition. OpenPose was used to extract key points from manual gestures and facial expressions.
The reported results showed that combining manual key points with mouth key points improved the accuracy
by 7% whereas eyebrows key points improved the accuracy by only 0.5%. This conclusion was also reported
by Elons et al. [37] who found that combining facial features with manual gestures improved the accuracy from
88% to 98%. This improvement in the accuracy is confirmed in [38]. Discrete cosine transform (DCT) was
used by Rao and Kishore [39] for Indian sign language recognition. The 2D-DCT was used to extract features
from signer head and hand which were detected using Sobel edge detector. This approach was evaluated on a
dataset consisting of 18 signs and an accuracy of 90.58% was reported. In [40], DCT with HMM was used for
ArSL recognition. A dataset consisting of 30 signs performed by 18 signers was used to evaluate this approach
and accuracies of 96.74% and 94.2% were reported for signer dependent and independent modes, respectively.
HMM was also used by Kelly et al. [41] to classify a set of statistical features extracted from the signer’s hands
and head.

An active appearance was used by Agris et al. [42] to detect signer’s mouth and eyes and a numerical
description was computed from those components. For signer’s hands, a set of geometric features was extracted
and concatenated with facial expression features. This fusion of features improved the accuracy of Danish sign
language (DSL) recognition by around 1.5%. Sarkar et al. [43] reported an improvement by around 4.0% using
39 signs of ASL through combining manual and nonmanual gestures. SVM was used by Quesada et al. [44]
for classifying manual and nonmanual markers captured using a natural user interface device, which captures
hand shapes, body position, and face expressions using 3D cameras. This approach achieved an accuracy of
91.25% using 5 face gestures and 4 hand shapes of ASL. Kumar et al. [45] used two sensors to capture signers’
hands and facial expressions of Irish sign language (ISL). They used Leap Motion Controller for manual gestures
acquisition whereas Kinect was used for facial expression capturing. Then, HMM was used to recognize each
component separately to be combined later using a Bayesian classification method. This combination boosted
the recognition accuracy over single modality by 1.04%.

Though a number of approaches have been proposed for sign language recognition, there are several issues
still open for research to integrate highly semantic representations of manual and nonmanual features [46]. In
this work, we focus on video-based sign language recognition, propose three cascaded deep-learning models and
evaluate their effectiveness, scalability, and computation time. Each model is composed of two components
to extract spatial-temporal global-local features representations of various body parts postures and facial
expressions. We employed CNN to extract spatial features from the sign gesture and fed them into a temporal
feature learning technique. We intensively evaluated the performance of integrating vanilla and stacked LSTMs
with CNN. In addition, we adopt an absolute temporal difference technique to track the motion in the video
stream by preserving the differences between consecutive frames. This technique has been evaluated and
compared with the other techniques using three datasets of two different sign languages.

The remaining sections of this article are as follows: The proposed methodology is explained in Section 2.
Experimental results and analysis of the proposed models are discussed in Section 3. Conclusions and future
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works are highlighted in Section 4.

2. Methodology
In this study, three models have been proposed for video-based dynamic sign language recognition by integrating
convolutional neural networks (CNN) with long short-term memory (LSTM) deep learning methods. To have
a baseline, we used a vanilla LSTM with raw colored frames of sign gestures. Although LSTM is efficient
for time-series data learning, it lacks the ability to learn the spatial correlations [47] that are important for
recognizing sign language gestures. To address this limitation, we combined CNN with LSTM in three different
schemes. The proposed method does not only consider body gestures but also facial expressions that provide
valuable emotional information accompanying certain words/phrases. Three constructed models are evaluated
using two input representations: raw colored frames and residue frames. The details of input representations
and models are explained in the following subsections.

2.1. Input representations
Two representations of the captured sign gestures have been considered. First, each sign gesture is fed into the
proposed models as a sequence of raw colored frames extracted from the sign video. However, the duration of
each sign and consequently the number of frames are not uniform and vary from sign to another. Moreover, the
duration of the same sign can differ from signer to another based on the speed of signing. To address this issue,
we represented each sign by a fixed number of frames, NS , which is sampled based on the average number of
frames per database. For signs with frames less than NS , we repeated the last frame whereas signs with frames
more than NS , we sampled frames at equal interval δ that is computed as follows:

δ =

⌈
NF

NS

⌉
, (1)

where NF represents the total number of frames in the given video stream.
Dynamic sign gestures depend mainly on the motion. To preserve the signer’s parts that change during

signing and exclude the static parts of the gesture video, we used the absolute frame differences (AFDs). The
use of absolute frame differences is very common in the literature of video analysis to detect changes and
track objects from the pixel-based difference between consecutive frames [48]. Bigger changes between two
video frames result in higher number of pixels’ values being different. To demonstrate how AFD frames are
computed, let Ft be the tth frame in the video frames sequence and Ft−1 be the preceding frame in the same
sequence. The absolute differential frame ∆Ft is computed as follows:

∆Ft = |Ft − Ft−1| . (2)

Figure 1 shows an illustrative example of consecutive frames and the resulting AFD frames. As shown
in the figure, this technique preserves only the body parts that changed during the motion. In addition, it gets
rid of static components, such as signer background and signer’s static parts of the body.

2.2. Baseline model
An LSTM network is a type of recurrent neural network that exhibits temporal dynamic behavior in a time-
series data. Standard recurrent neural network fails in learning time series data more than 10 discrete time steps
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Figure 1. Absolute frame differences extracted from raw colored frames.

due to the vanishing gradient problem [49]. This results in limiting the range of contextual information that
can be learnt [50]. LSTM addressed this issue by introducing input, forget and output gates, which allow for
a better control over the gradient flow and enable better preservation of “long-range dependencies”. This type
of recurrent neural network has been introduced and applied with remarkable success to sequence prediction
problems [51].

In this work, we used LSTM as a baseline model consisting of 1024 neurons selected empirically. Similar
to other work in the literature, e.g., [52, 53], we tried several number of neurons (128, 512, 1024, and 2048) and
we selected the number of neurons based on the best performance. This layer is followed by a dropout layer
with 0.7 ratio to prevent model overfitting. The output of this layer is fed into a fully connected layer consisting
of 512 neurons. A rectified linear (ReLU) activation function is used with this layer to handle the nonlinearity
by setting the negative input to this function to zero. ReLU is computationally powerful and reduces the
possibility of gradient vanishing [54]. This layer is followed by another dropout layer and the last layer consists
of a softmax classifier with a number of neurons equivalent to the number of signs. To train this model, we
used an Adam optimizer with a learning rate of 10−5 and a decay of 10−6 . We also used a crossentropy loss
function to compute the loss value during model training.

2.3. Combining CNN with LSTM architectures

In this section, we describe three customized architectures for sign language recognition based on the integration
of two components utilizing layers from CNN and LSTM. The proposed architectures, as explained in the
following subsections, enable CNN to extract pertaining spatial features from input images whereas LSTM
learns temporal features in the sequence of frames.

2.3.1. Model#1: CNN-LSTM model

This model consists of CNN component for extracting spatial features from video frames and an LSTM
component to learn the relationship between sign frames. Each image is fed into a CNN consisting of six
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layers and the output of this model is fed into an LSTM consisting of 256 neurons. These layers are followed
by a dropout layer and the output is classified using a softmax function as shown in Figure 2. This model has
over 11.5 million trainable parameters. The model layers can be described as follows:

Figure 2. Proposed architecture showing various layers of model#1 (CNN-LSTM).

• Convolution layers: Each convolution layer applies a set of filters or kernels by convolution to extract
features from input images. In our architecture, we used 128 filters of size 5×5 with a stride of two pixels
horizontally and vertically with no padding. The number of filters and the size of each filter were selected
empirically. The first convolution layer resulted in a features map of size 62×62×128. All the convolution
layers in this model are followed by a ReLU activation function that zeros negative input values. ReLU
has been widely used in deep neural networks due to its ability in overcoming the gradient vanishing
problem and its computation performance [54].

• Pool layer: The features map resulting from the convolution layer is downsampled using a max-pooling
layer. The pooling layer helps in reducing the computational cost by reducing the number of learnable
model parameters. In addition, it provides basic translation invariance to the changes in the position of
the objects in the image. In this work, we used a max-pooling layer of size 2×2 with a stride of two pixels
in both directions.

• Batch normalization: One of the critical issues associated with deep networks is the internal covariate shift
problem that is a result of change in the network activation distribution due to the network parameters
change during the training [55]. This problem can slow down the training and makes it notoriously
difficult to train saturated nonlinearity models [55]. Batch normalization (BN) is a training technique to
mitigate internal covariate shift for neural networks. This technique helps in standardizing the inputs to
this layer for each minibatch and consequently reducing the number of training epochs required to train
the model [56].

• Dropout: Deep networks usually suffer from overfitting the training dataset. To address this issue, we used
a dropout technique that randomly drops out input units during training by setting them to zero [57].
This technique is a computationally effective regularization that improves the model generalization. We
used a dropout with a rate of 0.7.
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• LSTM : We used CNN model to extract features from each video frame separately. These features are fed
into LSTM to learn the temporal features across video frames. More information about LSTM model can
be found in Section 2.2. We used LSTM model with 256 neurons followed by a dropout layer. The output
of the dropout layer is fed into the classification layer.

• Softmax layer: The output of the previous layers is fed into a softmax layer for classification. This layer
assigns a probability value to each sign/class in the used dataset to be used for the classification. The
number of neurons in this layer equals the number of signs in the used dataset.

• Loss function and optimization: The adjustment of neural networks parameters during the training process
depends mainly on computing the loss value and optimizing the model parameters to minimize that loss.
The loss function is used to quantify the goodness of the model using the predicted score with true labels.
We used crossentropy loss that increases as the predicted probability diverges from the true classes. This
function is defined for an input frame image x with its class label y as follows:

L(x, y) = δ(
−−−−−→
ϕ(fθ(x)),

−−→
φ(y)) , (3)

where fθ(x) is the model function with learned parameter θ , ϕ(zk) = ezk/
∑

i e
zi is the prediction

probability of outcome zk for k = 1...K , K is the number of classes,
−−→
φ(y) = [0, 0, . . . , 1, . . . , 0, 0]T is a

one-hot encoding column vector, and δ(−→a ,
−→
b ) = −

−→
b T log(−→a ) .

After computing the loss value, the model optimizes its parameters to minimize that loss. We used
adaptive moment estimation (Adam) optimizer that can update the network weights iteratively based on
the training data [58].

2.3.2. Model#2: CNN-SLSTM model

The previous CNN-LSTM model is composed of a single LSTM network followed by a dropout layer and a
standard feed-forward output layer. This single LSTM network cannot usually learn complex patterns effectively.
Therefore, we constructed a stacked LSTM on the top of the CNN block to learn higher levels of representations
from the CNN extracted features. The gained performance improvement using layered architectures has also
been reported with different problems [59].

In the proposed stacked model (model#2), there are two stacked LSTM layers. The first layer consists of
512 neurons while the second layer consists of 256 neurons. These two LSTM layers are stacked vertically and
the output of the top LSTM layer is fed into a dropout layer to mitigate the possibility of overfitting. The final
layer is a classification layer using a softmax function. This model has around 24.2 million trainable parameters.

2.3.3. Model#3: CNN-SLSTM-FC model

This model consists of CNN layers followed by stacked LSTM layers. The architecture of this model differs from
model#2 in the number of neurons of the stacked LSTM layers and the usage of a fully connected (FC) layer
that has been added after the stacked LSTM layers. The number of neurons in each LSTM layer is doubled, aka
1024 neurons and 512 neurons in the first and second LSTM layers, respectively. These layers are followed by
a FC layer with 256 neurons and the output of this layer is fed into a dropout layer followed by a classification
layer. The proposed architecture has over 52 million trainable parameters.
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3. Experiments and results
3.1. Sign language datasets
Three datasets have been used to evaluate the proposed models. These datasets contain signs from two different
sign languages performed by several signers.

A) K-RSL dataset: Kazakh-Russian sign language (K-RSL) dataset [60] is a multisigner database that
consists of 5200 video samples of 20 question signs (e.g., what, where (direction), where (location), who, which,
how, how much, etc.) used in statements and questions [61]. Each sign is repeated around 260 times by five
signers (40 samples for four signers and 100 samples for one signer). The duration of each sign differs from sign
to sign and sometimes from signer to signev to have the number of frames between 3 and 60. A samples from
this dataset is shown in Figure 3a.

B) Shanableh datset: We also used an ArSL database proposed by Shanableh and Assaleh [62] to evaluate
the proposed models. This dataset consists of 23 dynamic signs performed by three signers. Each signer
repeated each sign 50 times to end up with 3450 samples. The duration of each sample differs based on the sign
and signer and the range of frames of this database is between 2 and 13 frames. The dataset was recorded in
unconstrained environment using a video camera and samples of this dataset are shown in Figure 3b.

C) KArSL dataset: This is another ArSL database that consists of 502 isolated signs (letters, numbers and
words) [63]. Each sign was performed by three signers and repeated 50 times. This dataset was collected using
multimodal Kinect V2 sensor that provides three types of information for each captured sign. It provides color
video, depth, and joint points information. This dataset is recorded at a rate of 30 frames per second to have
around 10 to 150 frames per sign depending on the sign duration. We started experiments with 33 dynamic
gestures selected randomly. We refer to this dataset in this manuscript as KArSL-33. Then, we analyzed the
scalability of the proposed models with more signs of this database. We evaluated the models on 100 and 190
signs of this dataset and we refer to these datasets as KArSL-100 and KArSL-190, respectively. We selected
this number of signs since they were used by other published works. These signs are composed of static and
dynamic gestures of ArSL of ArSL and a sample is shown in Figure 3c.

3.2. Experimental results
Several experiments have been conducted to evaluate the accuracy, scalability, and computation time of the
proposed models on the three datasets discussed before. We run all the experiments using Tensorflow 2.4 on a
workstation with Nvidia GeForce RTX 2080 TI GPU with 11 GB GPU memory and 64 RAM memory.

3.2.1. Accuracy and convergence analysis
In the first set of experiments, we analyzed various performance metrics of the proposed three models compared
to the baseline model on the K-RSL dataset. We used 5-fold crossvalidation (CV) for each model and computed
the average accuracy, precision, recall, and F1 score; the results are shown in Table 1. We also conducted
statistical analysis by repeating each experiments 5 times and computed the mean and standard deviation and
results are shown in Table 2. As shown in these tables, the proposed models have higher performance in all
metrics compared to the baseline model. Moreover, the performance with raw input is better than using AFD
for this dataset. Also the models have low variance as indicated by the standard deviation in Table 2.
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Figure 3. Sample signs from the used sign language databases. (a) K-RSL, (b) Shanableh, (c) KArSL.

In another set of experiments, we used two datasets, namely K-RSL and Shanableh, to evaluate the
accuracy of the proposed models under two different settings. The first setting is to test the model on the
gestures performed by the same signer involved in the model training. The second setting is to test the model
on gestures performed by all signers without any clue about the signer identity and we refer to this setting by
All in the result tables. Table 3 shows the obtained accuracies using the proposed models. As shown in the
table, using CNN to extract the spatial features and feed them into LSTM (model#1) improved the accuracy
with all the evaluated datasets compared with the base model when the raw colored frame images were fed into
these models. However, stacking LSTM layers with CNN (models#2 and #3) did not improve the accuracy
significantly with raw colored frames. It is also noticeable that the models’ accuracies with signer 5 of K-RSL
dataset are less than other signers and this can be attributed to variance between the signs’ samples performed
by signer 5. For example, the samples of the sign “WHERE” have inconsistent motion among the recorded
videos. This usually happens with an unprofessional signer who was unable to repeat the sign without significant
variance. The corresponding changes in the loss functions with all signers using model#2 using early stopping
technique with patient of 20 epochs are shown in Figures 4a and 4b, which demonstrate fast converge for K-RSL
and Shanableh datasets, respectively.

We also evaluated the proposed models using AFD frame images. These frames are computed from
the absolute difference between consecutive raw colored frame images. More information about this input
representation can be found in subsection 2.1. As shown in Table 3, using AFD improved the accuracy of the
base model significantly compared with other models. The base model with raw colored frames learns some
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Table 1. 5-fold crossvalidation performance results in terms of average precision, recall, F1-score and accuracy of various
models for the K-RSL dataset.

Model Precision Recall F1-score Accuracy

AFD

Baseline 0.989 0.989 0.989 0.989
Model#1 0.986 0.986 0.986 0.986
Model#2 0.984 0.983 0.983 0.983
Model#3 0.986 0.985 0.985 0.985

Raw

Baseline 0.918 0.909 0.908 0.910
Model#1 0.988 0.987 0.987 0.987
Model#2 0.991 0.991 0.991 0.991
Model#3 0.990 0.990 0.990 0.990

Table 2. Statistical analysis by repeating each experiment 5 times on the K-RSL dataset and computing mean and
standard deviation.

Model Precision Recall F1-score Accuracy

AFD

Baseline 0.9307 ± 0.0259 0.9278 ± 0.028 0.9278 ± 0.0275 0.9288 ± 0.0275
Model#1 0.9482 ± 0.0165 0.9456 ± 0.0176 0.9458 ± 0.0202 0.9465 ± 0.0198
Model#2 0.9389 ± 0.0151 0.9376 ± 0.0159 0.9373 ± 0.0183 0.9382 ± 0.018
Model#3 0.9473 ± 0.0070 0.9462 ± 0.0070 0.9459 ± 0.0105 0.9465 ± 0.0111

Raw

Baseline 0.8658 ± 0.0255 0.8476 ± 0.028 0.8472 ± 0.0283 0.8506 ± 0.0272
Model#1 0.9598 ± 0.0157 0.9576 ± 0.0168 0.9578 ± 0.0194 0.9584 ± 0.0192
Model#2 0.9661 ± 0.0081 0.9642 ± 0.0084 0.9645 ± 0.0119 0.9649 ± 0.0118
Model#3 0.9678 ± 0.0158 0.9662 ± 0.0157 0.9664 ± 0.0188 0.9668 ± 0.0188

Table 3. Recognition accuracies.

Dataset

Si
gn

er

Raw frames AFD frames

B
as

e
m

od
el

M
od

el
#

1

M
od

el
#

2

M
od

el
#

3

B
as

e
m

od
el

M
od

el
#

1

M
od

el
#

2

M
od

el
#

3

K-RSL

1 0.906 0.964 0.964 0.921 0.935 0.906 0.914 0.935
2 0.889 0.968 0.968 0.926 0.968 0.921 0.937 0.952
3 0.974 0.989 0.989 0.947 0.937 0.921 0.942 0.958
4 0.738 0.940 0.957 0.888 0.963 0.897 0.897 0.916
5 0.890 0.547 0.564 0.780 0.963 0.761 0.846 0.817
All 0.815 0.953 0.957 0.940 0.945 0.929 0.924 0.936

Shanableh

1 1.0 0.997 0.997 1.0 0.994 0.983 0.997 0.994
2 0.988 0.988 0.991 0.991 0.986 0.983 0.983 0.997
3 1.0 1.0 1.0 1.0 0.994 0.991 0.988 0.988
All 0.999 0.999 1.0 1.0 0.991 0.994 0.996 0.994

features not related to the gesture such as signer face and body. These static features are discarded using
AFD technique which can justify the improvement in the accuracy of the base model using this type of input
representation. In contrast, feeding the AFD data to other models did not improve the accuracy compared with
raw colored frames. These models depend on extracting spatial features from the input frames that may be lost
when applying AFD.
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Figure 4. Loss functions of model#2 using early-stopping technique (Note: the test curves overlap with the validation
curves due to minor loss differences): (a) K-RSL, and (b) Shanableh.

3.2.2. Scalability analysis

To evaluate the scalability of the proposed models, we studied the performance of the proposed models on
different number of signs from the KArSL dataset. We initially randomly selected 33 signs of this dataset to
evaluate the proposed models. Then, we did a scalability analysis with more signs of this dataset to show
the performance of our models as we increase the number of signs from the KArSL dataset. We extended
the number of signs to 100 and 190 signs. We selected these numbers of signs to be able to compare with
other published works. Table 4 shows the accuracy of the proposed models with KArSL-33, KArSL-100 and
KArSL-190 datasets using raw and AFD frames. The corresponding loss functions using Model#2 with all
signers are shown in Figures 5a–Figure 5c, respectively. As shown in the table, the accuracy of the models does
not decrease significantly as the number of signs increases. It is clear from the table that the misclassifications
resulted mainly from numbers and letters signs. These signs are similar and the differences between some signs
are on the finger shape or hand orientation which make them too confusing for recognition systems. Figures 6a
and 6b show two of the signs that are misclassified. They differ only in using one finger as a part of the motion
while the whole gesture is identical.

Figure 5. Loss functions of model#2 using early-stopping technique (Note: the test curves overlap with the validation
curves due to minor loss differences): (a) KArSL-33, (b) KArSL-100, and (c) KArSL-190.

3.2.3. Computation time comparisons

In this part, we are evaluating the computation time of the proposed models on the three datasets. We started
by evaluating the impact of the frame resolution on the accuracy and time of the model. The resolution of
sign frames of the used datasets are different. KArSL dataset has the highest frame resolution compared with
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Table 4. Scalability analysis of recognition accuracies for the proposed models on KArSL-33, KArSL-100 and KArSL-190
for various classes of the signs (KArSL-33 contains only words).
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Raw frames AFD frames
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e
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od
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#

1
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od
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#

2

M
od

el
#

3

B
as

el
in

e

M
od

el
#

1

M
od

el
#

2

M
od

el
#

3

K
A

rS
L-

33 1 Words 1.0 0.996 1.0 0.996 1.0 1.0 1.0 1.0
2 Words 1.0 1.0 1.0 1.0 0.996 0.992 0.992 0.992
3 Words 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
All Words 1.0 1.0 1.0 1.0 0.994 0.997 0.997 0.996

K
A

rS
L-

10
0

1

Numbers 0.95 0.95 0.95 0.95 0.91 0.94 0.94 0.94
Letters 0.99 1.0 1.00 0.99 0.99 0.97 0.96 0.96
Words 1.00 1.0 1.00 1.00 0.98 1.00 1.00 1.00
Average 0.980 0.983 0.983 0.980 0.960 0.970 0.967 0.967

2

Numbers 0.99 1.0 0.99 0.99 0.95 0.96 0.95 0.96
Letters 0.98 1.0 0.99 0.99 0.92 0.97 0.93 0.94
Words 1.00 1.0 1.00 1.00 1.00 1.00 1.00 1.00
Average 0.990 1.0 0.993 0.993 0.957 0.977 0.960 0.967

3

Numbers 0.98 1.0 1.00 1.00 0.99 0.96 0.97 0.98
Letters 1.00 1.0 1.00 1.00 0.99 0.99 0.98 0.99
Words 1.00 1.0 1.00 1.00 1.00 1.00 1.00 1.00
Average 0.993 1.0 1.0 1.0 0.993 0.983 0.983 0.990

All

Numbers 0.96 0.98 0.97 0.97 0.95 0.95 0.96 0.95
Letters 0.98 0.99 0.99 1.00 0.93 0.97 0.97 0.96
Words 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Average 0.980 0.990 0.987 0.990 0.960 0.973 0.977 0.970

K
A

rS
L-

19
0

1

Numbers 0.94 0.94 0.95 0.95 0.94 0.94 0.95 0.94
Letters 0.97 0.97 0.98 0.97 0.95 0.96 0.94 0.98
Words 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Average 0.970 0.970 0.977 0.974 0.964 0.967 0.964 0.974

2

Numbers 0.96 1.00 1.00 1.00 0.93 0.95 0.94 0.96
Letters 0.99 1.00 1.00 1.00 0.95 0.97 0.95 0.95
Words 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00
Average 0.984 1.0 1.0 1.0 0.960 0.970 0.963 0.970

3

Numbers 0.97 1.00 0.99 0.99 0.98 0.98 0.97 0.96
Letters 0.97 0.99 0.99 0.99 0.97 0.99 0.99 0.98
Words 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Average 0.980 0.994 0.994 0.994 0.984 0.990 0.987 0.980

All

Numbers 0.96 0.98 0.98 0.98 0.95 0955 0.96 0.96
Letters 0.99 0.99 0.99 0.99 0.96 0.971 0.98 0.97
Words 1.0 1.0 0.99 1.0 1.0 0.997 1.0 1.0
Average 0.984 0.990 0.987 0.990 0.970 0.974 0.980 0.976

the other two datasets used in this work. Therefore, we selected this dataset to evaluate the impact of frame
resolution on the model performance. We started by experimenting the raw colored frames as captured by
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Figure 6. Three frames of two similar signs that are classified: (a) 700 sign, (b) 800 sign.

Kinect sensor where each frame has the resolution of 1920×1080 pixels. We cropped the colored frames to keep
only the signer body. We used the joint points of the signer’s head and hands retrieved by the Kinect sensor as
reference points to segment the signer body and crop it into a resolution of 256×256. This cropping reduced
the training time and improved the model accuracy.

We also compared the computation time of each model with all datasets on the two input representations,
raw and AFD. Figures 7a–7d show the average training times of each model. As shown in these plots, the highest
training time with all datasets except Shanableh dataset was with the baseline model when the raw colored
frames were used as input to the models while model#2 has the lowest training time with all datasets except
KArSL-33 dataset (Figures 7a and 7c). This can be attributed to the spatial features that are extracted using
CNN that help in reducing the learning time of the LSTM. Figures 7b and 7d show the training time when
AFD frames were used as input to the proposed models. This confirms that the baseline model has the lowest
training time while model#1 has the highest training time with all datasets except KArSL-33 dataset (Figurs 7b
and 7d). This can be attributed to the AFD input representation that causes losing the spatial features and
consequently CNN may need more time to extract distinguishable features.

3.3. Comparison with other works

We compared the proposed models on publicly available datasets and compared the results with published
work on the same datasets as described in subsection 3.1. Table 5 shows the accuracy reported by other
works along with our work (the last eight lines). We did the comparison using the raw colored frames and
AFD data representations. As shown in the table, our models outperformed other methods with all datasets.
This performance did not degrade with the change in data representation which shows the efficiency of the
proposed models. It is also noticeable that stacked LSTM (model#2) has the highest accuracy compared with
other models. Since the three models are variations of the same proposed methodology, they have consistent
performance to handle different datasets even when increasing the number of signs from 33 to 190. There were
minor differences in their results which can be attributed to fact that these models capture similar low-level
features due to utilizing similar architectures in the early layers.
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Figure 7. Training time of the proposed models: (a) Average of individual signers with raw colored frames, (b) average
of individual signers with AFD frames, (c) all signers with raw colored frames, (d) all signers with AFD frames.

Table 5. Comparison with published work.

Method K
-R

SL
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ab
le

h
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rS
L-

10
0

K
A

rS
L-

19
0

Mukushev et al. [61] 0.782 - - -
DCT [62] - 0.95 - -
Hartley Transform [1] - 0.99 - -
Trajectory-based [64] - 0.997 -
HOG+HMM [63] - - - 0.881

A
FD

Baseline 0.945 0.991 0.961 0.98
Model#1 0.929 0.994 0.972 0.986
Model#2 0.924 0.996 0.975 0.986
Model#3 0.936 0.994 0.966 0.985

R
aw

Baseline 0.815 0.999 0.985 0.990
Model#1 0.953 0.999 0.989 0.994
Model#2 0.957 1.0 0.990 0.994
Model#3 0.940 1.0 0.989 0.994
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4. Conclusion
With the advances in computer vision and deep learning, several applications have emerged in recent years.
This paper proposed three models based on combining deep convolutional neural networks with long short-term
memory for recognizing dynamic sign language gestures. The proposed cascaded models take advantage of the
strengths of CNN and LSTM in leaning spatial and temporal feature, respectively, pertaining to the class of
each sign language gesture. Several experiments have been carried out to evaluate and compare the performance
and scalability of the proposed models using two variants of inputs of three datasets of two sign languages. The
evaluation also considered the generalization of signer-specific models to crosssigner recognition. As a future
work, other models and datasets can be used for comparison. Moreover, more work is required to improve the
training time and extend the proposed approach to continuous sign language recognition.
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