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Abstract: SEIR (which consists of susceptible, exposed, infected, and recovered states) is a common diffusion model
which could model different disease propagation dynamics across various domains such as influenza and COVID diffusion.
As a motivation, across these domains, observing the node states is relatively easier than observing the network edges
over which the diffusion is taking place, or it may not even be possible to observe the underlying network. This paper
focuses on the problem of predicting modular low-rank human contact network edges only if a SEIR diffusion dynamics
spreading among the human on their contact network can be observed. Such contact networks exhibit high modularity
where the graph has dense connections between the vertices within modules, but sparse connections between vertices
in different modules. We first formulate such inference problem as an optimization problem, discuss its convexity, and
propose MOCMIN to optimally infer such unknown contacts of modular human contact network from COVID diffusion
data. This modular contact network inference problem is important in the general case where human states such as
infected with virus and recovered from virus can be identified more easily than the contacts between humans. Our
contributions can be summarized as follows: (1) MOCMIN can handle noisy, incomplete, or undersampled diffusion data
while inferring the unknown contact network; (2) The inferred contact networks are highly modular which cannot be
ensured by the existing methods; (3) This paper applies MOCMIN to better understand COVID diffusion on contact
network.

We found MOCMIN to be accurate in modular real human contact network inference from COVID diffusion data
under a number of challenging scenarios. As an example, such high school contact network can be inferred by tracking
COVID diffusion among humans approximately 5% better than the compared methods by MOCMIN ’s ability to model
modularity of the network. Via such inference, we can also understand the details of COVID diffusion dynamics in real
human contact network. Additionally, inferred human contact graphs nearly mimic the true contact network’s known
graphical properties. Lastly, MOCMIN outperforms the competing approaches while estimating the synthetic networks.
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1. Introduction
Biological and social systems’ properties have been significantly modelled and analysed by networks [1, 2, 20, 26–
28]. Dynamic process diffusion over the network can be used to model various phenomena of study. Diffusion can
be seen as a particular case of these dynamic processes where diffusion (example, an infection) begins at some
graph nodes and unrolls progressively to remaining graph parts by the graph edges over time. Some diffusion
examples are idea diffusion over social networks [16], COVID, and influenza diffusion dynamics [7, 24]. A
diffusion model characterizes a set of candidate states where the graph nodes can belong, as well as different rules,
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to stochastically change among these states. For instance, SEIR (Susceptible, Exposed, Infected, Recovered) [14]
is a commonly-used diffusion model example which is frequently utilized to simulate the virus infection spread.
SIR, SIS, and SI models [14] are SEIR model’s special cases.

In most real-world scenarios, observing the node states is relatively cheaper or easier than observing
the network edges over which the spreading is taking place. As an example, observing an opinion spreading
over social networks can be easier but seeing the underlying network cannot be possible mainly due to privacy
concerns. Another example is influenza or COVID transmission where measuring the human contact network is
difficult [7, 24] but detecting whether people are sick is easier instead. Here, this article focuses on estimating the
unknown network edges where we can only observe traces of node state changes while the diffusion is spreading
over the network. In our setting, the unknown network models the contacts between humans in terms of COVID
diffusion. Recovering transmission network is crucial to generate more effective immunization strategies and
design more effective epidemic control strategies [5, 12].

This article comes up with MOCMIN (MOdular Convex Minimization to Infer Networks) to tackle
modular low-rank graph inference problem from the diffusion traces in more realistic scenarios. Firstly, this
article focuses on the scenario where diffusion traces are not perfectly observed. Such uncertainty in the diffusion
traces may be explained differently in distinct scenarios. As an example, while the spread of the disease is
tracked by measurements, observed symptoms such as fatigue and coughing partly describe state of a node
since such symptoms do not perfectly represent the diffusion states (recovered, infected, etc.). Additionally,
after an infection, all the relevant symptoms might not suddenly appear in the infected person but the symptoms
gradually intensify over time [18, 21]. In this regard, exact diffusion times may not be perfectly known but
instead we estimate our confidence or belief that we belong to a certain state. Secondly, diffusion trace collection
and measurements are costly, so node status may not be known for all possible time steps. However, diffusion
data may be observed at a lower frequency than the true diffusion dynamics operation frequency [21]. Finally,
MOCMIN estimates modular low-rank contact networks [24] over SEIR diffusion dynamics and its special cases.

This paper addresses those challenges by handling diffusion traces that model possible states for each
node as a probabilistic time series. This probabilistic modelling approach has not been employed in the
existing diffusion-based graph inference approaches [9, 10, 22], where a node belongs to a state with either
1 or 0 probability. Next, this paper frames the unknown graph estimation problem as a convex expected loss
minimization program over SEIR diffusion data which has L1 regularization penalty to enforce the sparsity
of the inferred graph and nuclear norm to enforce low-rank modular structure of the inferred graph. For
perfect diffusion data, we may remove L1 norm penalty in the optimization program, and we can run MOCMIN
nonparametrically via additional constraints which guarantee existence of at least one edge between the formerly
infected graph nodes that have not recovered and recently infected nodes. At microscale, MOCMIN is applied
to estimate synthetic graphs and high school human contact graph.

MOCMIN can infer the graphs over multiple demanding scenarios, and it frequently outperforms the
competing methods in nearly all scenarios mainly owing to its probabilistic formulation capabilities. MOCMIN ’s
performance is not notably impacted by the probabilistic diffusion data while on the contrary the performance
of the competing methods drop even when a sophisticated rounding scheme to preprocess the probabilistic
diffusion data is applied to turn more general probabilities into 0/1 probabilities. As an example, MOCMIN
may attain F1 around 0.75–0.85 over a human contact network when we are only provided with diffusion
traces over the graph as a prior information in addition to the fact that graph is modular at a certain degree.

As a summary, MOCMIN performs better than the other methods on both synthetic and real data under
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a number of challenging scenarios due to its ability to probabilistically model the observed data, and its ability
to integrate low-rank modular graphs into the inference procedure. MOCMIN can infer graphs quite accurately
when the noise dynamics parameters defining the relationship between observed diffusion data and true state
transition times are unknown as well. In this scenario, MOCMIN may estimate the unknown graph and noise
dynamics parameters at the same time, which may not be handled directly by the existing methods.

1.1. Related work
Even though there are relatively few approaches to model COVID diffusion dynamics with and without lockdown
measures [11], similar methods exist in modeling the flu diffusion. A number of approaches model flu diffusion by
differential equations where they assume underlying network is homogeneous and ignore the network connection
patterns impact on the transmission. Nonetheless, it is invalid to make such assumption for different types of
diffusion [8]. A number of methods have been developed to estimate and understand social network connections
over information spreading data. Among these methods, NetRate [9] first predicts spreading probabilities and
then infers graph edges over such probabilities. Both MultiTree [22] and NetInf [10] come up with maximum
likelihood-based approach to infer edges that can only model edge existence.

Among more recent methods, the authors in [23] proposed a model-free nonparametric approach NPDC
to infer the connectivity of social networks from diffusion data. NPDC infers the diffusion network according
to the statistical difference of the infection time intervals without relying on a transmission model. However,
their nonparametric approach may decrease the prediction performance in many realistic settings. LIFT [3]
and TWIND [15] study the problem of diffusion network reconstruction in the case that only diffusion sources
and final infection statuses of nodes are available. However, both LIFT and TWIND require a prior knowledge
on the degree of influence relationships in the resulting diffusion network, as otherwise, it will iteratively add
edges until a complete graph is obtained. Another method TENDS [13] does not require the degree of influence
relationships. Lastly, the work in [25] focuses on inferring the transmission networks assuming the diffusion
data is noisy. However, the proposed method evaluates the performance on social network inference and could
not model the inference of modular networks.

There are several deficiencies of the proposed methods which we focus on addressing in this paper. Firstly,
all of these methods focus mainly on social network inference and does not consider the problem on COVID
diffusion as we do. Most of the existing methods expect diffusion data to include exact and precise observation
of spreading over the network, so they do not consider undersampled, possibly missing probabilistic spreading
data except the work in [25]. Besides, the probabilistic nature of spreading data may not be modelled by these
methods. Additionally, the graph estimated by MOCMIN is modular which is a common feature in real-world
networks.

2. Methods
2.1. Problem formulation
Let G = (V, E) be an unknown underlying graph over which diffusion such as COVID propagates and which
edges E cannot be easily observed. Set of edges, E , define different connections in different contexts such
as human relationships in Facebook, protein interactions in PPI, and contacts between human. We assume
that graph to be inferred is modular as exhibited by many real-world networks. Apart from such modular
assumption, we do not integrate any other prior knowledge for graph. We also assume that vertices do not have
any additional attributes. At each moment, each vertex of the graph G may belong to one of distinct states S .
Those states define an abstract view of vertex’s condition in regards to the diffusion such as COVID diffusion.
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The model M defines how a vertex’s state may change depending on its neighbours’ states at earlier moments
in the diffusion. In this paper, we design inference problem over SEIR model which is more commonly used to
model an epidemic. SEIR model states are S, E, I, and R. S represents a state where a vertex is susceptible to
an ongoing diffusion. E defines a state where a vertex is exposed to an ongoing diffusion but it is not infected
yet. I stands for a state that is infected with the diffusion and it has started spreading such infection to other
vertices. Lastly, R stands for a state that was infected before but it is now recovered so stopped spreading the
infection to others. SEIR model has several important special models such as SIR, SIS, and SI models over
which several transitions and states do not exist. These states represent common abstractions, and they can
be used in modelling multiple diffusion types across multiple contexts [24]. The SEIR, as a Markovian model,
assumes an independent cascade model where one spreading from a vertex’s multiple neighbours is sufficient for
such vertex to move into an exposed state (or infected if exposed state does not exist).

Mathematically, a trace d of SEIR process sampled at Td is composed of probabilities {sd(t) , e
d
(t) ,

d(t) , rd(t)} for each vertex  ∈ V and each sampled time step t ∈ Td} , where d(t) represents the
probability of vertex  being in state  in trace d ’s time t . Among these SEIR states, each vertex  should

belong only to one of such states, so sd(t) + ed(t) + d(t) + rd(t) = 1 at time step t . tde, , td, , tdr, define

the true transition times into E, I, R states for vertex  in trace d , respectively. These transition times cannot
be known exactly in our process, but they are modified by noise dynamics N to form the known trace d . We
explain the noise dynamics N in Section 2.3.1. The degree to which we observe probabilistic states for a given
trace is impacted by noise dynamics N . In this case, we are interested in solving the following problem:

Problem 1 We are provided with model M (SEIR) governing the diffusion dynamics, noise dynamics estimate
N , vertices V , and a set of probabilistic diffusion traces of vertex states D . Assuming the unknown graph is
modular, we are interested in estimating the graph edges E .

We propose the following framework to tackle Problem 1: Firstly, we come up with a list of equations
which define the probabilistic dynamics of each vertex belonging to each state for SEIR model. Depending on
the time steps, each vertex transit into another state and the edge existence, such equations yield a theoretical
path over the space of probabilities of being in certain state. Afterwards, we design an optimization problem
to infer graph edges which makes the theoretical state paths to be in line with the provided diffusion traces as
close as possible, while we are optimizing the chosen loss function’s expectation.

2.2. Diffusion dynamics

We define  for every different vertex pairs  ̸=  such that binary  = 1 if edge occurs in the graph. We
assume trace d is observed for ordered discrete time points Td = t1, t2, t3, . . . , t . Next, for every successive
time points tj−1 , tj in this trace, nonlinear SEIR dynamics for these discrete time points can be expressed as:

sd(tj) = sd(tj−1) ss
d
(tj) (1)

ed(tj) = ed(tj−1)
�
1 − ed(tj)
�
+ sd(tj−1)
�
1 − ssd(tj)
�

(2)

d(tj) = d(tj−1)
�
1 − rd(tj)
�
+ ed(tj−1)e

d
(tj) (3)

rd(tj) = d(tj−1) r
d
(tj) + rd(tj−1) (4)
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where I→R, E→ I, and S→S state transition probabilities are represented by rd(tj) , e
d
(tj) , ss

d
(tj) symbols,

respectively. The above equations in (1)–(4) define each vertex’s probability of ending up in S, E, I, R states
at time tj respectively. As an example, Eq. 3 consists of two components: 1- Vertex  is infected at tj if it is
infected at previous time step tj−1 and did not pass into recovered state, 2- Vertex  belonged to exposed states
at previous time step tj−1 and passed into infected state. The only transition impacted by edges is S→E. Such

transition is exogenous, and edge dependence in S→E comes from ssd(tj) part. Overall, Figure 1 displays all
state transitions in addition to this exogenous transition. In Figure 1, S→E state transition for vertex  is
only impacted by states of vertices 1 , 4 as an edge exists between  and 1 , 4 . A list of vertex  ’s state
probabilities for sampled time steps are provided as part of trace d in the same figure.

Figure 1. A list of vertex  ’s state probabilities for sampled time steps are provided as part of trace d , while S→E
is the only transition impacted by graph edges.

According to SEIR model, if vertex  does not receive any infection from one of its infected neighbours
until after time t , then vertex  does not transition into state E at time t . Diffusion probability from vertex
 into  in trace d is represented by sd , and eventually the diffusion from vertex  to  occurs at time

step td,+ t . Here, t is sampled from a distribution with probability mass function (pmf) pd and cumulative

distribution function (cdf) ƒd . Given vertex  transitioned into infected state at time step t , we can compute

pd(t
′, t′′|t) , the probability of vertex  exposing a neighbour vertex  over time interval [t′, t′′] provided

that  has not exposed  till t′ as in Eq. (5) below:

pd(t
′, t′′|t) = P( infected at t exposed  between t′ and t′′)

P( infected at t has not exposed  until t′) =
ƒd(t

′′ − t)sd − ƒd(t′ − t)sd
1 − ƒd(t′ − t)sd

(5)

which is derived from Bayes rule for t′′ ≥ t′ ≥ t . Here, the subtraction of the terms in the nominator defines
the exposure probability from vertex  in the interval [t′, t′′] , and ƒd(Δt) is the cumulative distribution

function of spreading time from vertex  to  in trace d . By integrating Eq. 5, ssd(tj) which is the probability
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of vertex  not receiving the infection from any neighbouring vertex  , can be calculated as in:

ssd(tj) =
∏
∈V

∏
t<tj

�
1 − pd(tj−1, tj|t)

� ̃d(t)�1−∑t′<tj r̃d (t′)� (6)

Particularly, ssd(tj) , vertex  ’s probability of staying in S state at time step tj over diffusion d is calculated
as the product of all neighbouring vertices  ’s probability such that 1- Vertex  transitioned into I state at
time t < tj but has not recovered until tj , 2- None of the vertices  diffused the infection to  over [tj−1, tj] .
In Eq. (6), we have binary indicator variables r̃d(t) , ̃

d
(t) and ẽd(t) for trace d which become 1 if vertex

 transitions into R, I, E states at time step t respectively (tdr, = t , td, = t , tde, = t ). Eqs. (7)–(8) below

show how ed(tj) , r
d
(tj) probabilities in (1)–(4) can be expressed by the probability of vertex  being E, I

at time t , and E→ I / I→R transition probabilities of  .

ed(tj) =
tj∑

t=t1

pe (tj − t) ẽd(t) (7)

rd(tj) =
tj∑

t=t1

pr (tj − t) ̃d(t) (8)

Table 1 summarizes and defines the diffusion model symbols.

Table 1. Symbols for diffusion dynamics.

Symbol Definition
αs
m, αe

m, α
m,

αr
m

Dirichlet distribution parameter vector for mixture component m and states
S, . . ., R, respectively

gs(), ge(),
g(), gr()

The probability of sampling 4× 1 state vector  rather than perfect S, . . ., R
states, respectively, in any trace at any time

ẽd(t), ̃d(t),
r̃d(t)

Boolean variable which is 1 if vertex  transitions into E, I, R states in trace
d at time t, respectively

ssd(tj) The probability of vertex  not leaving state S between tj−1 and tj
pd(t

′, t′′|t) The probability of vertex  transitioning into state E during [t′, t′′] interval
by vertex  which has previously been infected at time t in trace d given 
has not spreaded the infection to  until t′

ed(tj), r
d
(tj) The probability of E → I, I → R transition for vertex  at time tj

pe , pr The probability distribution of E → I, I → R transition time for vertex ,
respectively

pd, ƒd pmf, cdf of diffusion time from vertex  to vertex  in trace d
sd The spreading probability from vertex  to vertex  in trace d

2.3. Expected loss minimization formulation
After defining the diffusion equations in previous sections, we now define the graph estimation Problem 1. 
are the only unknown variables in spreading Eqs. (1)–(4) as we are provided with diffusion data as well as
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estimation of the noise in the observed diffusion data N is also provided. Let b = {b,  ∈ V} be an exact
diffusion trace without any noise where set b = {tbe,, t

b
,, t

b
r,} and the set components tbr, , tb, , tbe,

represent node  ’s correct recovery, infection, and exposure times in exact perfect trace b , respectively. Let
LB : X × B → R , Lb : X × b → R be loss functions which calculate the loss of graph edges X for B and b ,
respectively, from diffusion equations (1)–(4) where B is list of traces without any noise. For Problem 1, list of
noisy diffusion traces D is observed which describes SEIR state probabilities for each vertex at every sampled
time point as introduced in Section 2.1. However, exact diffusion traces B is latent. Provided with D , we can
infer the most plausible graph edges X ⊆ V × V by optimizing the expected loss function over all possible D :

R(X,D) = EB[LB] =
∑
B

LB(X,B)P(B|D) (9)

where P(B|D) is the probability of the provided noisy data D being produced from the hidden unknown exact
diffusion traces B . P(B|D) incorporates N in its definition. In our problem, we are given multiple traces as
input. P(B|D) = ∏d∈D P(b|d) since the noise impacts each trace d independent of other traces and every
trace d is assumed to be independently collected.

Let Q(d) = {(te(), t(), tr()) : te() ∈ Td, te() < t() < tr() ,  ∈ V } be the list of
unknown exact diffusion data possibilities which may have generated the noisy d , we can express the complete
expected loss minimization as:

R(X,D) =
∑
d∈D

R(X, d) =
∑
d∈D

∑
b∈Q(d)

Lb(X, b)P(b|d) (10)

2.3.1. Estimating P(b|d)
We can express P(b|d) =∏∈V P(b |d) since the noise in each observed trace impacts every node indepen-
dent of each other. We can express P(b |d) as below by using Bayes theorem:

P (b |d) = P (d |b) P (b)∑
b∗ ∈Q(d)[]

P
�
d |b∗
�
P(b∗ )︸ ︷︷ ︸

P(d)

(11)

In the definition above, P(d |b) is the probability of collecting d provided that the exact diffusion
trace for node  is b . We can express P(d |b) as in Eq. (12) below as collecting diffusion trace at each
time point is also independent of other time points:

P(d |b) =
∏

t<tbe,

gs(d[t])
∏

tbe,≤t<tb,
ge(d[t])
∏

tb,≤t<tbr,
g(d[t])
∏
tbr,≤t

gr(d[t]) (12)

In Eq. ((12)), g(d[t]) functions for states  ∈ {s, e, , r} define the probability of collecting 4 × 1
vector d[t] at t as a trace sample rather than exact S, E, I, R trace collections respectively. Since normalized
d[t] terms sum to 1 , we approximate every g(d[t]) function by a 4 -dimensional Dirichlet distributions
mixture as in:

g(d[t]) =
∑
m∈M


mgm (d[t]) (13)
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where there are M components in the distribution and such mixture can model arbitrary functions precisely.

The concentration parameters α,d,t
m determine the distribution characteristics of each mixture com-

ponent m for time t , trace d , and state  . We make two additional assumptions: 1- The concentration
parameters for each trace d α,d,t

m = α
m and time t are the same, 2- Mixture weights 

m for every trace d

are also the same. Let α
m[y] be the concentration parameter for state y , dy[t] be the value of state y in

d[t] , B(αx
m) be the normalizing constant, we can express every component in (13) as in:

gm (d[t]) =
1

B(αx
m)

∏
y∈{s,e,,r}

(dy[t])
αm[y]−1 (14)

We can express another term in (11), prior P(b) as in:

P(b) = P(tbe,)P(t
b
, |tbe,)P(tbr, |tb,)

P(b) = P(tbe,)p
e
 pr (15)

where P(b) ’s definition includes probabilities of transitions between the states. As there is no additional

knowledge on node state transition times, P(tbe,) =
1

|Td |+1 is uniform and P(tb, |tbe,) = pe , P(tbr, |tb,) =
pr . We also have an extra 1 in P(tbe,) ’s denominator to model vertex  always staying in susceptible state,

without moving to exposed state.
Eq. (11) defines a generative model to explain trace noise dynamics which may be considered a slight

modification of latent semi-Markov model. Our generative model can be seen as having a latent state for each
time step in Td alongside four SEIR state values R, I, E, S.

2.3.2. Estimating Lb(X, b)

Lb(X, b) can take almost any type of loss function. However, diffusion dynamic equations are expressed
in terms of probabilities so negative log-likelihood is used for loss function in our formulation. Lb(X, b) =
− log (L(X|b)) , where (16) defines such likelihood. Eq. (16) expresses the likelihood in terms of vertex state
probabilities multiplication at every sampled time step in the exact trace b . The second equality in the equation
is derived by putting the diffusion terms in Eq. (1)–(4) into the equation where we obtain constant C over state
transitions not being affected by graph edges.

L(X|b) =∏
∈V

 ∏
t<tbe,

sd(t)
∏

tbe,≤t<tb,
ed(t)
∏

tb,≤t<tbr,
d(t)

 = C ∏
∈V

�1 − ssd �tbe,�� ∏
t∈Td,t<tbe,

ssd (t)


(16)

When put into the loss function R(X,D) in combination with (6), we can express the negative log-
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likelihood loss as below which is convex as proven in [25]:

R(X,D) =
∑
d∈D

∑
b∈Q(d)

P(b|d)
− log(L(X|b))︷ ︸︸ ︷� ∑

∈V
− log �1 − ssd �tbe,��

+

︷ ︸︸ ︷∑
∈V

∑
∈V

∑
tb,≤t<min(tbr,,t

b
e,)

− log �1 − pd
�
t − 1, t|tb,
��


�
(17)

2.3.3. An efficient relaxation
Let Q(d) represent the whole set of perfect transition time step possibilities, in the main optimization problem,
we need to estimate the loss function’s expectation over Q(d) . The calculation of the expectation is based on
exponential number of additions which can be prohibitive for even medium-size problems. We can estimate
graphs more effectively by rather optimizing the relaxed expected loss (R̂(X,D)) as in:

R̂(X,D) =
∑
d∈D

∑
b∈Q(d)

P(b|d)
� ∑
∈V

T b
 +
∑
∈V

∑
∈V

∑
tb,≤t<min(tbr,,t

b
e,)

− log �1 − pd(t − 1, t|tb,)
�


�
(18)

where every nonlinear term log(1− ssd(tj)) in the original expected loss function is replaced with first-order

Taylor approximation T b
 defined as in:

T b
 =
∑
∈V

log
�
pd(t

b
e, − 1, tbe, |tb,)

�
( − 1) (19)

As discussed earlier, noise dynamics for each node is independent so P(b|d) =∏∈V P(b |d) . As a
result, Eq. (18) could be expressed as in:

R̂(X,D) =
∑
d∈D

∑
b∈Q(d)

∑
,∈V×V

P(b|d)P(b |d)Mb
v  + C (20)

where
Mb

v = log(pd(t
b
e, − 1, tbe, |tb,)) −

∑
tb,≤t<min(tbr,,t

b
e,)

log(1 − pd(t − 1, t|tbe,)) (21)

Relaxed expected loss in Eq. (20) linearly depends on graph edges X . In Eq. (20), once expressed as
P(b|d) =∏∈V P(b |d) , existence of every edge  is based only on  and  ’s exact transition time steps
as the remaining probabilities in P(b|d) have marginalized out. Every edge (,) ’s expected loss is solely
dependent upon the true recovery and infection time steps in P(b|d) , and the true exposure time in P(b|d) .
As a result, Eq. (20) might be expressed in tensor form as in:

R̂(X,D) =
∑
d∈D

∑
∈V

∑
∈V

∑
t∈Td

∑
t<t

e


∑
te≤tr

�
Pd
v,e

�
te
�× Pd

,i,r

�
t, t

r


�
Md

v

�
t, t

r
, t

e


�

�

(22)
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where (|Td|+ 1)× (|Td|+ 1) matrix Pd
,i,r

�
t, t

r


�
and (|Td|+ 1)× 1 vector Pd

v,e

�
te
�

are explitly defined
as in:

Pd
v,e

�
te
�
=

¨∑
te<t1

∑
t1<t2 P(b = {t

e
, t1, t2}|d) if t ∈ Td

1 −∑t∈Td Pd
v,e [t] else

(23)

Pd
,i,r

�
t, t

r


�
=

¨∑
t1<t

P(b = {t1, t, t
r
}|d) if t < tr

0 else
(24)

where the last ( |Td| + 1) entries are used in modelling the situation where node does not transition to the
corresponding state. Given exact state transition times t, t

r
, t

e
 ∈ (Td + 1)3 , each coefficient in (|Td|+ 1)3

tensor Md
v

�
t, t

r
, t

e


�
describes the existence of the edge from  to  as in:

Md
v

�
t, t

r
, t

e


�
=


log
�
pd
�
te − 1, te |t
��

if t < te ≤ tr
−∑t<te log �1 − pd

�
t − 1, t|te
��

0 else
(25)

Eq. (22) can be expressed more compactly as in:

R̂(X,D) =
∑
d∈D

∑
∈V

∑
∈V

∑
jk

�
Pd
,i,r ⊙
�
Md

v · Pd
v,e

��
 (26)

where every edge coefficient  can be expressed in terms of inner and Hadamard products as in:

R̂(X,D) =
∑
d∈D

∑
∈V

∑
∈V

∑
jk

�
Pd
,i,r ⊙
�
Md

v · Pd
v,e

��
 (27)

Relaxed R̂(X,D) in Eq. (27) is a linear function of  coefficients. We can minimize R̂(X,D)

quickly by estimating the whole set of  coefficients via O(|D||V|2mx(|Td|)3) operations rather than
O(|D||V|2mx(|Td|)V) . We can find the optimal X by minimizing R̂(X,D) with the following program:

rgmin
X

R̂(X,D) + λ1∥X∥∗ + λ2
∑

(,)∈V×V
 (28)

s.t.
∑

∈V, t<te≤tr
 ≥ 1, ∀d ∈ D, ∈ V (29)

0 ≤  ≤ 1, ∀(,) ∈ V × V (30)

where at least one edge should exist between the previously infected but not yet recovered vertices and the
newly infected vertex  for each trace sample d according to covering constraints (29). For noisy diffusion
data, such covering constraints do not exist as exact transition times are unknown. X ’s nuclear norm is the sum

of X ’s singular value
∑rnkX

=1 σ which is represented by ∥X∥∗ . Low-rank matrices can be found efficiently via
optimization of the nuclear norm [29] which corresponds to solving for graphs with high modularity in our case.
Moreover, λ2
∑
(,)∈V×V  term corresponds to X ’s 1 norm that enforces X ’s sparsity. This optimization

problem is also convex since R̂(X,D) is convex and additional linear and nuclear norm terms are also convex.
Once solved the program, binary solution for edge existence can be estimated via randomly rounding  .
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2.4. Efficient inference
Despite being convex, objective function in Eq. 28 is nondifferentiable due to the nuclear norm terms enforcing
the low-rank structure of X , so it is in general difficult to minimize. Alternating direction method of mul-
tipliers (ADMM) [31] idea can be used to minimize such nondifferentiable optimization programs where the
optimization problem is converted into a number of subproblems which can be solved easily. ADMM can con-
verge robustly to the solution under moderately mild situations since it belongs to family of Douglas-Rachford
splitting method. Particularly, minimization in Eq. 28 can be expressed by the following form via bringing out
2 auxiliary variables X1 and X2 :

min
X≥0,X1,X2 R̂(X,D) + λ1∥X1∥∗ + λ2∥X2∥1 (31)

s.t. X = X1, X = X2

ADMM optimizes the following expression which is the augmented Lagrangian of the problem above:

R̂ρ =R̂(X,D) + λ1∥X1∥∗ + λ2∥X2∥1 + ρ trace(UT
1(X − X1))

+ ρ trace(UT
2(X − X2)) +

p

2
(∥X − X1∥2 + ∥X − X2∥2) (32)

where ∥.∥ defines the Frobenius norm and positive ρ is the penalty parameter. We introduce dual variables
U1 and U2 in place of constraints X = X1 and X = X2 , respectively. We solve the augmented Lagrangian in
Eq. 32 by introducing the iterative equations below:

Xk+1 = rgmin
X≥0

R̂ρ(Xk , Xk
1, X

k
2, U

k
1, U

k
2) (33)

Xk+1
1 = rgmin

X1
R̂ρ(Xk+1, Xk

1, X
k
2, U

k
1, U

k
2) (34)

Xk+1
2 = rgmin

X2
R̂ρ(Xk+1, Xk

1, X
k
2, U

k
1, U

k
2) (35)

Uk+1
1 = Uk

1 + (X
k+1 − Xk+1

1 ) (36)

Uk+1
2 = Uk

2 + (X
k+1 − Xk+1

2 ) (37)

By this sequential scheme, we can solve for multiple variables iteratively and independently. Next, we define
the minimization problem for X1 and X2 , and afterwards define the method to minimize X .

2.4.1. Solution for X1 and X2 :

When solving for X1 in Eq. 34, the relevant L̂ρ terms are λ1∥X1∥∗ + ρtrace((Uk
1)

T(Xk+1 − X1)) +

p
2 (
Xk+1 − X12 which becomes:

Xk+1
1 = rgmin

X1
λ1∥X1∥∗ + p

2

Xk+1 − X1 + Uk
1

2 (38)

This problem has a closed form solution:

Xk+1
1 = S λ1

p
(Xk+1 + Uk

1) (39)
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where Sα(Q) is a soft-thresholding function defined as Sα(Q) = Udiag((σ − α)+)VT with SVD Q =

Udiag(σ)VT . Similar to X1 , we can express the minimization of X2 as a closed-form solution:

Xk+1
2 = rgmin

X2
λ2∥X2∥1 + p

2

Xk+1 − X2 + Uk
2

2 (40)

Given Xk+1 + Uk
2 , (Xk+1

2 )j entry’s update can be expressed as below where sgn is sign function:

(Xk+1
2 )j =

¨
0 |(Xk+1 + Uk

2)j| < λ2
ρ

Dk+1 else
(41)

where Dk+1 = (Xk+1 + Uk
2)j − sgn
�
(Xk+1 + Uk

2)j
�
λ2
ρ .

2.4.2. Solution for X
Eq. 32 defines the minimization of X which may also be expressed as in:

Xk+1 = rgmin
X≥0

R̂(X,D) +
p

2

�X − Xk
1 + Uk

1

2 + X − Xk
2 + Uk

2

2� (42)

This problem can be efficiently solved via gradient descent by using backtracking line search for optimal
step size selection which is based on satisfying the Armijo-Goldstein condition. Overall, our method is a
combination of alternating direction method of multipliers [31] and gradient descent.

3. Results
3.1. Diffusion trace generation
While generating a possible synthetic trace for COVID diffusion, we choose an initial vertex at random, and
simulate the diffusion dynamics till the spread terminates without reaching out all the graph vertices, or all
vertices move to a terminal model state (recovered state for SIR and SEIR model, or infected state for SI). If
infection spreads to a vertex via different vertices through multiple time points, such vertex transitions into the
infected state at the earliest receival of the infection. We model COVID transmission by SEIR, SIR, and SI
models, and use realistic COVID diffusion parameters to simulate COVID diffusion as described in [18]. We
model p by weibull distribution with k = 2.3, λ = 9.5 , s as 0.2 , pr as exponential distribution with

λ = 0.2 , and pe as exponential distribution with λ = 0.5 .

Let p be the normalized noise rate between 0 and 1 , synthetic noise is added to the diffusion traces
as follows: Probabilistic vector of size 4 is sampled over Dirichlet distribution with concentration parameters

α =
�
p
4 ,

p
4 ,

p
4 ,1 − 3p

4

�
, and this sampled state vector is added to each time point and vertex where 1 − 3p

4 is
the current state’s concentration parameter. When the noise level is high, such concentration parameter vector
turns into a more uniform vector, and recovering the true vertex state from noisy diffusion trace is not possible.

3.2. Real and synthetic networks
We evaluated the performance of MOCMIN in estimating the unknown human contact network at an American
high school [24], called Contact-static, over diffusing COVID infection data. The vertices of Contact-static graph
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represent tracked people and an edge represents a COVID transmission possibility existing when two people are
reasonably close to each other.

In terms of synthetic data, we have created 10 graphs over each of Erdos-Renyi (RDS), ForestFire
(FF) [17], LPA [4], DMC [30] models. For all these models, each graph includes 500 nodes and 5000 edges,
and we have sampled the networks at uniform over their parameter space.

3.3. Experiment details

MOCMIN is implemented mainly in Python. Datasets and code are publicly available at https://github.
com/seferlab/mocmin. MOCMIN is sensibly fast. For instance, graph of 500 nodes and 5000 edges can
be estimated fairly accurately in less than 15 min over 100 diffusion traces on a personal laptop. The
performance of MOCMIN is evaluated with respect to the current similar approaches NetInf [10], NetRate [9],
and MultiTree [22], LIFT [3]. In our experiments, we do not report MultiTree as it performs worse than NetInf
and NetRate in almost all experiments. We provide the true edge count as a parameter to NetInf and MultiTree
in our experiments even though such ideal knowledge does not exist a priori. When we are provided with
the fully observed diffusion data without any noise, MOCMIN uses the covering constraints and it is executed
nonparametrically. However, when the diffusion data is noisy, the sparsity parameter λ2 in (28) is estimated
via 5 -fold cross-validation. Such cross-validation is performed by using the diffusion traces as follows: Firstly,
unknown graph edges are estimated over diffusion data’s training portion for 500 λ2 parameters uniformly
sampled between 0 and 100 . Next, the error of observing the previously unused traces over the estimated
graph is calculated for each λ2 . We repeat this process for 5 parts of the cross-validation, and select the
parameter that minimizes the overall error as our λ2 .

While evaluating the estimation performance over the contact network, the vertex pairs without an
edge between them are the negative examples whereas graphs’ edges are the positive ones. We evaluate the

performance mainly by F1 = 2precision×recall
precision+recall where recall is portion of edges in contact graph which exist in

the estimated graph, and precision is portion of edges in the estimated graph which exist in the contact graph.

3.4. Inferring human contact graph from COVID diffusion data

We estimated Contact-static via COVID diffusion traces on SEIR, SIR, and SI models which have been produced
by using the realistic COVID transmission parameters as described in Section 3.1. According to those COVID
diffusion data in Contact-static, exposed state describes the people who have received the COVID infection
from their neighbours but has not begun transmitting it to the other connected people in the school graph,
whereas the infected state describes the people who have received the COVID infection from their neighbours and
currently transmitting the infection to the remaining connected people. MOCMIN outperforms all the competing
approaches for perfectly observed diffusion traces under SI model despite performing a nonparametric inference
as in Figure 2. Furthermore, MOCMIN also outperforms the competing approaches under SIR model as in
Figure 2 where the performance enhancement of MOCMIN over the competing approaches is bigger than the
relative enhancement for SI model in Figure 2.

MOCMIN starts to outperform the competing approaches more significantly for partially-observable noisy
diffusion traces where cross-validation is used to calculate its low-rank and sparsity parameters λ1 , λ2 . The
scenario of noisy diffusion traces is quite realistic for COVID transmission dynamics since exact tracking of
the COVID dynamics can be quite expensive for many reasons: COVID symptoms can be quite similar to the
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symptoms of other diseases so they may be confusing, and a number of collected diffusion traces can be few
particulary for novel COVID variants such as delta, gamma when these variants started to appear. MOCMIN ’s
F1 score of 0.7 can be obtained from 350 perfectly known traces, and the same score can be achieved by
almost 700 noisy diffusion traces as seen in Figure 2. In comparison, 0.5 F1 score may be achieved via the
competing approaches by using the same set of partially observable diffusion traces. MOCMIN is also robust to
varying levels of noise in the diffusion data. MOCMIN can still attain F1 score around 0.4 when the diffusion
traces are remarkably noisy as in Figure 3. However, the competing approaches’ F1 scores become less than
0.2 as these approaches are remarkably impacted by the rising noise levels in the same figure.

(a) SIperfect (b) SIRperfect

Figure 2. The performance of Contact-static prediction in terms of F1 vs. diffusion trace count under (a) SI and (b)
SIR models by using perfectly known diffusion data.

(a) SI partial (b) SEIR Heatmap

Figure 3. a) The performance of Contact-static prediction in terms of F1 vs. noise rate under SI model from 250
traces, b) Heatmap of performance by F1 in terms of number of traces vs. sampling rate under SEIR.

MOCMIN ’s overall performance drops by decreasing the rate at which diffusion traces are sampled as in

Figure 3, since such sampling at a low rate extracts less knowledge. In this figure, 1
 rate shows that a single
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time step is observed in each interval of  steps. According to the figure, collecting the diffusion data at a low
sample rate in general decreases the performance of MOCMIN , but its performance is acceptable when diffusion

traces are sampled at rate greater than 1
5 for SEIR models across varying numbers of diffusion traces. As a

summary, MOCMIN tends to perform quite accurately over both partially known and exactly known diffusion
data, and MOCMIN ’s performance can tolerate reasonable noise levels in the diffusion traces which is not true
for the competing approaches.

MOCMIN infers the connections among people quite accurately as in Figure 4 which illustrates a
randomly sampled 50 vertex subgraph of both the true and inferred contact networks over 50 and 200
diffusion traces respectively. In this figure, red edges show the edges that are in the human contact graph but
not in the inferred graph, blue edges show the edges which are in the inferred graph but not in the true graph,
and gray edges define the edges which are estimated correctly by MOCMIN . When vertices are considered in
the figure, students are represented by red vertices, the school staff and the teachers are represented by black
and green vertices respectively. Figure 4 shows that subgraph induced only by the students in the estimated
graph is dense; in addition, misestimated edges are mostly between the students.

(a) 50 traces (b) 200 traces

Figure 4. MOCMIN inferred and true 50 node Contact-static subgraphs under SI model from a) 50 diffusion traces,
b) 200 diffusion traces.

Properties of the graphs estimated by MOCMIN resemble the underlying contact graph’s range of
properties even when the available trace count is limited as in Table 2. According to the table, we compare
properties of the true and estimated Contact-static graphs only from 50 diffusion traces. As an example, the
true contact graph’s node degree distribution is scale-free with exponent 2.134 , whereas the inferred graph
also exhibits scale-free distribution with a close exponent 2.072 . Similarly, the modularity of the true contact
network is reasonably high 0.73 , whereas the inferred graph has almost the same modularity of 0.74 . The
similarity of the network attributes can also be seen across many other metrics such as assortativity, average
k -core, average shortest path length.

3.5. Estimating synthetic networks
MOCMIN regularly outperforms the competing approaches while estimating the synthetic networks generated
by a number of dissimilar models over multiple diffusion models as in Table 3. The bold entries in the table
represent reasonable outperformance of MOCMIN with respect to the competing approaches. MOCMIN
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outperforms the competing approaches while estimating the networks generated by LPA and FF models.
Additionally, the performance of all approaches including MOCMIN are similar while estimating RDS graphs,
and the performance of all these methods become worse on estimating DMC graphs which may be due to the
DMC graphs cyclic structure. In terms of estimating the synthetic graphs, F1 score captured by MOCMIN in
all growth models other than DMC is more than 0.5 only when 250 diffusion traces are used. Even though
we report the performance over 250 diffusion traces in Table 3, MOCMIN performs consistently accurately
across a number of conditions.

Table 2. The properties of inferred and true contact graphs over 50 traces.

Truth Inferred
Modularity [19] 0.73 0.74
Diameter 8 10
Average clustering coefficient 0.261 0.23
Assortativity 0.121 0.141
Scale-free exponent [6] 2.134 2.072
Average k-core 4 4
Average shortest path length 3.124 3.054

Table 3. Synthetic network inference performance in terms of F1 according to diffusion and graph growth models while
using 250 traces without any noise.

RDS DMC LPA FF
SEIR SIR SI SEIR SIR SI SEIR SIR SI SEIR SIR SI

MOCMIN 0.55 0.53 0.52 0.49 0.44 0.45 0.61 0.5 0.59 0.61 0.57 0.62
NetRate 0.36 0.28 0.45 0.47 0.39 0.41 0.44 0.42 0.52 0.43 0.5 0.45
NetInf 0.38 0.33 0.47 0.47 0.41 0.4 0.47 0.42 0.50 0.46 0.45 0.52
LIFT 0.4 0.35 0.49 0.45 0.34 0.44 0.45 0.43 0.51 0.46 0.47 0.54

4. Conclusion
Here, we come up with a convex expected loss minimization-based method MOCMIN to estimate modular
unknown networks under SEIR models from possibly noisy diffusion data. We find enhanced network recover-
ability under both noisy and perfect diffusion data; MOCMIN can recover the COVID transmission network
quite accurately. MOCMIN ’s better performance can be attributed to its capability to model both edge nonex-
istence and existence from diffusion data, its capability to handle noisy data more precisely, and mainly its
formulation that infers modular graphs from diffusion data. We believe that the COVID transmission networks
inferred via MOCMIN will be particulary useful in understanding COVID diffusion dynamics, and taking bet-
ter preventative measures. Overall, our contributions can be summarized as follows: (1) MOCMIN can handle
noisy, incomplete, or undersampled diffusion data while inferring the unknown contact network; (2) The in-
ferred contact networks are highly modular which cannot be ensured by the existing methods; (3) This paper
applies MOCMIN to better understand COVID diffusion on contact network. One drawback of this study is
that the application of graph inference uses semisynthetic diffusion data instead of real diffusion data, which is
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due to such real data being limited and nonpublic. As future work, diffusion data collected by mobile phone
tracking can be used to further elaborate on the results. We can also forward the findings of this study for
controlling the massive spread of COVID and other related diseases. Another limitation of this study is to
assume an underlying diffusion model such as SI to derive the mathematical formulation. In this case, another
future work might be necessary to predict COVID diffusion dynamics by a model-free approach.
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