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Abstract: In imaging systems, the mixed Poisson-Gaussian noise (MPGN) model can accurately describe the noise
present. Total variation (TV) regularization-based methods have been widely utilized for Poisson-Gaussian removal with
edge-preserving. However, TV regularization sometimes causes staircase artifacts with piecewise constants. To overcome
this issue, we propose a new model in which the regularization term is represented by a combination of total variation
and high-order total variation. We study the existence and uniqueness of the minimizer for the considered model.
Numerically, the minimization problem can be efficiently solved by the alternating minimization method. Furthermore,
we give rigorous convergence analyses of our algorithm. Experiments results are provided to demonstrate the superiority
of our proposed hybrid model and algorithm for deblurring and denoising images simultaneously, in comparison with
several state-of-the-art numerical algorithms.
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1. Introduction
Image restoration is a fundamental problem in digital image processing. The aim of image restoration is to
reconstruct a good approximation of original X from observed image G and to preserve local image features
for accurate and effective subsequent analysis. Images are corrupted by noise due to several causes including
quality of transceivers, influence of light sources or environment conditions [1–4]. In various applications such as
medicine, biology, astronomy, etc. [5–7], mixed Poisson-Gaussian noise (MPGN) model can accurately describe
the noise present. In this model, Poisson components account for the uncertainty of signal dependence inherent
in the photon counting process, while the white Gaussian noise additive component treats other noise sources
independently of signals such as thermal noise [8]. In this problem, the image degradation process is modeled
as G = PP(X) + N (0, σ2), where PP(X) represents the image X degraded by Poisson noise and N (0, σ2)

represents Gaussian noise with zero mean and variance σ .
In the literature, several methods have been proposed for MPGN removal [9–13], e.g., approaches based

on PURE-LET [3], variance stabilization transforms [14], unbiased risk estimator [10], contourlet transform
and hidden Markov models [15]. Alternatively, methods based on total variation (TV) regularization also have
been proposed for mixed Poisson-Gaussian noise removal, e.g., approach based on a TV regularization term
and an infimal convolution modeling of the data discrepancies[16], a nonsmooth PDE-constrained optimization
∗Correspondence: pcthang@dut.udn.vn

This work is licensed under a Creative Commons Attribution 4.0 International License.
1

https://orcid.org/0000-0002-6428-102X
https://orcid.org/0000-0001-7705-2405
https://orcid.org/0000-0002-2012-6052
https://orcid.org/0000-0001-5188-8837


PHAM et al./Turk J Elec Eng & Comp Sci

approach for the determination of the correct noise model [17], total variation regularization term and two data
fidelity terms with the Kullback-Leibler divergence term for Poisson noise and the L2 norm fidelity term for
Gaussian noise [8], the Lipschitz differentiability and convexity of the Poisson-Gaussian neg-log-likelihood [6].

One of the popular approaches for image restoration is TV-based method. The TV based model for the
mixed Poisson-Gaussian noise removal (MPGTV) has the following form [13]:

X∗ = argmin
X∈S(Ω)

∫
Ω

|∇X| dt+ λ1

2

∫
Ω

(X −G)2dt+ λ2

∫
Ω

(X −G logX)dt, (1)

where G = G(t) is the known image, t = (i; j) ∈ Ω ,i = 1 . . .M, j = 1 . . . N , Ω ⊂ R2 is an actual image
domain, and S(Ω) is the set of positive functions from Ω to R ; λ1, λ2 are positive regularization parameters,∫
Ω
|∇X|dt is the total variation of X , and ∇ is gradient operator.

The model (1) is effective in removing MPGN. Unfortunately, this model has a staircase artifact, i.e.
smooth regions that are transformed into piecewise constant areas. This effect leads to develop false edges that
do not exist in the true image [18]. To avoid the staircase effect, many approaches in the literature were made
to replace the TV norm with the high-order TV norm [19–21]. The popular type of the high-order TV norms
is second-order derivative ∇2 [21–23]. However, the methods using the second-order often lead to the edges
blurring in obtained results.

To avoid the above issues, we consider to add a second-order functional to the total variation model (1)
for restoring images corrupted by MPGN as follows:

X∗ = argmin
X∈S(Ω)

(∫
Ω

γ(t) |∇X| dt+
∫
Ω

(1− γ(t)) |∇2X|dt+ λ1

2

∫
Ω

(X −G)2dt+ λ2

∫
Ω

(X −G logX)dt

)
, (2)

where λ1, λ2 are positive regularization parameters, S(Ω) is the set of positive functions from Ω to R , γ(t)

is the edge-stopping function defined later in (14), and ∇2 is second-order derivative. In this work, we study
both deblurring and denoising simultaneously. In case of the blur effect, we can generalize the proposed model
(2) for restoring a blurred image corrupted by MPGN as follows:

X∗ = argmin
X∈S(Ω)

E(X), (3)

E(X) =

(∫
Ω

γ(t) |∇X| dt+
∫
Ω

(1− γ(t)) |∇2X|dt+ λ1

2

∫
Ω

(HX −G)2dt+ λ2

∫
Ω

(HX −G logHX)dt

)
,

where H stands for a linear blurring operator.
The main contributions of this work are the following: We proposed an adaptive model for MPGN removal

problem. It is easy to see that when γ(x) = 1 , we obtain the model (1). Thus, our model can keep keen edges
like model (1). Our model efficiently combines the advantage of the TV denoising model and the second-order
TV denoising model. This allows to suppress the MPGN efficiently, preserve edges of object in the piecewise
constant image, and alleviate staircase artifacts in the obtained images. We prove the existence and uniqueness
of minimizer for proposed model. Since the proposed model has the splitting frame, we establish an alternating
minimization method to solve the minimization problem. We study the convergence property of the algorithm.
Numerical experiments are provided to demonstrate the high efficiency of our algorithm for recovering images
corrupted by MPGN.
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The rest of the paper is organized as follows: In Section (2), we describe the necessary definitions and
notations on the considered model. In Section (3) we describe the proposed optimization framework. Next, in
Section (4), we show some numerical results of our proposed method and we compare them with the results
obtained with other existing and well-known methods. Finally, some conclusions are drawn in Section (4).

2. Preliminaries
Our goal is to recover the original image X with given (observed) image G . The problem is to find the image
X so that the conditional probability P(X|G) can be maximized. Using Bayes’s rule, we have:

P(X|G) =
P(G|X)P(X)

P(G)
. (4)

The Poisson noise and the Gaussian noise are independent of each other; therefore, the distribution of
MPGN can be expressed as follows:

P(G|X) =
∏
ı∈I

PP(Gı|Xı) · PN (Gı|Xı), (5)

where I denotes the domain of G , PN (G|X) = 1
σ
√
2π

exp
(
− (X−G)2

2σ2

)
and PP(G|X) = XG exp (−X)

G! .

Motivated by the TV models, P(X) follows a Gibbs prior [2]:

P (X) =
1

Z
exp(−

∫
ϕ(X)dt), (6)

where Z is a normalization factor, ϕ(X) = γ|∇X|+ (1− γ)|∇2X| .
The estimation maxP(X|G) can be equivalently expressed as minimization problem by considering the

logarithmic transformation min

(
− log (P(G|X))− log (P(X))

)
. Thus, we can plug in Equations (5) and (6)

to get the TV-based model for MPGN removal (MPGTV) in (2):

X∗ = argmin
X∈S(Ω)

∫
Ω

γ(t) |∇X| dt+
∫
Ω

(1− γ(t))
∣∣∇2X

∣∣ dt+ λ1

2

∫
Ω

(X −G)2dt+ λ2

∫
Ω

(X −G logX)dt.

In case of the blur effect, we have form of the proposed model for restoring a blurred image corrupted by
MPGN in Eq. (3):

X∗ = argmin
X∈S(Ω)

E(X),

E(X) =

(∫
Ω

γ(t) |∇X| dt+
∫
Ω

(1− γ(t)) |∇2X|dt+ λ1

2

∫
Ω

(HX −G)2dt+ λ2

∫
Ω

(HX −G logHX)dt

)
.

Referring [24–26], we briefly review some necessary definitions and notions for the proposed model.

Definition 1 Let Ω ⊂ Rn, n ≥ 2 be an open, bounded Lipschitz domain. Let X ∈ L1(Ω) . Then the total
variational of X is defined by:∫

Ω

|∇X| = sup

{∫
Ω

Xdiv(ϑ)dx : ϑ ∈ C1
c (Ω,Rn), |ϑ| ≤ 1

}
,
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where C1
c (Ω,Rn) denotes continuously differentiable vector functions of compact support contained in Ω , and

the space of functions of bounded variation BV (Ω) is equipped with the norm |X|BV (Ω) = |X|L1(Ω)+
∫
Ω
|∇X| .

Definition 2 Let Ω ⊂ Rn, n ≥ 2 be an open, bounded Lipschitz domain. Let X ∈ L1(Ω) . Then the BV 2

seminorm of X is defined by:∫
Ω

|∇2X| = sup

{∫
Ω

Σn
i,j=1X∂j∂iϑ

ijdt : ϑ ∈ C2
c (Ω,Rn×n), |ϑ| ≤ 1

}
,

where |ϑ| =
√

Σn
i=1Σ

n
j=1(ϑ

ij)2 and BV 2(Ω) is equipped with the norm |X|BV 2(Ω) = |X|L1(Ω) +
∫
Ω
|∇2X| .

Definition 3 Let Ω ⊂ Rn, n ≥ 2 be an open, bounded Lipschitz domain. Let X ∈ L1(Ω) and α(t) ≥ 0 . Then
space α−BV seminorm of X is defined by:∫

Ω

α|∇X| = sup

{∫
Ω

Xdiv(ϑ)dt : ϑ ∈ C1
c (Ω,Rn), |ϑi| ≤ α, 1 ≤ i ≤ n

}
,

where ϑ = (ϑ1, ϑ2, ...ϑn) and the space α−BV (Ω) norm is |X|BV (Ω) = |X|L1(Ω) +
∫
Ω
α|∇X| .

Definition 4 Let Ω ⊂ Rn, n ≥ 2 be an open, bounded Lipschitz domain. Let X ∈ L1(Ω) and β(t) ≥ 0 . Then
space β −BV 2 seminorm of X is defined by:∫

Ω

β|∇2X| = sup

{∫
Ω

Σn
i,j=1X∂j∂iϑ

ijdt : ϑ ∈ C2
c (Ω,Rn×n), |ϑ| ≤ β

}

and the β −BV 2(Ω) norm is |X|β−BV 2(Ω) = |X|L1(Ω) +
∫
Ω
β|∇2X| .

We can realize that our objective function (3) is defined on S(Ω) = {X ∈ BV (Ω)∩BV 2(Ω), X > 0} . We
study the existence and uniqueness of the minimizer for proposed problem as follows.

Theorem 1 Let inf G > 0 and H be injective, then a solution of the problem (3) is unique minimizer.

Proof The proof is similar to the proof of [27, 28]. Let X(k) be a bounded minimizing sequence. By
the compactness property in the space of bound variation BV (Ω) and BV 2(Ω) [25, 27, 29], there exists
X∗ ∈ BV (Ω) ∩ BV 2(Ω) , such that X(k) converges weakly to Z∗ ∈ BV (Ω) ∩ BV 2(Ω) and Z(k) converges
strongly to Z∗ in L1(Ω) . Thus, X∗ is the minimizer of model (3) for all X ∈ BV (Ω) ∩ BV 2(Ω) such that
logX ∈ L1(Ω) . Furthermore, H is positive definite and G is positive, the total variation terms are convex,
hence E(X) is strongly convex. According to Fatou’s lemma [30], we have: E(X) ≥ E(X∗). Thus, X∗ is
unique minimizer of the optimization problem (3). 2

3. Computational method

There are many methods which can be employed to obtain the solution of the optimization problem (3), for
instance, the primal-dual algorithm [31], the split Bregman algorithm [32], alternating minimization method
[33–35]. In this article, we decide to employ the alternating minimization method for solving the optimization
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problem (3). Following the popular alternating minimization method [36, 37], by introducing three new variables
(D,Q,Z) , the model (3) can be reformulated as the following constrained optimization problem:

min
Z,D,Q

(
γ∥D∥1 + (1− γ)∥Q∥1 +

λ1

2
∥Z −G∥22 + λ2⟨1, Z −G logZ⟩

)
s.t. D = ∇X,Q = ∇2X,Z = HX. (7)

The augmented Lagrangian function of the problem (7) is given as follows:

L(X,Z,D,Q, ρ1, ρ2, ρ3) =

(
γ∥D∥1 + (1− γ)∥Q∥1 +

λ1

2
∥Z −G∥22 + λ2⟨1, Z −G logZ⟩ (8)

− ⟨ρ1, D −∇X⟩+ η1
2
∥D −∇X∥22 − ⟨ρ2, Q−∇2X⟩+ η2

2
∥Q−∇2X∥22 − ⟨ρ3, Z −HX⟩+ η3

2
∥Z −HX∥22

)
,

where η1 , η2 , η3 - positive parameters; ρ1, ρ2, ρ3 - with Lagrangian multipliers.
The minimization problem of X subproblem in (8) is given by:

X(k+1) = argmin
X

(
−⟨ρ1, D−∇X⟩+η1

2
∥D−∇X∥22−⟨ρ2, Q−∇2X⟩+η2

2
∥Q−∇2X∥22−⟨ρ3, Z−HX⟩+η3

2
∥Z−HX∥22

)
.

Thus, we get:

η1∇T (∇X +
ρ
(k)
1

η1
−D(k)) + η2∇2T (∇2X +

ρ
(k)
2

η2
−Q(k)) + η3HT (HX +

ρ
(k)
3

η3
− Z(k)) = 0.

Note that HTH , ∇T∇ , ∇2T∇2 are block circulant with circulant block under periodic boundary
conditions. They can be diagonalized by a 2D discrete Fourier transform [34]. The system is linear, symmetric
positive definite, then X(k+1) can be efficiently solved by fast Fourier transform, under the periodic boundary
conditions as follows:

X(k+1) = F−1

(F
(
η1∇T (D(k) − ρ

(k)
1

η1
) + η2∇2T (Q(k) − ρ

(k)
2

η2
) + η3HT (Z(k) − ρ

(k)
3

η3
)

)
η1F

(
∇T∇

)
+ η2F

(
∇2T∇2

)
+ η3F

(
HTH

) )
, (9)

where F and F−1 are the forward and inverse Fourier transform operators [34].
The D and Q subproblems are given by:

D(k+1) = argmin
D

(
γ∥D∥1 − ⟨ρ1, D −∇X⟩+ η1

2
∥D −∇X∥22

)
,

Q(k+1) = argmin
Q

(
(1− γ)∥Q∥1 − ⟨ρ(k)2 , Q−∇2X(k+1)⟩+ η2

2
∥Q−∇2X(k+1)∥22

)
.

Similarly to [32], the shrinkage formula can be employed for solving the D and Q subproblems as follows:

D(k+1) = Shrink(∇X(k+1) +
ρ
(k)
1

η1
,
γ

η1
), (10)

5
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Q(k+1) = Shrink(∇2X(k+1) +
ρ
(k)
2

η2
,
1− γ

η2
), (11)

where Shrink(y, φ) = y
|y| ·max(|y| − φ, 0).

The Z subproblem is given by:

Z(k+1) = argmin
Z

(
λ1

2
∥Z −G∥22 + λ2⟨1, Z −G logZ⟩ − ⟨ρ(k)3 , Z −HX(k+1)⟩+ η3

2
∥Z −HX(k+1)∥22

)
.

Therefore, we get:

λ1(Z −G) + λ2(1−
G

Z
) + η3(Z −HX(k+1))− ρ

(k)
3 = 0.

The solution Z(k+1) can be obtained by:

Z(k+1) =
(η3HX(k+1) + ρ

(k)
3 − λ2 + λ1G) +

√
(η3HX(k+1) + ρ

(k)
3 − λ2 + λ1G)2 + 4(η3 + λ1)λ2G

2(η3 + λ1)
. (12)

Finally, the Lagrangian multipliers ρ
(k+1)
1 , ρ

(k+1)
2 , ρ

(k+1)
3 are updated by the following:

ρ
(k+1)
1 = ρ

(k)
1 + η1(∇X(k+1) −D(k+1)),

ρ
(k+1)
2 = ρ

(k)
2 + η2(∇2X(k+1) −Q(k+1)),

ρ
(k+1)
3 = ρ

(k)
3 + η3(HX(k+1) − Z(k+1)).

(13)

For the choice of edge indication function, there are several methods to the function γ(x) , see [25, 38].
In experiments, we choose the form of functions γ(x) as follows:

γi,j(t) =


1 if |∇X

(k)
i,j |

max(|∇X(k+1))| ≥ c

1
2
cos

(
2π|∇X

(k)
i,j |

cmax(|∇X
(k+1)
i,j |)

)
+ 1

2

. (14)

As shown in [38], when values |∇X| are large or small then the value of γ tends to 1, and when
intermediate values of |∇X| then the value of γ is closer to 0. Hence, the value of c must attain its minimum
value in linearly sloped regions and its proper value is c ∈ (0.05, 0.2) . We can note that another techniques
can be applied to find regularization parameters to get better results. The complete method is described in
Algorithm 1. The iteration is stopped when the maximum number of allowed outer iterations reaches N or

ERR = ∥X(k)−X(k−1)∥2

∥X(k)∥2
is bigger than tolerance ς .

The proposed model is convex (Theorem 1); therefore, the convergence of Algorithm 1 can be proved
by convergence analysis for the alternating minimization method [39]. Hence, based on [28, 36, 40, 41], we have
the following theorem:

Theorem 2 Given a sequence {X(k), D(k), Q(k), Z(k), ρ
(k)
1 , ρ

(k)
2 , ρ

(k)
3 } generated by Algorithm 1. With any

initialization {X(0), D(0), G(0), Z(0), ρ
(0)
1 , ρ

(0)
2 , ρ

(0)
3 } , the given sequence converges to {X∗, D∗, G∗, Z∗, ρ∗1, ρ

∗
2, ρ

∗
3} ,

where X∗ is unique solution of the problem (3), and this means lim
k→∞

∥X(k)∥2 = X∗ .
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Algorithm 1: Algorithm for solving the model (3).

1. Input: X(0) = Z(0) = G ; D(0) = Q(0) = 0 ; k = 1 ;
2. While

((
ERR > ς

)
||
(
k ≤ N

))
do

3. -Calculate X(k+1) by (9).
4. -Calculate D(k+1) by (10).
5. -Calculate Q(k+1) by (11).
6. -Calculate Z(k+1) by (12).
7. -Update ρ

(k+1)
1 , ρ

(k+1)
2 , ρ

(k+1)
3 by (13).

8. -Update γ by (14).
9. -k = k + 1 .
10. End while
11. Output X∗ = X(k+1) .

4. Numerical experiments
In this section, we illustrate the performance of the proposed model for MPGN removal. In order to prove
the superiority of the proposed model, we compare our results with those of the hybrid higher-order TV model
(HOTV)[21] and the MGPTV model defined in Eq. (1). The compared models are implemented by the state-
of-the-art alternating minimization algorithm.

All experiments were run on Matlab and Windows 10 with an Intel Core− i5, 2.4 GHz and 8 GB of
RAM. For quantitative comparison, we use peak signal-to-noise ratio (PSNR) and the structural similarity
index (SSIM) to measure quality of the restoration results. The SSIM measure compares local patterns of pixel
intensities normalized for luminance and contrast, and allows us to get more consistent with human visual
characteristics [42].

PSNR = 10 log10

(
2552 ·MN

∥X∗ −X∥22

)
,

SSIM(X,X∗) =
(2µXµX∗ + c1)(2σX,X∗ + c2)

(µ2
X + µ2

X∗ + c1)(σ2
X + σ2

X∗ + c2)
,

where X,X∗ are the original image, the reconstructed or noisy image accordingly; µX , µX∗ are the means
of X , X∗ , respectively; σX , σX∗ their standard deviations; σX,X∗ the covariance of two images X and X∗ ;
c1 = (K1L)

2 ; c2 = (K2L)
2 , L is the dynamic range of the pixel values (L = 255 for 8-bit grayscale images),

K1 ≪ 1 , K2 ≪ 1 . The test images are shown in Figures 1a–1e. Empirically, all images are processed with
the equivalent parameters empirically λ = 0.4, β = 0.6, η1 = 1.2, η2 = 0.1 , and η3 = 1 , which gave the best
restoration results. We set tolerance ς = 0.0001 and the maximum number of iterations N = 200 .

Figure 1. Test images.

7
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First experiment: image denoising

In this case, H is an identity matrix. The observed images are simulated by adding Poisson noise using the
MATLAB command poissrnd(X/σp) ∗ σp and additive Gaussian noise with noise level σg .

The visual performance of compared models for the test images is shown in Figures 2 and 3 with noise
levels σp = 1 , σg = 5 and is shown in Figures 4 and 5 with noise levels σp = 3 , σg = 5 . In Figures 2a, 3a, 4a,
and 5a, we show the noisy images. In Figures 2b–2d and 4b–4d, we show the reconstructions via HOTV model,
MGPTV model and our model, respectively. We also show the zoomed details of original images in Figures
2e and 4e and the zoomed details of the restored images given by the tested methodsi respectivelyi in Figures
2f–2h and 4f–4h. In addition, in Figures 3b-3d and 5b-5d, we show the reconstructions given by tested methods
attaching the zoomed details of the restored images. As we see in these figures, the visual quality of the images
restored by our model is superior to the images restored by the other models.

Figure 2. Image ‘Cameraman’: recovered images of different approaches for image denoising. a) noisy image G with
σp = 1 , σg = 5 ; b) restored image by HOTV; c) restored image by MGPTV; d) restored image by our approach.

An important factor to measure the effectiveness of the denoising methods is run time. Table 1 shows
the convergence results of all tested algorithms for different images. Furthermore, in Figures 6a–6c, we show
the evolution of ERR as a function of the number of iterations for the compared methods. From these figures,
we can confirm the convergence behaviour of the compared methods with the error decreased monotonically per
iteration. It can be observed from the table that the computation time of the restored images using our model
and MGPTV is about the same, and the computation time of the restored images by the proposed method is
less than that required by HOTV. In Tables 2 and 3, we show the comparison results in terms of SSIM and
PSNR (the best result is highlighted in bold). We can clearly see that our method outperforms the other relative
methods for mixed Poisson-Gaussian noise removal.

8
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Figure 3. Recovered images of different approaches for image denoising. a) noisy image G with σp = 1 , σg = 5 ; b)
restored image by HOTV; c) restored image by MGPTV; d) restored image by our approach.

Figure 4. Image ‘Butterfly’: recovered images of different approaches for image denoising. a) noisy image G with
σp = 1 , σg = 5 ; b) restored image by HOTV; c) restored image by MGPTV; d) restored image by our approach.

9
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Figure 5. Recovered images of different approaches for image denoising. a) noisy image G with σp = 3 , σg = 5 ; b)
restored image by HOTV; c) restored image by MGPTV; d) restored image by our approach.

Table 1. Computational time for image denoising.

Image Method Time (in seconds) Niter

Castle
(σg = 1, σp = 5)

HOTV 0.7954 28
MGPTV 0.6015 18
Ours 0.6126 18

Brain
(σg = 1, σp = 5)

HOTV 2.3214 69
MGPTV 1.1220 59
Ours 1.0423 54

Butterfly
(σg = 3, σp = 5)

HOTV 0.8678 23
MGPTV 0.7620 18
Ours 0.7868 19

10
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Figure 6. Plots of the error values (ERR) versus iterations of the TV-based methods for image denoising.

Table 2. PSNR and SSIM values for noisy images and restored images with noise level σp = 1 , σg = 5 .

Image PSNR SSIM
Noisy HOTV MGPTV Ours Noisy HOTV MGPTV Ours

Cameraman 22.6034 26.1429 28.0327 29.6009 0.6468 0.8304 0.8587 0.8658
Lighthouse 23.1926 27.3772 27.8199 28.3255 0.6741 0.8590 0.8587 0.8678
Castle 18.0378 27.6571 27.9929 28.9437 0.6637 0.8800 0.8852 0.8915
Butterfly 20.4104 30.3151 30.6999 31.4352 0.7362 0.9196 0.9386 0.9422
Brain 25.6292 28.7183 31.5635 33.0640 0.8292 0.90176 0.8760 0.9432

Table 3. PSNR and SSIM values for noisy images and restored images with noise level σp = 3 , σg = 5 .

Image PSNR SSIM
Noisy HOTV MGPTV Ours Noisy HOTV MGPTV Ours

Cameraman 19.0732 25.0359 26.3278 27.0434 0.5178 0.7709 0.8052 0.8123
Lighthouse 16.9552 23.2803 24.3522 24.8347 0.5221 0.7670 0.7801 0.7922
Castle 16.4501 24.8839 25.4574 26.9789 0.5091 0.8123 0.8180 0.8299
Butterfly 17.2101 26.9709 27.6911 28.8553 0.6111 0.8930 0.9038 0.9107
Brain 23.1269 27.2700 29.8279 30.7990 0.7374 0.8760 0.8525 0.9089

Second experiment: image deblurring and denoising

In this case, we perform simultaneously image deblurring and denoising. The blurred image is simulated by
Gaussian blur of size 8 × 8 with standard deviation of 1. Then the blurred image is contaminated by Poisson
noise with σp = 3 and Gaussian noise with σg = 5 . In Figures 7a and 8a, we represent the blurred and noisy
image. In the others, Figures 7b–7d and 8b–8d separately, we show respectively the reconstructions given by
HOTV model, MGPTV model and our model. In these figures, we have enlarged some details of restored
images. In Table 4 we also illustrate the convergence results of all tested algorithms for three different images.
Besides, in Figures 9a–9c, we show the evolution of ERR as a function of the number of iterations for the
compared methods. From the figures, we also confirm the convergence behaviour of the compared methods.

For the comparison of the performance quantitatively, we report the PSNR and SSIM values in Table
5. Visually, it can be seen that our proposed method reaches better visual quality and higher PSNR and
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Figure 7. Results for images: recovered images of different approaches for image denoising. a) Blurring and noisy image
G with σp = 3 , σg = 5 ; b) restored image by HOTV; c) restored image by MGPTV; d) restored image by our approach.

Table 4. Computational time for image denoising and debluring.

Image Method Time (in seconds) Niter

Cameraman
HOTV 1.9527 51
MGPTV 1.4894 45
Ours 1.4170 41

Lighthouse
HOTV 1.4858 53
MGPTV 1.3870 49
Ours 1.3062 43

Butterfly
HOTV 1.6731 49
MGPTV 1.5243 45
Ours 1.4800 42

SSIM values. The numerical simulations suggest again the effectiveness of our proposed method for image
reconstruction under mixed Poisson-Gaussian noise even in the presence of blur.
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Figure 8. Results for images: recovered images of different approaches for image denoising. a) blurring and noisy image
G with σp = 3 , σg = 5 ; b) restored image by HOTV; c) restored image by MGPTV; d) restored image by our approach.

Figure 9. Plots of the error values (ERR) versus iterations of the TV-based methods for image denoising and debluring.

Conclusion

In this work, we propose a hybrid regularizer approach which combines the first and second-order TV for
denoising and deblurring image corrupted by MPGN. We employ a highly efficient alternating minimization
algorithm for solving the optimization problem and compare with two other MPGN removal methods. The
experiments demonstrate the superiority of the proposed method. The proposed method removes MPGN noise
quite well and overcomes staircase effect caused by total variation regularization. In our paper, the limitation
of the proposed method is that we do not update the regularization parameters during the iteration. In future
research, we would like to overcome the issue and apply the proposed method to different noise models.
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Table 5. PSNR and SSIM values for blurring and noisy images and restored images with noise level σp = 3 , σg = 5 .

Image PSNR SSIM
Noisy HOTV MGPTV Ours Noisy HOTV MGPTV Ours

Cameraman 18.8795 20.6446 21.7991 23.2953 0.3434 0.6428 0.6979 0.7397
Lighthouse 15.8398 18.7710 19.3424 20.3709 0.2764 0.5863 0.5898 0.6317
Castle 15.8086 23.7668 23.7720 24.4558 0.3617 0.7132 0.7100 0.7587
Butterfly 17.2880 21.9563 22.2856 24.5585 0.4958 0.8257 0.8086 0.8660
Brain 22.3658 23.7707 24.8696 27.9999 0.6633 0.7697 0.7452 0.8735
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