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Abstract: This study performed a deep learning-based classification of chaotic systems over their phase portraits. To
the best of the authors’ knowledge, such classification studies over phase portraits have not been conducted in the
literature. To that end, a dataset consisting of the phase portraits of the most known two chaotic systems, namely
Lorenz and Chen, is generated for different values of the parameters, initial conditions, step size, and time length. Then,
a classification with high accuracy is carried out employing transfer learning methods. The transfer learning methods
used in the study are SqueezeNet, VGG-19, AlexNet, ResNet50, ResNet101, DenseNet201, ShuffleNet, and GoogLeNet
deep learning models. As a result of the study, classification accuracy between 97.4% and 100% for 2-ways classifier and
between 83.68% and 99.82% for 3-ways classifier is achieved depending on the problem. Thanks to this, random signals
obtained in real life can be associated with a mathematical model.
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1. Introduction
Chaotic systems and chaotic behaviors are a subfield of nonlinear systems. Studies on the classification of chaotic
signals with artificial intelligence methods have just begun to emerge [1]. Most systems in our physical world
have nonlinear mathematical models, as we all know. As previously stated, one of the behavioral characteristics
of nonlinear systems is that they can exhibit chaotic behavior based on system parameters and initial values
[2, 3]. Chaotic systems are systems that exhibit chaotic behavior at this point. The Lorenz system was chosen
as the first of the systems discussed in our study because it was one of the first studies on the subject and one of
the most well-known [2, 3]. Because the goal of the study is to classify systems based on the chaotic signals they
generate, two different systems are discussed, one similar to the Lorenz system and the other with a different
structure. Because of its widespread use in the literature [4, 5], the Chen system, which is derived from the
Lorenz system as a system similar to the Lorenz system, and the Rössler system as a different system, has been
preferred. As a result, the performance of the model developed in the classification problem is comparable,
and its performance is measured on various systems. The purpose of classifying with the phase portrait in this
study is to make classifications based on the relationship between the state variables appearing in the phase
portraits, rather than only on time series based on a single state variable. As a result, it aims to outperform
classifications performed on similar time series in different systems. Another reason for using phase portraits
in the study is to contribute to the literature, as this approach has not previously been used in similar studies.
∗Correspondence: skacar@subu.edu.tr
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The findings show that this approach is more effective, particularly in the transfer learning method.

In recent years, chaos or chaotic systems have been employed in various fields in engineering such as
secure communication [6], data security [7], cryptography [8], video and audio encryption [9, 10], weak signal
detection [11], random number generators [12], digital signature applications [13], and DC-DC converters [14].
Moreover, deep learning has become one of the most popular literature topics in recent years [15]. Despite
the fact that there are many studies on deep learning, these studies are usually on the classification processes
of different fields. In this study, the two of the most famous subjects, namely chaos and deep learning, are
considered, and deep learning-based classification of the phase portraits of the chaotic systems is carried out.

Deep learning is a part of machine learning [16] that employs multilayer artificial neural networks on
several engineering applications such as image processing [17, 18], voice recognition [19, 20], natural language
processing [21–23], and object recognition [24]. In deep learning, the learning process can be achieved au-
tonomously as opposed to traditional machine learning algorithms in which the learning process can be achieved
with fixed rules [25]. To the best of the authors’ knowledge, there is no deep learning-based classification study
on the images of phase portraits of chaotic systems. On the other hand, deep learning-based classification of
the chaotic signals over time series is available in the literature.

The work carried out by Boulle et al. [26] is one of the most promising works performed in this area. In
that work, the classification of time series of discrete and continuous-time dynamical systems was performed by
employing ShallowNet, multilayer perceptrons (MLP), the fully convolutional neural network (FCN), residual
network – ResNet, large kernel convolutional neural network (LKCNN) methods. It was found out that the
highest classification performance was observed with LKCNN method. In Uzun’s study [27], the time series
of Lorenz, Chen, and Rössler systems, three of the well-known chaotic systems, are classified using machine
learning algorithms. As classification success, it was obtained with the K-Nearest Neighbor algorithm with
99.20% success. Yeo [28] employed the long short-term memory network (LSTM) in his study of prediction
of chaotic system from noisy observation. It was concluded that LTSM filters out noise effectively, and this
enables achieving of high accuracy prediction of nonlinear dynamics. Kuremoto et al. [29] generated deep
belief nets (DBNs) by employing restricted Boltzmann machine (RBM) and multilayer perceptron (MLP) for
the prediction of the time series of the Lorenz and Henon map systems. They concluded that their generated
DBNs have better prediction accuracy than the traditional DBNs. Sangiorgio et al. [30] classified the noiseless
time series of the chaotic systems with their proposed methods. These methods are feed-forward (FF)-recursive,
FF-multi-output, LSTM-teacher forcing (TF), and LSTM-no-TF. They concluded that LTSM based predictors
have superior performance than FF-recursive and FF-multi-output methods.

The main goal of this research is to show that phase portraits can be used to classify similar and dissimilar
chaotic systems. The results show that this classification can be done quickly and accurately. If any physical
system is found to exhibit chaotic behavior, it will be possible to determine which chaotic system model the
system has, or at least convergence, over the phase portraits of the experimentally obtained time series, without
the need for mathematical modeling. The research presented here should be regarded as a preliminary study
for the abovementioned applications.

In the literature, there are not many studies about the deep learning-based classification of chaotic signals,
and there is not any study at all regarding deep learning-based classification chaotic systems over their phase
portraits images. In this study, a high accuracy classification of the chaotic systems is performed using the
most common deep learning models of SqueezeNet[31], VGG-19[32], AlexNet[33], ResNet50[34], ResNet101[34],

18



KAÇAR et al./Turk J Elec Eng & Comp Sci

DenseNet201[35], ShuffleNet[36], and GoogLeNet[37]. To the best of the authors’ knowledge, a high accuracy
classification of different chaotic systems over phase portrait images is presented for the first time in the
literature. The advantages of using transfer learning can be listed as follows despite the situation of obtaining
a new model by training from scratch;
-Provides faster training time as they contain a lot of information extracted from model images used in transfer
learning.
-One of the biggest disadvantages is the need for large-scale data in model building applications from scratch.
On the other hand, in transfer learning models, classification can be made with less data with higher accuracy.
-The performance of transfer learning models can be increased by performing simple operations such as adding
full link layers to their structures.

The paper is so organized that Section 2 presents the used chaotic systems and data sets obtained from
these chaotic systems. Section 3 presents the used deep learning models. Section 4 presents the classification
processes and their performance results, and Section 5 offers the conclusion.

2. The used chaotic systems and obtained dataset

Lorenz, Chen, and Rössler chaotic systems are considered in this study. There are many different chaotic
systems available in the literature. These three systems are selected because they are the most common chaotic
systems [38] and three-dimensional, contain similar nonlinear terms in their mathematical model, and can be
used to model physical systems such as atmospheric, electrical and chemical systems. Moreover, these three
systems are selected because the time series and phase portraits of Lorenz and Chen systems are very alike,
while the time series and phase portraits of Rössler system are very different than those of Lorenz and Chen
systems. The Rössler chaotic system has a completely different mathematical model than the others. Lorenz
and Chen have mathematical models that are very similar. This makes the selection of these three systems
logical for the classification performance evaluation purpose. A data set is constructed using time series and
phase portraits of these three chaotic systems.

2.1. Lorenz system

Edward Lorenz proposed the Lorenz system in 1963 as a simplified mathematical model of atmospheric convec-
tion [39, 40]. Lorenz system is a system of three ordinary differential equations as given in Equation 1. Here,
x, y, and z represent the state variables, and a, b, and c represent the system parameters.

ẋ = ay − ax
ẏ = xc− xz − c
ż = xy − bz

(1)

Moreover, the Lorenz system can also be in the modeling of thermosiphons [41], lasers [42], electrical
circuits [43], brushless DC motors [44], dynamos [45], and chemical reactions [43]. Figure 1 shows the time
series and phase portraits of the Lorenz chaotic system for the system parameters a = 10, b = 8/3, c = 28,
initial conditions x0 = 1, y0 = –1 and z0 = 1.5. The time series given in Figure 1 has random variations. The
chaotic systems can be used in encryption and data security applications thanks to this randomness property
of the chaotic signals.
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Figure 1. Time series and phase portraits of the Lorenz system for system parameters a = 10, b = 8/3, c = 28 and x0,
y0, z0 = 1, –1, 1.5. (a) Time series of x, (b) Time series of y, (c) Time series of z, (d) Phase portrait of x-y, (e) Phase
portrait of x-z, (f) Phase portrait of y-z.

2.2. Chen system
Guanrong Chen and Ueta have introduced a double scrolled chaotic system called the Chen system or Chen
chaotic attractor in 1999 [46, 47]. Chen system is a system of three ordinary differential equations as given in
Equation 2. Here, x, y, and z represent the state variables, and a, b, and c represent the system parameters.

ẋ = ay − ax
ẏ = cx− ax− xz + cy

ż = xy − bz
(2)

Figure 2 shows the time series and phase portraits of Chen chaotic system for the system parameters a
= 40, b = 3, c = 25, initial conditions x0 = 0.2, y0 = 0.5 and z0 = 0.8. If the time series phase portraits given
in Figures 1 and 2 and the equation systems given in Equations 1 and 2 are examined, it can be said that the
Lorenz and Chen systems have some similarities. These similarities will be a challenge to be overcome for the
classification process.

2.3. Rössler system
Otto Rössler developed the Rössler system in 1976, which can be very useful for modeling chemical reactions
[48, 49]. Rössler system is a system of three ordinary differential equations as given in Equation 3. Here x, y,
and z represent the state variables, and a, b, and c represent the system parameters.

ẋ = −y − z
ẏ = x+ ay

ż = zx− zc+ b
(3)
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Figure 2. Time series and phase portraits of the Chen system for system parameters a = 40, b = 3, c = 25 and x0, y0,
z0 = 0.2, 0.5, 0.8. (a) Time series of x, (b) Time series of y, (c) Time series of z, (d) Phase portrait of x-y, (e) Phase
portrait of x-z, (f) Phase portrait of y-z.

The Rössler system is a single scroll system that can be easier to analyze than the Lorenz system, even though
their equation systems are similar. Figure 3 shows the time series and phase portraits of Rössler chaotic system
for the system parameters a = 0.1, b = 0.1, c = 14, and initial conditions x0 = 12, y0 = 12 and z0 = 0. The
time series and phase portraits of the Rössler system are very different than those of the other two systems.
This makes the classification of the Rössler system easier. Thus, the classification performance will be evaluated
on an elementary problem.

2.4. The produced dataset
In this section, how the data set is generated is presented. Before generating the data set, the three chaotic
systems were solved numerically with Runge-Kutta 4 (RK4) algorithm [50] to obtain state variables of the
chaotic systems. Runge-Kutta is one of the most widely used and fundamental methods for solving ordinary
differential equations systems numerically. The RK4 algorithm, as shown in Equation 4, is a method that can
converge to the correct result with a small number of errors. The state variables are calculated for different
system parameters and initial conditions values. Moreover, the length of time series (or the number of calculated
points) and the step size of the RK4 algorithm are also varied for generating the data set.

RK1 = kf(ai, bi)
RK2 = kf(ai +

k
2 , bi +

t1
2 )

RK3 = kf(ai +
k
2 , bi +

t2
2 )

RK4 = kf(ai + k, bi + t3)
bi+1 = bi +

t1
6 + t2

3 + t3
3 + t4

6 +O(k5)

(4)
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Then phase portraits are obtained after calculating the state variables. For every variable of a chaotic
system, 750 different time series data were calculated. Since all the chaotic systems are 3-dimensional, 2250
different time series are calculated for each chaotic system, and the total 6750 different time series are calculated
for the three chaotic systems. The system and calculation parameter values are as shown in Table 1. All the
phase portraits are saved as a 128 × 128-pixel image because the transfer learning methods are very useful for
image classification. The data set consists of 6750 different phase portraits images.

Figure 3. Time series and phase portraits of the Rössler system for system parameters a = 0.1, b = 0.1, c = 14 and x0,
y0, z0 = 12, 12, 0. (a) Time series of x, (b) Time series of y, (c) Time series of z, (d) Phase portrait of x-y, (e) Phase
portrait of x-z, (f) Phase portrait of y-z.

Table 1. The used calculation parameters for dataset.

System
System parameters
(Only b parameters are
changed for every system)

The length of time series
(the number of total
calculated points)

The step size
of RK4 algorithm

The Initial conditions

Lorenz b=2.5, 3, 3.5, 4, 4.5, 5 10000, 12500, 15000,
17500, 20000

0.01
0.02
0.05
0.1
0.2

X0=0.1, 0.2, 0.3, 0.4, 0.5
Y0=0.3, 0.4, 0.5, 0.6,0.7
Z0=0.4, 0.5, 0.6, 0.7, 0.8

Chen b=0.05, 0.1, 0.15, 0.2, 0.25, 0.3 20000, 25000, 30000,
35000, 40000

X0=8, 9, 10, 11, 12
Y0=8, 9, 10, 11, 12
Z0=0, 1, 2, 3, 4

Rössler b=2.5, 2.55, 2.6, 2.65, 2.7, 2.75 2000, 4000, 6000,
8000, 1000

X0=8, 9, 10, 11, 12
Y0=-8, -9, -10, -11, -12
Z0=13, 14, 15, 16, 17
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3. The used deep learning models

In this study, deep learning-based classification of three different chaotic systems over their xy, yz, and xz
portraits are presented. The classification is carried out by applying eight different pretrained deep learning
models (VGG-19, AlexNet, ResNet50, ResNet-101, DenseNet-201, ShuffleNet, and GoogLeNet) on the phase
portrait images of the three chaotic systems.

3.1. Deep learning and convolutional neural networks (CNN)

As seen in Figure 4, deep learning is a subcategory of machine learning algorithms that employ different
architectures to learn the distinctions on the data [51]. Artificial neural network-based deep learning algorithms
have multilayer neural networks to accomplish the learning process [52, 53].

Figure 4. The relationship between deep learning, machine learning and artificial intelligence.

In traditional machine learning algorithms are developed to analyze data with very few numbers of
features. The traditional machine learning algorithms are not feasible to analyze data sets with numerous
features. To overcome this drawback, CNN is developed. The size of image data is high, and each image consists
of a significant number of pixels. Because of this, CNNs achieve much higher performance than traditional
machine learning algorithms for analyzing such data sets [54].

In 1988, LeNet networks were proposed to process images of large size by Lecun et al. This network is
considered as the first CNN network [55, 56]. The consecutive sublayers of convolutional and maximum pooling
layers constitute LeNet networks. The next top layers are the ones corresponding to MLP. In this network, the
average errors of predicted and obtained results are minimized by training the weights of the network [54].

There are many different network models of CNN available in the literature. SqueezeNet, VGG-19,
AlexNet, ResNet50, ResNet-101, DenseNet-201, ShuffleNet, and GoogLeNet are some of the example architec-
tures of these models [57]. These pretrained networks can enable faster processing in the CNN models, increase
classification performance and increase learning process speed. The performance of these networks varies ac-
cording to the problem they handle. Thus, according to the problem, the pretrained network with the highest
performance is preferred. In this study, these pretrained networks are applied and tested, and among them, the
networks with higher performance are used.
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3.2. ResNet50 and ResNet101
The network architecture of ResNet50 contains 152 layers. It won the ImageNet 2015 contest [34]. The
architecture contains convolution, activation, pooling, and fully connected layers. ResNet architecture is given
in Figure 5. There are five convolutional blocks, each containing 1 × 1, 3 × 3, and 1 × 1 convolutional layers
in the network structure [58, 59]. The size of images is shrunken by the global averaging layer and process of
the two-step sampling [60]. Softmax is the activation function of the fully connected layers.

Figure 5. Training sample of the ResNet architecture with residual layers [34].

3.3. SqueezeNet

SqueezeNet CNN network was introduced in 2016. SqueezeNet architecture is given in Figure 6. Its architecture
is constructed by improving AlexNet architecture. The main difference between AlexNet and SqueezeNet is the
former has 240MB of parameters while the latter has 5MB of parameters.

Figure 6. SqueezeNet network fire module [31].
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The performance of SqueezeNet is as good as that of AlexNet. SqueezeNet also contains fire layers.
SqueezeNet as which show Figure 7 also contains Fire layers. In this layer, filters size is reduced to 1 × 1 in
order to decrease the number of calculated features [31]. Hence, the workload of the neural network decreased,
and SqueezeNet performs faster [61].

Figure 7. The structure of squeezenet network [31].

3.4. AlexNet

Krizhevsky et al. proposed AlexNet as a CNN network in 2012 [33, 62]. Its architecture contains consecutive
convolutional, max-pooling and fully connected layers, and its activation function is rectified linear unit (ReLU)
[63]. AlexNet is usually employed in the classification of images [64]. AlexNet architecture is given in Figure 8
[65].
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Figure 8. The architecture of AlexNet network [65].

3.5. DenseNet-201
DenseNet is a convolutional neural network with its dense connection model. The DenseNet architecture has
inputs of 224 × 224 × 3 sized images as shown in Figure 9 [66].

Figure 9. The structure of DenseNet network [66].

The architecture’s dense blocks contain normalization, ReLU and 3 × 3 convolutional layers [67].
DenseNet architecture connects the layers instead of adding up as in the previous architectures like ResNet. In
the connection layers, all the extracted features in the previous layer are combined and transferred to the next
layer. In DenseNet, the excess features maps are removed while transferring them to the next layer in order to
prevent retraining of the excess features in the next layers. On the other hand, this is not valid for the other
network architectures [35, 68].

3.6. ShuffleNet
Zhang et al. designed ShuffleNet for mobile devices with limited processing power. ShuffleNet is a CNN model
which has quite good performance [36, 69]. This network retains accuracy while decreasing computational cost.
In addition, it has much higher performance than other architectures on studies of ImageNet classification and
MS COCO object recognition [36]. The architecture of ShuffleNet is given in Table 2.

As seen in Table 2, the network model consists of ShuffleNet stack units, which are grouped in three
stages. In each stage, the first block of all structures begins with two strides. While some parameters in one
stage remain the same, the output channels are double for the next stage. The group number g given in Table
2 controls the connection sparsity of pointwise convolutions.
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Table 2. ShuffleNet architecture.

Layer Output size K size Stride Repeat Output Channels (g groups)
g=1 g=2 g=3 g=4 g=8

Image 224 × 224 3 3 3 3 3
Conv1 112 × 112 3 × 3 2 1 24 24 24 24 24
MaxPool 56 × 56 3 × 3 2

Stage2 28x28
28 × 28

2
1

1
3

144
144

200
200

240
240

272
272

384
384

Stage3 14 × 14
14 × 14

2
1

1
7

288
288

400
400

480
480

544
544

768
768

Stage4 7 × 7
7 × 7

2
1

1
3

576
576

800
800

960
960

1088
1088

1536
1536

GlobalPool 1 × 1 7 × 7
FC 1000 1000 1000 1000 1000
Complexity 143M 140M 137M 133M 137M

3.7. GoogLeNet

GoogLeNet, proposed by Szegedy et al., contains 22 layers. GoogLeNet is a pretrained CNN and was selected
as the most successful network in the contest of ILSVRC2014 [37, 64, 70]. The architecture of the network is
shown in Figure 10. In the architecture, there are parallel connected layers for minimizing the possibility of
memorization.

Figure 10. The architecture of GoogLeNet. [71].

The inception modules in the architecture allow simultaneous realization of multicore convolution and
maximum pooling processes in one layer. This makes training of the network with optimum weights and selection
of more appropriate features possible [72]. In each starting layer has 1 × 1, 3 × 3, and 5 × 5 sized convolutional
layers and uses an extra 3 × 3 maximum pooling layer that can extract more distinguishing features than the
ones extracted at the previous layer [71].
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3.8. VGG-19
The architecture of the VGG-19 network has 24 layers, as shown in Figure 11. The architecture of VGG-19
network contains 24 layers. Sixteen convolutional layers have filters of 3 × 3 size, and these layers reduce the
filter parameters. In addition to these layers, the architecture of VGG-19 network contains five pooling and
three fully connected layers [73].

Figure 11. The structure of VGG-19 network [32].

4. Simulation results and performance evaluation

In the paper, two different workgroups were constructed. For each group, three different experiments were
conducted. Furthermore, two different data sets were constructed for each group. The data set of the first
group only contains images of phase portraits of Lorenz and Rössler chaotic systems. The data set of the
second group only includes images of phase portraits of Lorenz and Chen chaotic systems. The images of phase
portraits of xy coordinates in each group were classified. Then the images of the phase portraits of yz and xz
coordinates were classified, and their classification performances were assessed. The first data set contains 600
images of xy, xz and yz phase portraits of Lorenz system and 600 images of xy, xz and yz phase portraits of
Rössler system. The classification tests were conducted on these total 1200 images using pretrained networks.
The second data set contains 600 images of xy, xz and yz phase portraits of Lorenz system and 720 images
of xy, xz and yz phase portraits of Chen system. The classification tests were conducted on these total 1320
images using pretrained networks. The used dataset can be seen in Table 3.
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Table 3. The used dataset.

Lorenz Chen Rössler Total
xy xz yz xy xz yz xy xz yz

Training (%70) 420 420 420 504 504 504 420 420 420 4032
Test (%30) 180 180 180 216 216 216 180 180 180 1728
Total 600 600 600 720 720 720 600 600 600 5760

In the study, numerous pretrained networks were utilized for the classification tests, and the eight
pretrained networks with the highest performance were selected. These networks are Squeezenet, VGG-19,
AlexNet, ResNet50, ResNet101, DenseNet201, ShuffleNet, and GoogLeNet. The purpose here is to compare
performance results of classification of similar chaotic systems like Lorenz-Chen systems and classification of
very different chaotic systems like Lorenz-Rössler systems over their images of phase portraits using deep neural
networks.

4.1. Evaluation of results and performance of Lorenz-Rössler and Chen-Rössler systems classifi-
cation

In this experimental group, the classifications of Lorenz-Rössler and Chen-Rössler systems are performed over
two dimensional xy, yz and xz phase portraits. Some sample images of used xy, yz and xz phase portraits of
Lorenz, Rössler and Chen systems are shown in Figure 12.

As it can be seen in Figure 12, the images of xy, yz and xz phase portraits of Lorenz-Rössler and Chen-
Rössler systems are very different from each other. So, the classification of Lorenz-Rössler and the classification
of Chen-Rössler are simple problems for the used transfer learning models. Thus, all the pretrained networks
classify these phase portraits with 100% accuracy.

Figure 12. Sample images of phase portraits obtained from Lorenz and Rössler systems.
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4.2. Evaluation of results and performance of Lorenz-Chen systems classification

In this experimental group, as second and more difficult problem, Lorenz and Chen systems are classified. Some
sample images of phase portraits of Lorenz and Chen systems in Figure 13. As it is seen in Figures 13, the
xy phase portraits of Lorenz and Chen systems are very alike. This makes the classification of these phase
portraits very difficult. However, very good classification performance results were observed because of the
preferred pretrained networks and the optimizations done for these networks. In Table 4, the contrast matrices
for the xy phase portraits images are given in Figure 13. The classification performance of the pretrained
networks is seen clearly in Table 4. In Table 5, the performance metrics of the classification of the xy phase
portraits of Lorenz and Chen systems are given. According to Table 5, all the network has 100% performance.
Because the xy phase porter images of the Lorenz and Chen systems are so dissimilar, all pretrained networks
used in the study were successfully classified, as shown in Table 4. Because the xz phase portrait images of
the Lorenz and Chen systems are so similar, all algorithms have successfully classified between 92 and 100
percent of the time in Table 6. Pretrained networks ResNet101 and DenseNet201 outperformed other networks
in classification and correctly predicted all classes. This is because DenseNet and ResNet architectures have
more features than other pretrained network architectures because they use concatenation layers instead of
aggregating layers. As a result, the performance of these two networks is significantly better than that of the
others. Because the yz phase portrait images of the Lorenz and Chen systems are so dissimilar in Table 7,
the overall performance of all pretrained networks is around 90%–97%. DenseNet, with a success rate of 97.47
percent, is once again the most successful network.

Table 4. Contrast matrices of classification over xy phase portraits of Lorenz and Chen systems.

Network True positive (TP) True negative (TN) False positive (FP) False negative (FN)
SqueezeNet 216 180 0 0
VGG-19 216 180 0 0
AlexNet 216 180 0 0
ResNet50 216 180 0 0
ResNet101 216 180 0 0
DenseNet201 216 180 0 0
ShuffleNet 216 180 0 0
GoogLeNet 216 180 0 0

Table 5. Performance metrics of classification over xy phase portraits of Lorenz and Chen systems.

Network Accuracy Precision Sensitivity Specificity
SqueezeNet 1.000000 1.000000 1.000000 1.000000
VGG-19 1.000000 1.000000 1.000000 1.000000
AlexNet 1.000000 1.000000 1.000000 1.000000
ResNet50 1.000000 1.000000 1.000000 1.000000
ResNet101 1.000000 1.000000 1.000000 1.000000
DenseNet201 1.000000 1.000000 1.000000 1.000000
ShuffleNet 1.000000 1.000000 1.000000 1.000000
GoogLeNet 1.000000 1.000000 1.000000 1.000000
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In the second experimental study carried out for this group, classification of images xz phase portraits of
Lorenz and Chen systems is performed. Some sample images of xz phase portraits of Lorenz and Chen systems
are shown in Figure 13. As seen in Figure 13, the xz phase portraits of Lorenz and Chen systems are very alike.

Figure 13. Sample images of phase portraits obtained from Lorenz and Chen systems.

This makes the classification of these phase portraits very difficult. However, very good classification
performance results were observed because of the preferred pretrained networks and the optimizations done for
these networks. In Table 6, the contrast matrices for the xz phase portraits images are given in Figure 13. The
classification performance of the pretrained networks is seen clearly in Table 6.

Table 6. Contrast matrices of classification over xz phase portraits of Lorenz and Chen ystems.

Network True positive (TP) True negative (TN) False positive (FP) False negative (FN)
SqueezeNet 178 216 2 0
VGG-19 179 216 1 0
AlexNet 179 216 1 0
ResNet50 179 216 1 0
ResNet101 180 216 0 0
DenseNet201 180 216 0 0
ShuffleNet 151 216 29 0
GoogLeNet 156 216 24 0

In Table 7, the performance metrics of the classification of the xz phase portraits of Lorenz and Chen
systems are given. According to Table 7, ResNet101 and DenseNet201 provide the best classification perfor-
mance.

In the last experimental study for this group, the classification of images yz phase portraits of Lorenz and
Chen systems is performed. Some sample images of yz phase portraits of Lorenz and Chen systems are shown in
Figure 13. As seen in Figure 13, the yz phase portraits of Lorenz and Chen systems are very alike. This makes
the classification of these phase portraits very difficult. However, very good classification performance results
were observed because of the preferred pretrained networks and the optimizations done for these networks.
In Table 8, the contrast matrices for the yz phase portraits images are given in Figure 13. The classification
performance of the pretrained networks is seen clearly in Table 8.
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Table 7. Performance metrics of classification over xz phase portraits of Lorenz and Chen systems.

Network Accuracy Precision Sensitivity Specificity
SqueezeNet 0.994949 0.988889 1.000000 0.990826
VGG-19 0.997475 0.994444 1.000000 0.995392
AlexNet 0.997475 0.994444 1.000000 0.995392
ResNet50 0.997475 0.994444 1.000000 0.995392
ResNet101 1.000000 1.000000 1.000000 1.000000
DenseNet201 1.000000 1.000000 1.000000 1.000000
ShuffleNet 0.926768 0.838889 1.000000 0.881633
GoogLeNet 0.939394 0.866667 1.000000 0.900000

Table 8. Contrast matrices of classification over yz phase portraits of Lorenz and Chen systems.

Network True positive (TP) True negative (TN) False positive (FP) False negative (FN)
SqueezeNet 141 216 39 0
VGG-19 180 201 0 15
AlexNet 176 198 4 18
ResNet50 179 199 1 17
ResNet101 167 211 13 5
DenseNet201 172 214 8 2
ShuffleNet 176 191 4 25
GoogLeNet 179 195 1 21

In Table 9, the performance metrics of the classification of the yz phase portraits of Lorenz and Chen
systems are given. According to Table 9, DenseNet201 and VGG-19 provide the best classification performance.

Table 9. Performance metrics of classification over yz phase portraits of Lorenz and Chen systems.

Network Accuracy Precision Sensitivity Specificity
SqueezeNet 0.901515 0.783333 1.000000 0.847059
VGG-19 0.962121 1.000000 0.923077 1.000000
AlexNet 0.944444 0.977778 0.907216 0.980198
ResNet50 0.954545 0.994444 0.913265 0.995000
ResNet101 0.954545 0.927778 0.970930 0.941964
DenseNet201 0.974747 0.955556 0.988506 0.963964
ShuffleNet 0.926768 0.977778 0.875622 0.979487
GoogLeNet 0.944444 0.994444 0.895000 0.994898

In addition to the 2-way classifier, the phase portraits of these three systems can be classified at once
with the 3-way classifier. For this purpose, the images in the data set were defined as three different classes,
and the results in Tables 10–12, respectively, xy, xz and yz, were obtained from the models obtained as a result
of the trainings made accordingly. According to these results, the best result in the classification of xy phase
portraits in Table 10 was obtained with AlexNet and ResNet101. In Table 11, the best result in the classification
of xz phase portraits was obtained with DenseNet201. Finally, in Table 12, the best result in the classification
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of yz phase portraits was obtained with AlexNet. When the obtained results are examined, it is seen that
classification can be made with a sufficiently high accuracy with the 3-way classifier application. On the other
hand, it is seen that the results obtained with the 2-way classifier are better as expected.

The obtained results show that transfer Learning models can effectively classify the chaotic systems over
phase portraits images in this study. However, a similar classification application can also be performed with
machine learning algorithms. In [22], the classification application of the same chaotic systems was carried out
with machine learning methods, and the best performance was obtained with the k-nearest neighbor (KNN)
algorithm with 99.20%. On the other hand, in this study, 100% accuracy was obtained with transfer learning
models with 2-ways classifiers and 99.82% with 3-ways classifiers, and better results than machine learning were
demonstrated.

Table 10. Performance metrics of classification over xy phase portraits of Lorenz, Chen and Rössler systems.

Network Accuracy Precision Sensitivity Specificity
SqueezeNet 0.98090 0.98385 0.97963 0.98981
VGG-19 0.99132 0.99099 0.99228 0.99579
AlexNet 0.99826 0.99816 0.99815 0.99916
ResNet50 0.98264 0.98525 0.98148 0.99074
ResNet101 0.99826 0.99846 0.99815 0.99907
DenseNet201 0.99132 0.99246 0.99074 0.99537
ShuffleNet 0.94444 0.94886 0.94074 0.97290
GoogLeNet 0.98958 0.99099 0.98889 0.99444

Table 11. Performance metrics of classification over xz phase portraits of Lorenz, Chen and Rössler systems.

Network Accuracy Precision Sensitivity Specificity
SqueezeNet 0.90799 0.92418 0.90741 0.95539
VGG-19 0.99306 0.99359 0.99259 0.99638
AlexNet 0.98958 0.98925 0.99074 0.99495
ResNet50 0.99653 0.99694 0.99630 0.99815
ResNet101 0.98090 0.98385 0.97963 0.98981
DenseNet201 0.99826 0.99816 0.99846 0.99916
ShuffleNet 0.89931 0.92944 0.89259 0.94630
GoogLeNet 0.89583 0.92754 0.88889 0.94444

Table 12. Performance metrics of classification over yz phase portraits of Lorenz, Chen and Rössler systems.

Network Accuracy Precision Sensitivity Specificity
SqueezeNet 0.83681 0.88564 0.85494 0.92088
VGG-19 0.89757 0.91633 0.90864 0.95025
AlexNet 0.94271 0.95033 0.94043 0.96987
ResNet50 0.91146 0.92641 0.92130 0.95707
ResNet101 0.89583 0.92578 0.88889 0.94461
DenseNet201 0.87847 0.90956 0.87160 0.93552
ShuffleNet 0.84549 0.88157 0.86142 0.92475
GoogLeNet 0.88021 0.90763 0.89352 0.94192

33



KAÇAR et al./Turk J Elec Eng & Comp Sci

5. Conclusion
In this study, a very high accuracy classification of three different chaotic systems was performed over their
phase portrait images using deep learning models for the first time in the literature. The phase portraits of
the three most common chaotic systems, namely Lorenz, Chen and Rössler systems, were used to classify. All
the phase portraits are obtained by numerically solving the chaotic systems with the RK4 algorithm. The
numerical solutions are carried out for different step size values, initial conditions, system parameters and time
range to populate the dataset with diversified data. The data set contains 6750 different phase portrait images.
Classifications with very high performance are conducted utilizing SqueezeNet, VGG-19, AlexNet, ResNet50,
ResNet101, DenseNet201, ShuffleNet, and GoogLeNet methods. Especially, very good classification performance
results are obtained for Lorenz and Chen systems whose phase portraits, time series and dynamical properties
are very alike. For all the eight networks, relatively high classification performances are observed.

The classification of the chaotic systems with different dynamical properties and time series and phase
portraits like Lorenz and Rössler chaotic systems has very high-performance results as expected. For all the
eight networks, relatively high classification performances are observed.

Moreover, for more difficult problem as classification of Lorenz and Chen systems, very high classification
accuracy rates between 97% and 100% are achieved with AlexNet, DenseNet201 and SqueezeNet networks. Also,
classification of 3 systems was also carried out using 3-ways classifier in one time, and results were obtained
with a high accuracy of 99.82%. This study shows that the chaotic systems can be classified with very high
accuracy over phase portraits using deep learning. Thus, this study proves that classifying real-life chaotic or
random varying signals/data or associating them with a mathematical model over their phase portrait images
is possible.
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