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Abstract: In research areas such as mobile robotics and computer vision, energy and computational efficiency have
become critical. This has greatly increased interest in high-efficiency neuromorphic hardware and spiking neural networks.
Because neuromorphic hardware is not yet widely available, spiking neural network studies are conducted by simulations.
There are numerous simulators available today, each designed for a specific purpose. In this paper, a novel and open-
source package (SPAYK) for simulating spiking neural networks is presented. SPAYK has been proposed to speed up
spiking neural network research. In the majority of simulators, networks are expressed with differential equations and
require advanced neuroscience knowledge since such simulators are generally designed for brain and neuroscience research.
SPAYK, on the other hand, is specifically designed as a framework to easily design spiking neural networks for practical
problems. SPAYK is an easy-to-use Python package. There are three fundamental classes in the core: the model class for
creating neuron groups, the organization class for simulating tissues, and the learning class for synaptic plasticity. While
developing and testing the SPAYK environment, various experiments were carried out. This study includes three of these
experiments. In the first experiment, we investigated the behavior of a group of Izhikevich neurons for visual stimuli.
Also, a single Izhikevich neuron has been trained to respond to a particular label in a supervised manner with synaptic
plasticity. In the second experiment, a well-known experiment was repeated to validate SPAYK. In this experiment, a
neuron trained by synaptic plasticity can recognize repetitive patterns in a spike train. In the third experiment, a similar
neuron was simulated with stimuli with multiple labels adapted from the MNIST dataset. It has been shown that the
neuron can classify a particular label by synaptic plasticity. All these experiments and the SPAYK environment are
presented as open-source tools.
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1. Introduction
Artificial neural network research has a wide range of applications and has a significant impact on many
different research areas. Studies in the field follow an increasingly complex course such as the development
of perceptron, fully connected networks, convolutional neural networks, recurrent networks, and attention
mechanisms. Despite the tremendous progress in network architectures, network training has continued to
adhere to the principle of backpropagation and gradient based other methods. The backpropagation algorithm
based on mathematical foundations has become a standard for artificial neural network training except for some
derivative-free optimization methods. This dependency necessitates the use of differentiable blocks in the design
of new network architectures.
∗Correspondence: aykut.gelen@erzincan.edu.tr
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In neural network designs, an evolution toward biological structures has been noticed due to compu-
tational and energy efficiency in biological structures. Third-generation spiking neural networks are being
developed to exploit these advantages. A spiking neuron, unlike previous generations, attempts to extract
information from spike signals, rather than abstract numerical values. Many biological processes, such as the
opening and closing of ion channels and the release of neurotransmitters, are mimicked to design a spiked
neuron. This approach has resulted in the development of mathematical models for neurons and synapses at
various levels of complexity. Today, spiking neural networks are a very active field of research, with significant
advancements.

In the brain, the event-driven nature of the signals and the encoding of information in the form of spike
signals allow an enormous data processing process to be performed with very little energy. For this reason,
neural network research is developing toward approaching biological models. It has been argued for a long time
that the future of neural networks will be realized through a spike-based computation model. In spiked neural
networks, information is encoded in spike signals. Keeping the information as spike trains allows the information
to be expressed in binary form as in standard computer architecture but in a time-dependent manner. This
reduces the transmission and processing costs of information. For all these reasons, the computational and
energy efficiency of the spiking calculation model is higher than the previous generations.

Aside from their advantages, spiking neural networks have some drawbacks. Spiking neural network
training has not been solved as clearly as in previous generations. A gradient-based universal solution, as in
artificial and convolutional networks, has yet to be proposed. The first issue is that the loss functions and
intermediate model functions are not differentiable. As a result, many simple ideas used in previous-generation
networks cannot be applied to spiking networks. Another issue is synapse models. In spiking neural networks
the concept of weights are not well defined. Connections between neurons and trainable parameters vary
depending on the complexity of the neuron model used. The diversity of the selected synapse and ion channel
models requires changes according to the model during the training process. For spiking network training,
various approaches have been proposed. These approaches are primarily based on the adaptation of traditional
methods or biological processes like Hebbian learning rules and synaptic plasticity.

With spiking neural networks, it is possible to solve the problems that first or second-generation neural
networks have effectively overcome. To make classical problems suitable, it is sufficient to convert the input
data into spike signals. Abstract numerical values in any given data, for example, can be interpreted as the
injected currents or firing rates of neurons. As a result, input data can be mapped directly to spike patterns.
The resulting spike patterns can be processed by clusters of spiking neurons connected in various ways. Thus,
potential solutions to classical neural network problems can be investigated.

Researchers from various fields are interested in spiking neural networks. Different simulation and
experimental environments are used by researchers in fields such as neuroscience, computer science, psychology,
and robotics. As a result, some of the available tools are specialized for studying biological processes, while
others are specialized for studying neurosicience problems. Some simulation environments use differential
equations to express models, while others use a higher-level syntax. Considering this diversity, it is believed
that a simulation environment with understandable and simple commands is required, particularly for robotics
researchers unfamiliar with neuroscience. In addition to ease of use, runtime and memory usage are also
important parameters for simulators. The purpose of use is also decisive for these parameters. While the
total executation time of the simulation is very important for a brain region study consisting of many neurons,
memory usage and instant executation time may be important for a simulation running on a mobile platform.
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1.1. Related work
For a long time, several neural network models and the idea of reducing computational power have been debated,
and spiking neural networks, categorized as the third generation, are being developed. In Maass’s 1997 review,
spiking neural networks are compared to prior generation models in terms of processing capacity [1]. It was
demonstrated in the study that a single spiking neuron model can approximate some arbitrary functions that
can be approximated by multiple perceptrons or sigmoidal neurons by simulation.

A simulation is a powerful tool for spiking neural networks. Aside from in vitro and in vivo experimental
studies, neuron models and network structure simulations are used in many kinds of research. There is a great
deal of research for solving practical problems, in addition to modeling parts of the brain or developing neuron
models. Many computer vision studies have been carried out with spiking neural networks by simulations.
Suggested solutions for energy-efficient object detection, robust object detection, and object tracking problems
for robotic control are some of them [2–4]. Classical classification problems, such as EEG signal classification
and sound classification, have been studied and solved with spiking neural networks [5, 6].

Many tools and packages have been developed to simulate spiking neural networks. These simulators
differ in terms of the areas in which they have been used and how the models are expressed. Tikidji-Hamburyan
et al. published a comparative study in 2017 that provides a detailed overview of popular simulators [7]. The
methods were investigated in terms of computational complexity, available hardware, and user support. In the
study, BRIAN, GENESIS, NEURON, and NEST simulators were investigated in two case studies. As a result,
it has been emphasized that BRIAN is superior in terms of expression, NEST in terms of large-scale models,
and NEURON in terms of detailed biological models. BRIAN is one of the most widely used tools for simulating
spiking neural networks [8]. BRIAN includes intricate models of many neurons and synapses. Models can be
simulated by expressing them as differential equations. It is used in studies such as the behavior of groups of
neurons and specific brain area models.

Another environment for simulating spiking neural networks is being developed by the Neural Simulation
Technology Initiative [9]. Their simulator is called as neural simulation tool (NEST). NEST is another widely
used tool in neuroscience and is a tool used and developed under the Human Brain Project (HBP). Thus,
NEST is intended to work with large models comprised of many neurons. The main goal is to simulate brain
structures and dysfunctions. NEURON, GENESIS, and CARLSim are other important spiking neural network
simulators. NEURON was created as a simulation environment and is commonly utilized in neuroscience
research. NEURON was designed as a simulation environment and is frequently used by neuroscientists. It is
especially emphasized that the models in the NEURON simulator are quite compatible with the experimental
data [10]. The NEURON simulator’s highly detailed models make the simulations more biologically consistent.
Although GENESIS is a very old simulator, it has a significant place in the literature [11]. Because of its modular
design and performance, it has been employed in numerous investigations. CARLSim is another spiking neural
network simulator with GPU acceleration support. It was developed by the Cognitive Anteater Robotics Lab.
and supports a variety of neuron models. There are many versions of CARLSim [12].

Nengo is another significant simulator. It is based on a theory on neural network design for cognition
purposes called the Neural Engineering Framework (NEF) [13]. Nengo offers training schemes for spiking neural
networks, deep learning approaches, and many models of brain regions [14]. Nengo was created specifically for
the study of large-scale brain models. Nengo is used to create many different brain area models and cognitive
models with practical applications. Unlike other simulators, the ANNarchy uses a code generation strategy
[15]. ANNarchy has been developed especially for rate-coded networks and offers support to simulate on the
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GPU. Networks that can be easily written in Python with the code generation mechanism are translated into a
low-level language such as C++, and speed advantage is used. In the ANNarchy environment, neuron groups
and connections are defined as differential equations as in other simulators.

Apart from these simulators, spiking neural network simulators based on classical convolutional neural
network frameworks such as PyTorch and TensorFlow have been developed. The simulator, called SpykeTorch,
is based on the PyTorch library and has packages to perform the design and simulation of networks known as
deep convolutional spiking neural networks [16]. Similar to the PyTorch library, the convolution operator is
applied to the time-varying spike signals to extract features and perform training based on synaptic plasticity.
SpikingJelly is another Pytorch-based simulator that can be considered in the same category [17]. It has similar
features and can support the conversion of artificial neural networks into spiking networks. Such simulators
try to solve traditional neural network problems with spiking neural networks and do not aim for biological
consistency.

The simulation of the SNNs is carried out for different purposes such as investigating the functioning
of spesific brain regions, synaptic plasticity or hebbian learning rules. A training approach like traditional
neural networks is needed to use SNNs for solving practical engineering problems such as computer vision,
object recognition, localization or mapping. Although there are some attempts to train SNNs for spesific tasks,
unfortunately, it cannot be performed with classical gradient-based training algorithms. Various approaches
have been presented for learning in spiking networks. Network training studies for SNNs are usually on the
adaptation of classical methods or the application of synaptic plasticity rules. The study published by Lee et al.
is one of the important studies on the adaptation of the traditional backpropagation method to spiking neural
networks [18]. The solution is obtained by deriving differential equations of neuron models and attempting to
replicate the backpropagation algorithm using mathematical tricks. It has been shown in the study that the use
of regularization and thresholding can result in a stable learning process. Surrogate gradient learning, proposed
by Neftci et al., is another training method with the same approach [19]. Since the activation functions are not
differentiable for spiking models, it has been argued that a gradient-based training can be brought to spiking
neural networks by using surrogate gradients instead of calculating gradients directly.

Spiking network training techniques can be divided into two categories: supervised and unsupervised.
In the review study published by Wang et al., the supervised training approach was grouped according to
different perspectives such as network architecture, running mode and information encoding [20]. In the study,
supervised training strategies were grouped as perceptron-based algorithms that try to reduce the difference
between calculated output and supervised target, synaptic plasticity algorithms based on Hebbian learning
rules, and spike train convolution algorithms like convolutional neural networks. Some studies use the famous
MNIST dataset for supervised training for the image classification problem of spiked neural networks. In the
study published by Li et al., a spiking neural network that tries to imitate V1 and V2 areas inspired by the
visual cortex was trained as a supervised and the dataset was classified [21]. In the study, it has been shown
that a bioinspired spiking network based on orientation-selective cell models can be trained in a supervised
manner. The study also presented a tempotron supervised learning rule based on synaptic plasticity. In the
article published by Liu et al. in 2018, a spiking neural network was trained unsupervised to solve an image
classification problem using synaptic plasticity [22]. In the study, a hierarchical network inspired by the primary
visual cortex structure was designed and trained using spike timing dependent plasticity (STDP). Images from
MNIST and CIFAR datasets were used. It has been shown that the training of the network is successful and
the results are presented comparatively.
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1.2. Contributions
In this paper, we present SPAYK, an open-source environment for spiking neural network simulations. SPAYK
has been proposed as an alternative to existing simulation environments. Artificial or convolutional neural
network frameworks, which are widely used, have enabled researchers from various disciplines to develop
applications without having to understand deep learning or the mathematical details of network training. This
has accelerated interdisciplinary research. Our goal in developing SPAYK was to create a framework with
a relatively simple syntax that could be used by researchers outside of the neuroscience field. SPAYK aims
to enable researchers in robotics and computer vision to create spiking neural networks tailored to practical
problems and run them on mobile platforms using traditional CPU or GPU hardware. The main contributions
of our paper are listed below.

• SPAYK is offered as an open source python package §. All experiments in the article and many experiments
in our work are presented together with SPAYK. This ensures that our experiments are reproducible.

• Three different experiments were conducted to demonstrate the use and capabilities of the SPAYK
environment. Experiments on learning with spike timing dependent plasticity (STDP) based on Izhikevich
neuron groups in an supervised manner and spike response model were carried out. Experiment results
and SPAYK environment were verified by repeating the unsupervised pattern recognition study published
by Masquelier et al. [23]. The problem of unsupervised classification in the presence of other samples was
studied with the MNIST dataset, which is popular in the artificial neural network literature. The third
experiment designed for this purpose and results are presented.

• The execution time and memory usage of the SPAYK-supported neuron models were measured and
reported for groups with varying numbers of neurons and synapses. The results of the performance
analysis demonstrated that the SPAYK implementation is scalable for a large number of neurons and
synapses in terms of execution time and memory consumption.

The paper is organized as follows. The SPAYK environment is introduced and the basic modules are
detailed in the second section of the paper. The third section contains the designed experiments, the experiment
results, and a general discussion. The final section contains the conclusions.

2. SPAYK environment
SPAYK is a Python package that has been designed to describe and simulate spiking neural networks. SPAYK
consists of model, organization and learning classes as the core. The model class includes neuron models with
different dynamics. Neuron groups can be created using these models. The neuron groups can be stimulated
with different inputs such as current sources and Poisson spike trains. In the SPAYK environment, neuron
groups can be configured to synaptic plasticity and learning experiments can be performed. The learning class
offers support for synaptic plasticity. Tissue functions and the simulator are located in the organization class.
The organization class assembles the created architecture as a tissue and enables the features of the simulation
core to be used. The following sections describe the background of components.

§You can check the repository at https://github.com/aggelen/Spayk to view the source code.
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2.1. Neuron models and dynamics

The Hodgkin-Huxley (HH) model is a well-known and generalized way to express the membrane potential as a
differential equation system [24]. The model is based on conductances and describes the electrical relationships
between the membrane potential and the ion channels. Because it is a sophisticated model with many ion
channels, the HH model is particularly difficult to simulate. Approximate models based on various approaches
have been proposed to facilitate the simulation of nerve cells and neuron groups. The Izhikevich model and
the leaky integrate and fire (LIF) model are two of the most common of these models. In the study presented
by Skocik and Long, the capabilities and computational complexities of these three models are compared [25].
The study found that for each millisecond of simulation time, 0.12 s, 1.05 s, and 2.11 s should be spent for the
simulation of the LIF, Izhikevich, and HH models, respectively.

SPAYK currently supports these two relatively less complex models. Neuron groups can be defined as
having the Izhikevich model with different dynamics or leaky integrate and fire (LIF) model with the Spike
response approach. The Leaky integrate and fire model was added to facilitate synaptic connections and
weighting to support learning research with the spike response model (SRM).

The Izhikevich model is a popular model that reduces neuron dynamics to a differential equation system.
By varying the parameters of the differential equations, different neuron behaviors can be achieved. The
Izhikevic spiking neuron model is expressed as a two-dimensional system of differential equations [26]. The
model is given by Equations 1 and 2. All parameters are dimensionless variables. The membrane potential and
recovery parameters are denoted by v and u , respectively. Parameters a, b, c and d in the differential equation
are constants used to change the dynamics of the neuron model. The values of constants for different dynamics
are presented in the paper published by Izhikevich [26].

dv(t)

dt
= 0.04v2 + 5v + 140− u+ I(t) (1)

du(t)

dt
= a(bv − u) (2)

A spike occurs when the membrane potential exceeds a certain threshold. The original article set this
dimensionless threshold value to 30. When the spike occurs, the equation system must be reset using the rules
specified in Equation 3.

v(v > 30) = c and u(v > 30) = u+ d (3)

An Izhikevich neuron group with 100 neurons was simulated for 1000 ms using SPAYK. The neurons in
the group have different dynamics. They could behave like any of the cortical neurons described in Izhikevich’s
paper, including regular spiking, intrinsically bursting, chattering, fast-spiking, thalamocortical, resonator, and
low-threshold spiking dynamics [26]. The dynamics of the neurons in the experiment were chosen randomly
from this group so that the distribution was uniform. Random constant current values starting and ending
at random times were used as stimuli. The current signals are generated with a fixed amplitude of 5 uA,
with a random starting time between 100 ms and 400 ms and a random ending time between 600 ms and 900
ms. The membrane potential of 5 random neurons is given in Figure 1. The raster plot can be created to
show the firing patterns of all neurons. Figures can be reproduced with the script in the SPAYK repository at
experiments/devel_01_izhikevich_neuron_dynamics.py.
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Figure 1. Membrane potential of Izhikevich neurons with different dynamics.

To reduce the complexity, there are simplified models called Integrate and Fire. The LIF model is one of
the most popular of these models. Equation 4 expresses the LIF model.

τm
dv(t)

dt
= −(v(t)− EL) +RI(t). (4)

The LIF model is represented as a simple electrical circuit consisting of a parallel capacitor and a resistor
driven by current I(t) [27]. In the differential equation of the circuit, the membrane potential is represented by
v(t) . The EL represents the resting potential and τm represents the time constant. According to the model, the
membrane potential decreases towards the resting potential in the absence of any stimuli. When the membrane
potential exceeds a specified threshold value, the neuron fires and the resting stage begins.

Gerstner proposed the spike response model (SRM) by generalizing the LIF model [28]. SRM takes a
different approach that is based on filtering rather than a differential equation solution. The model is given by
Equation 5.

u(t) = η(t− t̂) +

∫ ∞

0

κ(t− t̂, s)I(t− s)ds (5)

The equation consists of two parts. The η function in the first part represents the membrane potential
change due to the neuron’s dynamics, and the κ part represents the change in the membrane potential due to
the stimuli. In the equation, t̂ represents the last firing time of the neuron, I represents the injected current.
In the model, firing is determined by thresholding the membrane potential. SPAYK supports groups of SRM
neurons. A single SRM neuron was simulated for 1000 ms using SPAYK. A Poisson spike train consisting of
10 neurons was used as the stimuli. It is assumed that each neuron in the stimuli fires with random rates, and
these rates change over time. The stimuli is shown in Figure 2a. SRM neuron was simulated using this spike
train. The plot of the membrane potential of the neuron against time is given in Figure 2b. Figures can be
reproduced with the script in the SPAYK repository at experiments/devel_02_spike_response_model.py.

2.2. Synapse models

In Spiking neural network simulation, synapse models are classified as current-based (CUBA) or conductance-
based (COBA). The synaptic current is calculated as the direct product of the spikes and the weights in the
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Figure 2. (a) Raster plot of input stimuli, (b) membrane potential of SRM LIF neuron.

current-based synapse model. It simplifies the overall model by simplifying synaptic equations. In the CUBA
model, ion channels are modeled as conductances and the total synaptic current is found by calculating the
conductances for different neurotransmitters. The channel models for AMPA , NMDA , GABAA and GABAB

are defined as a single exponential decay or a combination of two exponential decays [27].
Equations 6 and 7 describe the conductance dynamics that are modeled by a single exponential and a

combination of two exponential decays [27]. In the equations, ḡsyn represents a constant peak conductance,
t(f) spike time, Θ Heaviside function, τfast and τslow represent the time constants of fast and slow exponential
decays in the double decay model, respectively, and α represents the mixing ratio between two exponential
decays.

gsyn(t) =
∑
f

ḡsyn e−(t−t(f))/τ Θ(t− t(f)) , (6)

gsyn(t) =
∑
f

ḡsyn [1− e−(t−t(f))/τrise ]
[
a e−(t−t(f))/τfast + (1− a) e−(t−t(f))/τslow

]
Θ(t− t(f)). (7)

SPAYK supports channel models. The plot of different channel models is given in Figure 3. In the figure,
synaptic currents are plotted showing the change in conductance of different channel models for a spike that
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exists at time zero. While AMPA and NMDA have a positive effect for excitatory connections, GABAA and
GABAB have a negative effect for inhibitory connections. Figures can be reproduced with the script in the
SPAYK repository at experiments/devel_06_synaptic_channels.py.

Figure 3. Synaptic channel models.

2.3. Learning with synaptic plasticity

The learning class in the Spayk environment supports an STDP class that can be used offline. In addition, neuron
groups in the models class can display STDP behavior online. STDP is a type of plasticity that strengthens or
weakens synaptic connections based on spike times.

One of the most important sources on synaptic plasticity is Hebb’s 1949 postulate [29]. The principles
called Hebb learning rules to form the basis for STDP. According to Hebb learning rules, if neurons are close
to each other, fire one after the other and presynaptic neurons take part in the postsynaptic neurons firing,
the connection between these neurons becomes stronger. In the opposite case, the connection between them
weakens. Hebb’s rules have a solid empirical foundation with the long term potentiation (LTP) and long term
depression (LTD) studies. STDP is a synaptic plasticity model created from experimental data. The model
is expressed by the piecewise function given by Equation 8. In the equation A+ and A− express the power
of exponentials, τ+ and τ− represent the time constants of the STDP window. Presynaptic and postsynaptic
spike times are expressed as tj and ti , respectively. An example STDP curve plotted for the parameters A+

0.03125, A− 0.028, τ+ 16.8,τ− 33.7 is given in Figure 4.

∆w =

 A+ exp
(

tj−ti
τ+

)
if x ∈ tj ≤ ti

−A− exp
(

ti−tj
τ−

)
if x ∈ tj > ti

(8)

2.4. System architecture

SPAYK is composed of model, learning and organization classes. An experiment in SPAYK is carried out
by running an organization in the simulator core. It is intended to make it simple to describe the network
architecture and to operate with few commands. An organization could be a single neuron or a tissue formed
by the connection of multiple neurons with a specific architecture. In the SPAYK environment, a tissue is an
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Figure 4. Example STDP curve.

architecture that depicts the neural structure. Afterwards, any tissue can be easily simulated with an input
stimulus.

An example script is provided as Listing 1 to illustrate the usage of SPAYK. After the necessary
components are imported, an SRM group with 10 neurons is created and connected to a tissue. A Poisson
spike train is then simulated for 1000 ms as the stimuli.

Listing 1. Example tissue and core.

from spayk . Organization import Tissue
from spayk . Models import SRMLIFNeuron
from spayk . Stimuli import PoissonSpikeTrain

import numpy as np
import matplotl ib . pyplot as p l t
p l t . c l o se ( ’ a l l ’ )

# create two neurons as a group with LIF/SRM model
group_params = { ’ n_synapses ’ : 10 , ’ dt ’ : 1.0}

srm_neuron_group = SRMLIFNeuron(group_params)

# bind neuron groups to a t i s sue
test_t issue = Tissue ( [ srm_neuron_group ] )
input_spike_train = PoissonSpikeTrain ( dt=1.0 ,

t_stop=1000,
no_neurons=10,
spike_rates=np . random . randint (10 ,60 ,10))

input_spike_train . raster_plot ()

# run simulation
test_t issue . keep_alive ( st imul i=input_spike_train )
test_t issue . logger . plot_v ()

A simplified unified modeling language (UML) diagram is given in Figure 5 to present the SPAYK classes
as a summary. In diagram, main classes are shown with their class names and methods. Inheritance between
classes are indicated by blue arrows.
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Figure 5. UML diagram of main spayk classes.

3. Experiment results and discussion

Three different experimental studies were carried out while developing and testing the SPAYK environment to
demonstrate its capabilities. In the first experiment, the behavior of the Izhikevich neuron group was examined
using data generated by regenerating the MNIST dataset samples as spiking signals. In addition, a single neuron
is trained to respond to a specific label with synaptic plasticity (STDP). The second experiment replicated the
results of the STDP study published by Masquelier et al. [23]. In the third experiment, unsupervised training
for the classification problem was performed by adapted spiking MNIST dataset. Experiments and their results
are presented in the following sections.

3.1. Izhikevich neuron group and supervised classifier

In this experiment, 3 random samples labeled 1, 4, and 7 from the MNIST dataset were converted into 500 ms
long Poisson spike trains. To generate stimuli, these spike trains were arranged to repeat twice at random times.
The resulting stimuli is given in Figure 6a. The MNIST dataset samples consist of 28 × 28 pixel images. These
images were flattened and turned into a 784-length vector. The brightness values in this vector were mapped
to the appropriate firing rates and a Poisson spike train with 784 neurons was generated. The firing rates in
the stimuli varied over time to produce a realistic signal.

In the first part of the experiment, a group of 250 neurons was defined. About 20 percent of the neurons in
the input stimuli were selected to form inhibitory synapses with neurons in the Izhikevich group. Each neuron
in the Izhikevich group was randomly connected to 70 percent of the neurons in the stimuli. All synaptic
connections have the same constant weight. The Izhikevich group was simulated with the input stimuli and the
response was given in Figure 6b. As can be seen from the response plot, it was observed that the formed neuron
group formed label-sensitive responses. This suggests that by improving the architecture, the neuron group can
perform various tasks with synaptic plasticity.

In the second part of the experiment, a single Izhikevich neuron capable of STDP was defined. It is aimed
to train this neuron to respond to a determined label by changing synaptic connection weights with plasticity.
That whole training is intended to be performed under supervision. For this reason, the membrane potential
signal of a regular spiking Izhikevich neuron that fires with a constant current only on the label 7 portions of
the input stimuli was generated to train the neuron that can recognize label 7. This signal was determined as
the supervision signal and is given in Figure 6c.
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Figure 6. (a) The stimuli signal generated by repeating the spiking versions of the samples from 3 different labels, (b)
the response of a group of 250 izhikevich neurons with synaptic connections to the input stimuli, (c) the supervision
signal used to train a single neuron to recognize a specific label with STDP.

The STDP parameters for training were set to values that would give stable results by trial and error,
based on the biologically consistent STDP parameters in Masquelier et al.’s paper [23]. A+ and A− were
assigned values of 0.03125 and 0.025, respectively, and τ+ and τ− were assigned values of 16.8 and 30.7,
respectively. Izhikevich neuron with STDP was simulated using stimuli and supervision signal and weights
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were calculated and recorded. Then the Izhikevich neuron using these weights is simulated. The graph of the
membrane potential of the neuron over time is given in Figure 7a. As a result of the training, it was seen that
synaptic plasticity can change the connections to give the desired result.

Time steps of weight-increasing and weight-decreasing LTP and LTD operations are displayed to analyze
synaptic plasticity. The resulting graph, which is shown in Figure 7b, contains the LTP and LTD operations
and also the IDs of the neurons in which they occur.

Figures can be reproduced with the script in the SPAYK repository at experiments/exp_01_izhikevich_
neurongroup_connections.py and experiments/exp_01_izhikevich_neuron_classifier_supervised.py.

Figure 7. (a) The response of the simulated neuron using the weights produced as a result of the training, (b) an
example section of LTP and LTD times.

3.2. STDP based pattern recognition

The experiment from Masquelier et al.’s study was performed to bring the spike response model simulation
capability to the SPAYK environment [23]. It was demonstrated in the study that a neuron with a spike response
model can detect repeating patterns in continuous spike trains by modifying weights via STDP. To replicate the
study’s findings, a single SRM LIF neuron with STDP capability was stimulated for 15 s with a special Poisson
spike train of 2000 neurons. Parameters in the original study were used to produce the stimuli. The spike train
was generated using neurons with firing rates ranging from 0 to 90 Hz. The firing rates of these neurons are

474



GELEN and ATASOY/Turk J Elec Eng & Comp Sci

changed at random at speeds ranging from +-360 Hz/s. Change speeds are modified at random between 1800
Hz/s and –1800 Hz/s. Furthermore, as in the original work, each neuron is guaranteed to fire at least once in
50 ms windows. A 50-ms segment of the resulting spike train was extracted and repeated at random intervals.
As in the original study, the repeated part only includes the first 1000 neurons. Figure 8a shows a raster plot of
a slice of the stimuli. Repeating patterns are highlighted with gray rectangles. The experiment demonstrated
that a single SRM LIF neuron can detect repeating patterns with STDP. Figure 8b shows a graph cut of the
membrane potential of the 15-s simulated neuron. Gray rectangles in the graph highlight repeating patterns.
The graph shows how, over time, the neuron changes its weights to fire only within the patterns. Figures can be
reproduced with the script in the SPAYK repository at experiments/exp_02_srm_stdp_pattern_recog.py.

Figure 8. (a) Input Poisson spike train, (b) membrane potential of single SRM LIF neurons.

3.3. STDP based classification
In this experiment, the MNIST dataset was classified using a modified version of the unsupervised learning
strategy from the prior experiment. The MNIST dataset is containing handwritten digits and is used in
classification problems. The dataset consists of 28 × 28 pixels, grayscale coded images. These images were
converted into firing patterns of 784 neurons, with firing rates directly proportional to the brightness values.
Poisson spike train was obtained by using twice the number of neurons as in the previous experiment, and
random 50 ms size spike patterns created from images with different labels were placed on the first 784 neurons.
This created spike train was used as the base stimuli. The resulting stimuli is shown in Figure 9a.
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A 50-ms pattern of a selected image is randomly spaced on this base spike train. This generated complex
signal was used as stimuli. As a result of the experiment, a single SRM LIF neuron modified its weights in such
a way that it fired in patterns with a size of 50 ms and a label of 5, repeating at random times in randomly
arrayed patterns with different labels. Thus, in the presence of patterns of other labels, the classification of the
determined label is achieved in an unsupervised manner. A section from the membrane potential of the neuron
obtained as a result of the experiment is given in Figure 9b. In the figure, areas of the repeating pattern with
the label 5 are highlighted with gray squares.

The values from the previous experiment were used as STDP parameters. A+ and A− were assigned
values of 0.03125 and 0.025, respectively, and τ+ and τ− were assigned values of 16.8 and 33.7, respectively.
Figures can be reproduced with the script in the SPAYK repository at experiments/exp_03_srm_mnist_
classifier_training.py.

Figure 9. (a) Stimuli for MNIST classification, (b) membrane potential of SRM LIF neuron.

3.4. Performance analysis

Spayk’s performance was evaluated by measuring the executation times and memory usage of groups with
varying numbers of neurons and synapses. The measurement results are shown in Figure 10. The analysis was
performed for three different groups, and these groups represent clusters of neurons that can be used in SPAYK
experiments.

The first group consists of neurons presented in subsection 3.1. This group’s neurons all have the
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Figure 10. Execution time and memory usage of SPAYK simulations.

Izhikevich model and exhibit various random dynamics. The performance of this group was evaluated by
varying the number of neurons in the group. The second group in the analysis consists of neurons with the
SRM LIF model presented in other experiments. This group’s performance was evaluated in two scenarios: the
first in which the number of synapses remained constant while the number of neurons increased, and the second
in which the number of neurons increased while the number of synapses remained constant. The horizontal axis
at the bottom in Figure 10 indicates the number of neurons for the SRM Group, which is shown in orange,
and the horizontal axis at the top indicates the number of the synapses for the SRM Group Synaptic, which is
shown in green.

Because SPAYK’s Izhikevich model implementation keeps the data of all neurons in large vectors and
process them with large matrix operations, the runtime scales well as the number of neurons increases. Memory
usage increases faster than the other model for the same reason. Because a main the loop iterating over all the
neurons was used in the SRM LIF model’s implementation for the group, the executation times are longer than
in the Izhikevich model, but the amount of memory used is relatively low. Furthermore, increasing the number
of synapses scales better than increasing the number of neurons. Experiments were run on a computer with an
Intel(R) Core(TM) i7-3630QM processor running at 2.40GHz using 12 GB of RAM, running Ubuntu version
20.04.

4. Conclusion
Spiking neural network models run on neuromorphic hardware work very efficiently in terms of energy. For this
reason, it is predicted that spiking neural networks will be a potential computational model for platforms such
as robots with limited energy resources and continuous energy requirements. Neuromorphic hardware is still not
widespread and it is very difficult to reach them today. For this reason, spiking neural network research is carried
out in the form of simulations on traditional hardware such as CPU and GPU. There are a variety of simulation
tools available for Spiking neural network designs. Most of these tools require a thorough understanding of
the differential equations of neuron models and synaptic channels. This is a significant obstacle for researchers
outside of neuroscience who want to use spiking networks to solve real-world engineering problems.
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In this study, the SPAYK package, which is an environment for the simulation of spiking neural networks
is presented. The main purpose of SPAYK is to create a framework that nonneuroscientists can easily use.
SPAYK is released as an open-source framework. SPAYK has been developed to conduct practical experiments
in spiking neural networks research and to simplify coding processes. In SPAYK, the Izhikevich model, spike
response model and STDP are introduced. In the study, the experiments designed to demonstrate the features
of SPAYK conducted, their source code and results are presented. The first of these experiments was to
demonstrate the use of Izhikevich neuron groups and to examine the rhythms created by the neuron group.
The experiment also aimed to demonstrate that a single Izhikevich neuron can recognize a particular pattern
with STDP. It has been shown that an Izhikevich neuron can be trained to respond to a specific label by a
supervision signal. Secondly, an experiment published in 2008 to recognize repetitive patterns with STDP was
repeated and the results were verified. Finally, a classification problem adapted to spiking neural networks in
the MNIST dataset is presented. These experiments are presented as sample applications to demonstrate the
capabilities of the SPAYK environment. In this study, it has been shown that synaptic plasticity can be used
for training a network in a supervised or unsupervised manner. This result demonstrates that tasks that require
a large number of neurons in the artificial neural network can be performed by a single or a small number
of spiking neurons. The results suggest that performing the calculations with the spiking networks would be
more efficient. In addition, it is thought that the potential of such networks will be unleashed with the rapidly
developed neuromorphic platforms.

Spiking neural network simulators have different limitations according to their intended use. Total
simulation time is very important in studies carried out to investigate brain regions or to examine group behavior
in a large number of nerve cells. To reduce the total simulation time, simulators offer support for parallelizing
processes on GPU hardware. Since SPAYK is designed to study real-time signal processing or robotics problems,
it must have the same hardware acceleration support to offer real-time work. Until neuromorphic platforms
become widespread, hardware acceleration support becomes mandatory as the networks designed to be forced
will run on CPUs and GPUs. Work continues for SPAYK’s Numba just-in-time compiler (JIT) support. This
is the most important current limitation of SPAYK.

SPAYK is a project that is open to continuous development and has great potential. As SPAYK will
be continuously developed, changes will occur in the documentation and class structures. SPAYK is planned
to be developed in the form of major and minor versions. Providing neuromorphic hardware support, network
visualization and a visual user interface are determined as future research directions. SPAYK was developed
to facilitate the spiking neural network experiments. This makes the required code and architecture more
understandable than other simulators and makes SPAYK a potential tool for facilitating experimental robotics
and computer vision research based on spiking neural networks. It is thought that the great potential of various
bioinspired sensors such as event-based cameras will deeply affect these areas with spiking neural networks.
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