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Abstract: Residential load management deals with two major objectives viz. minimizing the cost of monthly electricity
bill and peak demand of power consumption. Both objectives can be achieved by effective operational scheduling of smart
home appliances. These two objectives are conflicting in nature because rescheduling of appliances in order to minimize
one objective may result in the rise of another. To achieve both objectives concurrently, an algorithm is suggested in
this paper based on artificial intelligent techniques like cuckoo search, hybrid GA-PSO, and adaptive cuckoo search.
The proposed algorithm is tested successfully on seven households of different monthly power consumption and real
data of dynamic pricing options for electricity applicable in two utilities. To reduce the risk associated with real-time
price, a cost function based on inclining block rates (IBR) is also suggested for both the utilities. A novel approach to
find the threshold limit of hourly power consumption is also suggested in this paper. The proposed algorithm solves the
optimization problem in two stages and validates its performance by successfully achieving both objectives simultaneously.
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1. Introduction
With technological advancement, now it is possible for smart home residents to actively participate in load
management by effective scheduling of household appliances. The energy consumption pattern of appliances
is altered by a home energy management system (HEMS), installed in smart homes in response to dynamic
pricing [1]. Managing the power demand of the residential consumers is considered difficult because it depends
on consumers’ behavior and their different consumption schedules. There are two major objectives of residential
load management: the first one is the reduction of electricity bill cost and the second objective is the reduction of
peak power consumption [2, 3]. The above two objectives of residential load management may be achieved with
the help of demand side management (DSM). It is a way consumers can help the power grid in the management
of power demand. DSM can modify the consumer’s behavior of power consumption by various methods such as
financial rebates/ incentives, differentiated tariffs, and demand response (DR) [4]. In the demand response, each
smart home resident is expected to respond independently to the dynamic pricing by shifting the operational
time of their household appliances. Objectives for shifting the operational time of appliances can be different
for different stakeholders. Objective for power suppliers may be to minimize the appearance of high peak power
demand or a longer power demand valley [5, 6]. It is desired that the load curve be as flat as possible. Flattening
of the load curve is the reduction of power consumption at peak load hours and increasing the consumption
∗Correspondence: er.grgoyal@gmail.com
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during the low load periods [7]. To flatten the load curve, some of the home appliances that are deferrable can
be arranged to operate at off-peak or midpeak hours to get the real load curve as similar to the target load curve
as possible. Reducing the power demand during peak hours and minimizing the peak power demand in the
load curve of a day are two different objectives of DSM. The former objective can be achieved by implementing
dynamic pricing (high price during peak hours) and shifting the load from peak hours to off-peak/midpeak hours
[8, 9]. As a consequence, this shifting may result in increased power demand during off-peak/midpeak hours. In
order to minimize the power demand during peak hours, the objective becomes to reduce the difference between
real and targeted load curves. On the other hand it is required to minimize the peak-to-average ratio (PAR) in
order to minimize the peak power demand [10].

1.1. Related prior work

Various problems of HEMS have been formulated in numerous studies like reduction of power demand in peak
hours [5, 7, 11], peak to average ratio (PAR) [3, 10], electricity expense [12, 13], operational waiting time of
appliances [14], emission dispatch [11, 15], and maximizing user comfort [8] in a centralized and distributed
manner. There are various advanced techniques proposed for the solution of HEMS problems available in
the literature like machine learning, game theory approach [16], and numerous artificial-intelligence-based
algorithms. These algorithms are very popular for solving real-world optimization problems and they are
broadly classified into deterministic and stochastic algorithms. Deterministic algorithms such as quadratic
programming (QP) [17], linear programming (LP) [5], and mixed integer linear programming (MILP) [18] have
been implemented in the literature to optimize various objectives of HEMS like minimization of peak load
and customer’s bill payments individually for single and multiusers; and maximization of user’s comfort or
customer’s satisfaction level. In stochastic metaheuristic optimization algorithms like simulated annealing or
evolutionary algorithms, some random rules are applied during the search, and different final solutions may
be obtained from the same initialization. In contrast, deterministic algorithms lead to the same final solution
using a particular set of inputs. As a result, deterministic algorithms are unable to consider uncertainties,
whereas stochastic optimization algorithms can do so with the help of appropriate probability distributions. To
increase the likelihood that the technique will identify the global optimum of the objective function, stochastic
optimization approaches offer an alternate strategy that permits less optimal local decisions to be taken during
the search phase. Deterministic algorithms also have limitations in their application to smooth and unimodel
objective functions. To overcome these limitations of nonstochastic algorithms, artificial intelligence technique-
based metaheuristic algorithms are implemented to obtain global optimal solutions to HEMS objectives [17,
20]. Some of these are genetic algorithm (GA) [10, 14], genetic harmony search algorithm (GHSA) [11],
whale optimization algorithm (WOA) [7], Jaya algorithm, earliglow algorithm, strawberry algorithm [15], and
grasshopper optimization algorithm [19].

Implementation of dynamic pricing can be beneficial for all the stakeholders in different ways like monetary
benefits for customers and actual cost recovery for suppliers. It has been implemented by various researchers
with different strategies of DSM for different objective functions in their study. Authors in [10] proposed an
efficient home energy management controller with real-time pricing (RTP) and critical peak pricing (CPP). The
optimization problem of load management is also solved for single and multiple households using an evolutionary
algorithm with time-of-use (ToU) price [5, 9]. A comparative evaluation for the performance of home energy
management controllers designed on the basis of heuristic algorithms with ToU and CPP is also given in [15].
Various researchers had studied minimization of cost and PAR as multiobjective models or a composite function
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of cost with predetermined electricity prices. Authors of this paper have also studied minimization of both the
objectives individually with ToU price and hourly-ahead real-time price (HA-RTP) [21]. It was observed that
minimization of electricity cost and PAR are conflicting in nature.

Implementation of dynamic pricing schemes is limited due to the risk associated with hourly variation of
dynamic pricing plans. Many programs have limited this risk by joining dynamic pricing options with inclining
block rates (IBR) and assigning customers a threshold limit of power consumption. The electricity price for
purchase of power below this limit is as usual, but above this limit, customers have to pay a high price of
fixed rate [12]. The concept of IBR was first adopted in the 1980s by some utilities viz. San Diego Gas &
Electric, Pacific Gas & Electric Companies, and Southern California Edison. In the British Columbia Hydro
Company, Canada, currently, a two-level price structure is used for residential load, wherein the first level (lower
level) actual price is applicable and in the second level (higher level) 40% high price is received. In this price
structure, a rebate can also be received for reducing the power consumption below the threshold level [22]. In
the literature, IBR scheme has been implemented with RTP in order to minimize electricity cost as well as PAR
using optimization algorithms like GA [12] and linear programming [16]. In these papers, base price is RTP and
above the threshold limit a high price of fixed percent of base is applied, but these papers also lack the method
of deciding the threshold limit.

1.2. Contribution of this research work
In the literature, a lot of attention has been given to minimizing the electricity bill cost and power demand
during peak hours, i.e. high price hours. Moreover, it is important to minimize the power peaks during low price
hours. Actually, in an aim to minimize the electricity cost, the start time of most appliances are rescheduled
at low cost time periods which may result in increased power demand during the low cost time periods. With
this motivation, this research work aims to achieve both objectives simultaneously. Our contribution in this
research paper is different from the existing literature. Key contributions of this research work are summarized
as follows:

• Proposes an electricity cost function based on inclining block rates (IBR) using time varying pricing which
can benefit consumers as well as utilities both.

• Uncertainty of demand and price is considered in the study through real-time electricity prices viz. day-
ahead real-time price (DA-RTP) and hourly-ahead real-time price (HA-RTP).

• Implementation of single interval programming (SIP) for the predetermined electricity prices, e.g., ToU
or DA-RTP and multiinterval programming (MIP) for HA-RTP to find optimal scheduling of appliances.

• Optimum scheduling of smart home appliances is obtained by two-stage optimization using multiinterval
programming (MIP) with the help of proposed cost function.

• A novel approach to find the threshold limit of hourly power consumption.

The proposed energy management system (EMS) will be able to optimize the consumer’s bill cost as well
as peak demand of electricity simultaneously by shifting the power drawn from grid. The optimal scheduling of
household appliances considering consumer’s preferences will also reduce the energy consumption during peak
hours.
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The paper starts with a brief introduction to HEMS and its objectives, followed by the related research
work available in the literature and limitations in the implementation of dynamic pricing. The contribution of
this research work is given in Section 1.2. Section 2 deals with the problem formulation, objective functions, and
operational constraints of the system architecture developed for residential loads. The proposed cost functions
to achieve both objectives are also given in Section 2.1. Section 3 deals with the artificial-intelligence-based
algorithms used for optimal scheduling. Information on the electricity pricing schemes and household appliances
considered in this study is given in Section 3.4. Simulation results and optimal solutions obtained for objective
functions of electricity cost, PAR, and proposed cost functions in scenarios 1, 2, and 3 are given in Section 4.
Finally, Section 5 presents a conclusion and suggestions for future research work in this direction.

2. Mathematical formulation
It is difficult and confusing for the consumers to manually respond to the dynamic pricing that changes on
an hourly basis. To manage this requirement, a home energy management system (HEMS) is proposed using
artificial-intelligence-based algorithms. HEMS installed in smart homes consist of home energy controller and
smart home appliances. All the appliances under HEMS are categorized into three main classes on behalf of
their inherent characteristics viz. time deferrable, power deferrable, and nondeferrable appliances [23]. It is
anticipated that each household is supplied power by the utility that offers a variety of fixed and time-varying
electricity prices. The system architecture of the model is given in Figure 1. Here, smart home residents can
also define their preferences to energy controller. This study is divided into three scenarios:

Figure 1. System architecture.

• Scenario-1: Individual smart home resident reschedules his/her household appliances in order to minimize
the electricity bill cost.

• Scenario-2: Individual smart home resident reschedules his/her household appliances in order to minimize
the peak-to-average ratio (PAR).

• Scenario-3: Individual smart home resident reschedules his/her household appliances in order to achieve
both the objectives together through proposed electricity cost function.
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2.1. Objective function

If the electricity price during time interval t is denoted by p t . The vector p(d) accumulates electricity prices
for all the intervals on day d ∈ N . Let the energy consumption scheduled in time slot t of day d ∈ N is xt

l (d),
whereas the power demand scheduled for the load ℓ ∈£ in a time interval t is ytl . Here, £ designates the total
number of existing loads. The total cost of electricity for 24 h of a day is calculated by the following equations
[21]:

Minimize CDEC =

T∑
t=1

xt(d) pt(d) where T = 24, (1)

xt(d) =

£∑
ℓ=1

ξtℓ ytℓ(d) Tℓ. (2)

Here, ξtℓ is the ON/OFF state and Tℓ denotes the operational time of the load ℓ ∈£ in time interval t,
t ∈ T . T is the total number of time intervals, i.e. 24 with each being 1 hour.

Minimization of PAR helps the utility to retain the stability and ultimately leads to the cost reduction.
PAR is the reciprocal of load factor. It is minimized to reduce the peak power demand with the help of the
following equation [15]:

Minimize PAR =
max(load)

avg(load)
. (3)

Here, average load is considered equal to the sum of power consumed by all nondeferrable loads in any
time slot. Mathematical expression for PAR can be given by equation (4):

Minimize PAR =

max{
£∑

ℓ=1

ξtℓ ytℓ(d)}

1
T

T∑
t=1

£∑
ℓ=1

ξtℓ ytℓ(d)

. (4)

Objective functions given by equation (1) and equation (4) are used to minimize the monthly cost of
power consumption and peak demand individually in scenario-1 and scenario-2, respectively, while in scenario-3
smart home appliances are scheduled by two-stage optimization in order to achieve both objectives at the same
time. To achieve both objectives simultaneously IBR-based cost function is proposed for Alectra Utilities Corp.,
Canada to calculate total electricity bill. The proposed function of electricity cost is given by equation (5) in
which ToU and HA-RTP pricings are used to calculate the total bill cost. As per equation (5), for the power
consumption below hourly threshold limit ToU rates are applicable, and for the power consumption above this
limit HA-RTP rates are applicable.

Minimize CTotal =

N∑
d=1

T∑
t=1

xt(d) ptToU , if0 ≤ xt(d) ≤ P t
Th

xt(d) ptHA−RTP , ifP
t
Th ≤ xt(d)

(5)

Similarly, cost function proposed for the case of ComEd Northern Illinois Power Company, USA, is given
by equation (6) in which DA-RTP and HA-RTP pricings are used to calculate the total bill cost. As per the
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equation (6), DA-RTP rates are applicable for the power consumption below hourly threshold limit, and for the
power consumption above this limit, HA-RTP rates are applicable.

Minimize CTotal =

N∑
d=1

T∑
t=1

xt(d) ptDA−RTP , if0 ≤ xt(d) ≤ P t
Th

xt(d) ptHA−RTP , ifP
t
Th ≤ xt(d).

(6)

Here, P t
Th is the threshold power consumption for time slot t. Optimal values of P t

Th for 24 time slots
are obtained in the first stage by maximizing the objective function of load factor (L.F.) given in equation (7)
[20]. While in the second stage, objective function given by equations (5) and (6) are optimized in order to
reduce the cost of electricity bill.

Minimize L.F. =

1
T

T∑
t=1

£∑
ℓ=1

ξtℓ ytℓ(d)

max{
£∑

ℓ=1

ξtℓ ytℓ(d)}
. (7)

2.2. Operational constraints

1. Energy consumption of appliances other than their operational time Tℓ will be zero [23].

xt
ℓ(d) = 0 where t /∈ Tℓ. (8)

2. The power is deferrable for loads that consume energy within a certain power limit [18].

xmin
ℓ ≤ xt

ℓ(d) ≤ xmax
ℓ where t ∈ Tℓ. (9)

3. Only ON-OFF control is allowed for loads that consume a fixed power Pℓ .

xt
ℓ(d) ∈ 0, ξtℓ = 0Pℓ, ξtℓ = 1 where t ∈ Tℓ. (10)

4. Sum of energy consumption after rescheduling of all appliances should be equal to the requirement of
energy for a day DRℓ [19].

24∑
t=1

xt
ℓ(d) = DRℓ. (11)

3. Solution methods
In this research work, objective functions of total cost of power consumption and peak-to-average ratio (PAR)
are optimized in both cases by cuckoo search (CS) method, hybrid GA-PSO algorithm, and adaptive cuckoo
search (ACS) method. These three optimization algorithms are implemented as core algorithms with SIP and
MIP.
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3.1. Cuckoo search (CS) method

Cuckoo search method is a metaheuristic type stochastic algorithm. Metaheuristic algorithms can help to find
the global search solution for an optimization problem due to their unique feature of randomization. This
algorithm is inspired by obligate brood parasitism of cuckoo species. It is named after the sweet sound made
by these birds. The step-by-step procedure of the CS method to find the optimal solution is given in Figure 2
[24].

Figure 2. Optimization procedure of the CS method.

3.2. Adaptive cuckoo search (ACS) method

It is very challenging to find the global optimal solution to an optimization problem. Quality of solution
depends on choice and accurate use of optimization technique. In general, a global optimization technique has
some characteristics like good balance between exploration and exploitation; fast convergence; least control
parameters; and global optimum solution in each run. Performance of CS method is improved in ACS method
by adding new equations for adaptive adjustments of inertia weight (w); step size (α); and skewness parameter
(λ) as by equations (12)–(14), respectively [25, 26].

w = 1− e−
1
t , (12)
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αi(t) = 0.5 + 1.5(
1√
t
)

∣∣∣∣ f t
best − f t

i

f t
best − f t

worst + ε

∣∣∣∣ , (13)

λi(t) = 0.5 + 0.1

∣∣∣∣ f t
best − f t

i

fbest − fworst + ε

∣∣∣∣t. (14)

Here, w= inertia weight; t= number of iteration; f t
best is the best fitness value of function f in iteration

count t; f t
worst is worst fitness value of function f in iteration count t; fbest and fworst are global best and global

worst fitness values, respectively. (ϵ) is a smallest constant used to avoid error by zero value in denominator.
Figure 3 represents the pseudocode to implement ACS.

Figure 3. Pseudocode for the ACS method.

3.3. Hybrid GA-PSO algorithm

This algorithm is structured by amalgamation of genetic algorithm (GA) and particle swarm optimization
(PSO). In this algorithm, the best features of GA like mutation and crossover are combined to improve the
performance of PSO [27]. Figure 4 represents the flow chart of the hybrid GA-PSO algorithm.

Table 1 provides the information of parameters set for all three algorithms. In this research work, single
interval programming (SIP) has been implemented with the CS, ACS, and hybrid GA-PSO algorithms as core
optimization techniques for the minimization of electricity cost (scenario-1) and peak demand (scenario-2) with
the pricing schemes known to the consumers for the whole day in advance like ToU and DA-RTP. So in SIP,
the number of decision variables (D) is 24 to find the optimal values of power consumption for 24 h of the day.
However, in the case of hourly-ahead real-time pricing (HA-RTP), the signal for the price of the electricity is
sent to the consumer at the beginning of the hour. Therefore, in such a case, SIP cannot be implemented and
multiinterval programming (MIP) is required. So in scenarios 1 and 3, the objective functions of cost with the
HA-RTP scheme are minimized by implementing MIP and considering the number of decision variables (D): 1.
In this case, the optimization algorithm finds one optimal value in each run. In the literature, the number of
decision variables is considered to be 24 for all schemes of electricity pricing [7, 9]. Initial velocities of particles
in hybrid GA-PSO are considered zero for searching solutions from the initial generation of the population.
Inertia weight (w) in the CS algorithm is unity and remains constant, but in the ACS algorithm it is updated in
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each iteration using equation (11). In the ACS algorithm, w varies in a range of 0 to 1 [26]. Other parameters
of CS, ACS, and hybrid GA-PSO algorithms are considered as given in [24, 27].

Figure 4. Flow chart to implement hybrid GA-PSO.

Table 1. Parameters set for algorithm.

S. No. Parameter Value
1 Numbers of cuckoo’s nests in CS and ACS (N) 30
2 Rate of discovery (pa) in CS and ACS 25%
3 Inertia weight (w) in CS 1.00
4 Inertia weight (w) in ACS 0.0 <� <1.0
5 Population size (p) in hybrid GA-PSO 20
6 String length (n) in hybrid GA-PSO 10
7 Probability of mutation (pm) in hybrid GA-PSO 0.02
8 Probability of crossover (pc) in hybrid GA-PSO 0.80
9 Inertia weight (w) in hybrid GA-PSO 0.4–0.9
10 Constants C1 and C2 in hybrid GA-PSO 2.0
11 Initial velocity vector (v) in hybrid GA-PSO 0.0
12 Numbers of decision variables (D) in SIP 24
13 Numbers of decision variables (D) in MIP 01
14 Penalty factor in ACS & hybrid GA-PSO (k) 10
15 Max. iterations count in ACS & hybrid GA-PSO 200
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3.4. Applicability of the proposed model

The proposed model is implemented for seven residential households with different monthly power consumption.
All the seven households have a different set of appliances and separate usage preferences of appliances.
Information of monthly power consumption for all the seven households is provided in Table 2 [28]. Table 3
contains further information of appliances’, like their power rating and category (NDL: nondeferrable; TDL:
time deferrable; PDL: power deferrable) [20, 21].

Table 2. Household power consumption and appliance
information.

House
hold
no.

Range
(kWh/month)

Power
consumption
(kWh/Month)

Total
appliances

Deferrable
appliances

1 <600 558.60 8 3
2 601–750 654.60 9 3
3 751–1000 947.40 14 6
4 1001–1250 1142.40 14 6
5 1251 –1500 1312.50 12 7
6 1501–2000 1732.50 14 9
7 2001–2500 2392.50 15 10

Table 3. Information of power rating and category of
appliances.

S.
No.

Appliances
Power
rating
(kW)

Category

1 Light 0.5 NDL
2 Refrigerator 0.125 NDL
3 Personal computer 0.20 NDL
4 TV 0.14 TDL
5 Hairdryer 1.0 TDL
6 Washing machine 1.5 TDL
7 Vacuum cleaner 1.0 TDL
8 Electric stove 1.5 NDL
9 Water heater 1.5 NDL
10 Iron 1.0 TDL
11 Air conditioner 1.0-1.5 PDL
12 Water pump 2.0 TDL
13 Dish washer 1.0 TDL
14 Air heater 1.5 NDL
15 Cloth dryer 1.5 TDL
16 Fan 0.12 NDL

In this research, real data on pricing schemes available with two utilities, viz., Alectra Utilities Corp.,
Canada, and ComEd, Northern Illinois Power Company, USA, is considered to verify the performance of the
proposed model. Alectra Utilities Corporation, founded in 2017 and headquartered in Ontario, Canada, provides
various utility services to customers. It serves approximately one million homes and businesses across a territory
comprising seventeen communities, including Brampton, Hamilton, Alliston, and Vaughan. The pricing options
applicable for retail consumers under Alectra Utilities Corp. are ”two-tiered” and ”time-of-use” (ToU) pricing.
Both of these prices are considered for the time period May 1 through October 31, 2019. To consider the
uncertainty of demand and price in this study, the HA-RTP proposed by [21] for Alectra Utilities Corp. is also
considered. Here, real-time price data is taken for September 1–September 30, 2019 [29]. In Alectra Utilities
Corp., the standard schedule of power consumption for billing by ToU price is assumed to be 64% of monthly
power consumption in off-peak hours, 18% in midpeak hours, and 18% in peak hours, whereas Commonwealth
Edison Company (ComEd) provides electric service to more than four million customers across northern Illinois.
ComEd is a subsidiary of Exelon Corporation (NASDAQ: EXC). In this case, the pricing options are flat rate
tariff, HA-RTP, and day-ahead real time price (DA-RTP). In this case, the pricing data for the flat rate tariff is
considered for the time period of October 2019 to May 2020, and the RTP is considered for the month of April
2020 [30].
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The price of electricity is determined in real-time and managed by the Independent Electricity System
Operator (IESO). As electricity supply is offered to the market at its operating cost, the IESO prioritizes it
from the lowest to the highest cost. Where supply meets demand is the market clearing price (MCP). The MCP
is set every five minutes. The 12 MCP that make up one hour are averaged to make the hourly-ahead real-time
price.

4. Simulation results and analysis

4.1. Case study-1: Alectra Utilities Corp., Canada

4.1.1. Scenario-1: Individual smart home resident reschedules his/her household appliances in
order to minimize the electricity bill cost

In the scenario-1, an analysis of electricity bill cost before and after optimization is given. Cost of monthly
electricity bill before optimization given in Table 4 is calculated by two-tiered price, HA-RTPü and ToU price
with estimated scheduling of appliances. In Table 4, electricity cost by standard scheduling as assumed by
Alectra Utilities Corp. with ToU price is also given. From the results given in Table 4, it can be perceived
that monthly cost of power consumption is the lowest by two-tiered price before optimization, but standard
scheduling resulted in reduced bill cost for the households having power consumption more than 1000 kWh.
This saving in monthly bill cost can be further improved by optimal scheduling of smart home appliances.

Table 4. Cost of power consumption before optimization for September 2019.

House
hold no.

Two-tiered
price ($)

HA-RTP
price ($)

With ToU price ($)
Random
scheduling

Standard
scheduling

1 85.41 93.99 100.62 88.60
2 96.30 105.45 112.67 99.15
3 130.54 140.90 144.72 131.25
4 153.42 163.64 170.12 152.96
5 173.50 183.95 183.40 171.30
6 223.10 234.07 243.85 217.36
7 299.52 312.82 334.81 290.43

Table 5 gives a comparative analysis of electricity cost obtained by optimization on behalf of consumer’s
preferences using all three algorithms with time of use price and HA-RTP with or without participation incentive
(PI). By the analysis of optimal results given in Table 5, it is found that optimum scheduling with ToU price
obtained by CS, hybrid GA-PSO, and ACS algorithms reduced the cost of power consumption by 10.85%,
10.96%, and 11.20% on an average for all the households as compared to bill cost with ToU price before
optimization. On the other hand, these results by HA-RTP with PI are 9.20%, 9.75%, and 10.45% for all the
houses.

Peak to average ratios and peak demand resulting from estimated and optimal scheduling achieved by
ACS algorithm is given in Table 6. By a comparative study of the results given in Table 6, it is noted that
rescheduling of appliances to minimize the cost of bill may result in increased peak power consumption due to
scheduling of various appliances during low-cost time slots.
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Table 5. Electricity bill cost after optimization for September 2019.

S.
No.

Optimization by Hybrid GA-PSO Optimization by CS Optimization by ACS
ToU
price

HA-RTP ToU
price

HA-RTP ToU
price

HA-RTP
Without PI With PI Without PI With PI Without PI With PI

1 88.50 87.58 86.61 88.55 87.73 88.51 88.40 87.30 85.33
2 99.00 98.50 96.15 99.05 98.65 96.48 98.88 98.32 95.69
3 131.00 129.54 127.25 131.17 130.56 128.39 130.85 128.85 126.95
4 152.40 150.42 145.80 152.54 150.56 146.23 152.17 149.50 145.00
5 170.35 167.82 165.15 170.58 168.23 165.89 170.00 167.50 162.40
6 216.70 213.65 210.36 216.87 215.63 212.03 216.04 213.25 208.14
7 286.40 280.10 279.80 286.85 280.95 280.32 285.10 279.50 279.40

Table 6. PAR of optimized schedule with different pricing schemes in scenario-1.

House
hold no.

PAR with
estimated
scheduling

PAR with
optimal scheduling

Resulting peak (kW)
by optimal scheduling

ToU price HA-RTP ToU price HA-RTP
1 2.990 2.552 3.389 2.38 2.63
2 3.203 4.440 4.440 4.04 4.04
3 2.689 2.700 2.729 3.55 3.59
4 2.325 2.596 2.092 4.12 3.32
5 2.184 2.468 2.468 4.50 4.50
6 2.450 3.480 3.770 8.37 9.07
7 1.983 3.724 3.724 12.37 12.37

4.1.2. Scenario-2: Individual smart home resident reschedules his/her household appliances to
minimize the peak to average ratio (PAR)

Individual smart home residents reschedule their appliances in order to reduce the peak demand using objective
function given by equation (4). Optimal values of PAR and peak demand obtained by the ACS algorithm for
all seven households are given in Table 7. From this table, it can be observed that optimal scheduling with ToU
price reduced the PAR and peak demand by 25.25% and 21.74% on an average for all the households. From the
results given in Table 7, it is found that rescheduling of appliances in scenario-2 may also result in raised cost
of electricity bill. Here rescheduling of appliances in order to minimize PAR resulted in raised monthly cost of
power consumption for all the households by 9.23% on an average.

Table 7. Comparative results of minimized PAR with ToU price using the ACS algorithm in scenario-2.

S.
no.

House
hold no.

Estimated scheduling Optimal scheduling using ACS

PAR Peak demand
(kW)

Monthly electricity
cost ($)

PAR Peak demand
(kW)

Monthly electricity
cost ($)

1 1 2.990 2.33 100.62 1.796 1.98 109.59
2 2 3.203 2.92 112.67 2.457 2.24 125.63
3 3 2.689 3.35 144.72 1.823 2.27 158.58
4 4 2.325 3.68 170.12 1.779 2.82 187.23
5 5 2.184 3.98 183.40 1.563 2.85 200.02
6 6 2.450 5.88 243.85 2.114 5.18 260.92
7 7 1.983 6.59 334.81 1.672 5.42 363.15
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Figures 5 and 6 display power consumption patterns for household-4 and household-5, respectively,
resulting in scenario-1 (shown by black and blue colors) and scenario-2 (shown by red color). Data tips given on
scheduling curves shows the peak power consumption. Here, X shows the time slot and Y gives the value of peak
demand. From these figures, it can be observed that the peak demands for households-4 and 5 are positioned
in the off-peak or midpeak hours in scenario-1 in order to minimize the cost. However, in scenario-2, peak
demands for households-4 and 5 are positioned in the peak hours and off-peak hours, respectively, as shown by
data tips in power consumption curves.

Figure 5. Comparison of power consumption scheduling of household-4.

Figure 6. Comparison of power consumption scheduling of household-5.

4.1.3. Scenario-3: Individual smart home resident reschedules his/her household appliances in
order to achieve both objectives together through the proposed electricity cost function

In scenario-3, individual smart home residents reschedules his/her appliances in order to reduce the cost of
electricity bill with the help of the proposed cost function given by equation (5). As per equation (5), electricity
cost is calculated with ToU price for the power consumption up to threshold limit (P t

Th ) for each time slot
and above this limit, HA-RTP is applicable. Here, cost of monthly power consumption is optimized by ACS
algorithm using multiinterval programming. Optimal results of power consumption cost, resulting PAR, and
peak power demands are given in Table 8. By comparing the optimal results, it is found that optimal scheduling
in scenario-3 reduced the PAR and monthly power consumption cost by 12.25% and 7.29%, respectively, on an
average for all the households.
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Table 8. Results of power consumption cost minimization by proposed function in scenario-3.

House
hold no.

Load
factor

Optimal monthly
electricity cost ($)

PAR with
optimal scheduling

Peak (kW) with
optimal scheduling

1 0.9676 96.11 2.564 2.05
2 0.9314 102.55 2.896 2.86
3 0.9937 136.42 2.153 3.01
4 0.9465 165.48 2.027 3.36
5 0.9306 171.76 1.995 3.75
6 0.9354 220.13 2.217 5.78
7 0.9654 291.21 1.756 11.19

4.2. Case study-2: ComEd Northern Illinois Power Company

4.2.1. Scenario-1: Individual smart home resident reschedules his/her household appliances in
order to minimize the electricity bill cost

In this case study, cost of electricity bill before optimization is calculated with flat rate tariff, and mean values
of real-time pricing (DA-RTP & HA-RTP). Tables 9 and 10 give cost of monthly bill for power consumption
before and after optimal scheduling respectively. From Table 9, it can be observed that electricity bill cost is
less with DA-RTP and HA-RTP pricing in comparison to flat rate tariff by 8.28% and 9.97%, respectively, on
an average for all the seven households. Optimal results given in Table 10 show that rescheduling of smart
home appliances with DA-RTP and HA-RTP further decreases the monthly bill cost respectively by 21.47%
and 23.50% on an average for all the households. Table 11 gives PAR before and after rescheduling of smart
home appliances in scenario-1. Here, it can be perceived that minimization of electricity cost with DA-RTP
and HA-RTP leads to rise of PAR by 38.96% and 27.13% on an average for all the households.

Table 9. Electricity bill cost before optimization for
April 2020 in case-2.

House
hold
no.

Monthly
power
consumption
in (kWh)

Flat rate
tariff ($)

DA-RTP
price ($)

HA-RTP
price ($)

1 558.6 44.63 40.91 40.08
2 654.6 52.26 47.89 46.96
3 947.4 75.52 69.20 67.97
4 1142.4 91.00 83.93 81.96
5 1312.5 104.52 95.77 94.17
6 1732.5 137.87 126.33 124.30
7 2392.5 190.30 174.35 171.65

Table 10. Optimized electricity bill cost for April 2020 in
case-2.

House
hold
no.

Electricity cost with
DA-RTP optimized by

Electricity cost with
HA-RTP optimized by

CS Hybrid
GA-PSO

ACS CS Hybrid
GA-PSO

ACS

1 34.50 33.95 33.15 32.85 32.45 32.50
2 41.56 41.32 40.23 40.31 40.21 39.97
3 57.27 56.96 56.03 56.89 56.78 55.83
4 72.89 72.17 71.26 72.48 70.85 70.25
5 87.42 85.69 84.23 85.69 83.56 82.98
6 108.78 106.47 105.56 105.79 104.57 104.32
7 156.69 153.48 151.26 148.23 146.61 145.72

4.2.2. Scenario-2: Individual smart home resident reschedules his/her household appliances to
minimize the peak to average ratio (PAR)

In scenario-2, individual consumer optimally schedules his/her household appliances in order to reduce the peak
demand similar to case-1. In this case, optimal scheduling is obtained with DA-RTP only because minimization
of PAR required the pricing data for all the 24 time slots of a day in advance. From the optimal results given
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in Table 12, it can be observed that rescheduling of smart home appliances resulted in decreased PAR and peak
demand by 15.97% and 19.75% on an average for all the households. From the optimal results of Table 12, it
can be perceived that minimization of PAR resulted in raised electricity bill cost by 13.25% and 23.48% on an
average for all the households as compared to the electricity cost before optimization with flat rate tariff and
DA-RTP, respectively.

Table 11. PAR before and after optimization in scenario-1.

House
hold
no.

Before optimal
scheduling

PAR with optimized
scheduling

Resulting peak (kW)
by optimal scheduling

PAR
Peak
demand
(kW)

HA-RTP DA-RTP HA-RTP DA-RTP

1 2.990 2.33 3.248 3.389 2.52 2.63
2 3.203 2.92 4.441 4.443 4.04 4.04
3 2.689 3.35 2.462 1.967 3.24 2.59
4 2.325 3.68 1.983 3.039 3.05 4.67
5 2.184 3.98 2.894 3.436 5.08 6.05
6 2.450 5.88 3.564 4.207 8.57 10.12
7 1.983 6.59 3.724 3.724 12.37 12.37

Table 12. PAR with DA-RTP before and after optimization using ACS algorithm in scenario-2

House
hold
no.

Before optimal scheduling Optimal scheduling using ACS

PAR
Electricity cost
with DA-RTP
in ($)

PAR
Peak
demand
in (kW)

Electricity cost
with DA-RTP
in ($)

1 2.990 40.91 2.552 1.98 48.26
2 3.203 47.89 2.320 2.10 62.53
3 2.689 69.20 2.220 2.38 95.40
4 2.325 83.93 2.089 3.20 99.05
5 2.184 95.77 1.739 3.17 118.22
6 2.450 126.33 2.367 5.03 147.87
7 1.983 174.35 1.621 5.38 208.27

4.2.3. Scenario-3: Individual smart home resident reschedules his/her household appliances in
order to achieve both objectives together through the proposed electricity cost function

Similar to the case-1 in scenario-3, individual smart home residents reschedules their appliances in order to
reduce the cost of electricity bill with the help of the proposed cost function given by equation (6). As per
equation (6), electricity cost is calculated with DA-RTP price for the power consumption up to threshold
limit, and above this limit, HA-RTP is applicable. Optimal results for cost of electricity, resulting PAR, and
peak values of power demand in scenario-3 are given in Table 13. Optimal results of Table 13 illustrate that
electricity cost in scenario-3 is reduced by 13.89% and 6.12% on an average as compared to the electricity cost
before optimization with flat rate tariff and DA-RTP, respectively. By comparing the optimal results given in
Tables 11 and 13, it is found that the peak power demand with optimal scheduling in scenario-3 (average values
for 30 days) is reduced by 7.83% on an average for all the seven households. Figures 7 and 8 illustrate the power
consumption pattern for household-1 and household-2 in all three scenarios. As it is shown in both figures,
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blue color is used for optimal scheduling with DA-RTP in scenario-1, red color is used for optimal scheduling
in scenario-2, and black color is used for optimal scheduling with proposed cost function in scenario-3. Similar
graphs can also be given for other households. Data tips provided on all the scheduling curves in these figures
display the peak power consumption. Here, X shows the time slot and Y gives the value of peak power that
can be verified with the peak power consumption given in Tables 11–13.

Table 13. Results of power consumption cost minimization by proposed function in scenario-3 of case-2

House
hold no.

Load
factor

Optimal monthly
electricity cost in ($)

PAR with optimal
scheduling

Peak with optimal
scheduling (kW)

1 0.9676 38.3 2.177 1.99
2 0.9314 45.43 2.761 2.51
3 0.9937 63.83 2.344 3.08
4 0.9465 77.55 2.564 3.43
5 0.9306 89.42 1.961 3.56
6 0.9354 119.6 2.085 5.02
7 0.9654 167.39 2.256 7.50

Figure 7. Comparison of power consumption scheduling for household-1 in scenario-1, 2, and 3.

Figure 8. Comparison of power consumption scheduling for household-2 in scenario-1, 2, and 3.

The nutshell comparison of optimal results obtained in all three scenarios in case-1 and case-2 illustrates
that in scenario-3, PAR is reduced by 26.40% as compared to the optimal results of scenario-1 obtained with
ToU price and electricity cost is reduced by 15.12% in comparison of the optimal results of scenario-2 in the
case study of Alectra Utilities Corporation. Similarly, in the case study of ComEd Northern Illinois Power
Company in the scenario-3, PAR is reduced by 29.20% as compared to the optimal results (with DA-RTP) of
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scenario-1 and electricity cost is reduced by 23.70% in comparison of the optimal results of scenario-2. From
the analysis of peak power consumption levels for all 30 days of September 2019 under the case study of Alectra
Utilities Corporation, it is observed that peak levels of power demands for weekend days are higher as compared
to weekdays. Because of ToU price for weekend days does not vary with the time and remains constant (6.5
Cents/kWh) for all the 24 hours. By comparing the results of the optimal scheduling in scenario-3 with estimated
scheduling, it is also found that the peak power demand (average for 30 days) is reduced by 7.09% on an average
for all the seven households.

5. Conclusion
The core objective of this research work is to minimize the cost of electricity bill and peak power demand
simultaneously. Due to conflicting behavior of these two objectives, this study has been divided into three
scenarios. The first two scenarios deal with individual minimization of electricity cost and peak to average
ratio. In addition, their effects on each other have been studied in scenario-1 and scenario-2. In the third
scenario, both objectives have been achieved by minimizing the cost function proposed for both utilities. The
proposed approach to find the optimal threshold limit of hourly power consumption is implemented in scenario-3
with the help of two stage optimization. Optimal scheduling of smart home appliances is obtained in all three
scenarios as per consumer’s preferences with the help of CS, hybrid GA–PSO, and ACS as core algorithms of
optimization. Here, SIP and MIP is implemented to find the optimum scheduling with respective electricity
pricing options. From the results of simulations for both of the case studies, it is observed that optimal
scheduling in scenario-1 minimized the cost of electricity bill but also resulted in raised PAR. On the other
hand, in scenario-2, PAR was minimized but electricity bill cost was raised in comparison to the cost before
optimal scheduling. However, optimal scheduling in scenario-3 reduced the PAR and monthly cost of power
consumption both for all the houses. Optimal scheduling of smart home appliances in scenario-3 also reduced
the energy consumption during peak hours in comparison to scenario-2 by 16.39% in case-1 and 18.61% in
case-2 on an average for all the households. Comparative analysis of results demonstrated the competence of
the proposed model to achieve both the objectives simultaneously. The future research direction in this area
can be suggested as the implementation of other artificial intelligent techniques for optimization of electricity
cost and peak power demand with dynamic pricing schemes available in other utilities as different case studies.
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