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Abstract: The world has now looked towards installing more renewable energy sources type distributed generation
(DG), such as solar photovoltaic DG (SPVDG), because of its advantages to the environment and the quality of power
supply it produces. However, these sources’ optimal placement and size are determined before their accommodation in
the power distribution system (PDS). This is to avoid an increase in power loss and deviations in the voltage profile.
Furthermore, in this article, solar PV is integrated with battery energy storage systems (BESS) to compensate for
the shortcomings of SPVDG as well as the reduction in peak demand. This paper presented a novel coronavirus herd
immunity optimizer algorithm for the optimal accommodation of SPVDG with BESS in the PDS. The proposed algorithm
is centered on the herd immunity approach to combat the COVID-19 virus. The problem formulation is focused on the
optimal accommodation of SPVDG and BESS to reduce the power loss and enhance the voltage profile of the PDS.
Moreover, voltage limits, maximum current limits, and BESS charge-discharge constraints are validated during the
optimization. Moreover, the hourly variation of SPVDG generation and load profile with seasonal impact is examined
in this study. IEEE 33 and 69 bus PDSs are tested for the development of the presented work. The suggested algorithm
showed its effectiveness and accuracy compared to different optimization techniques.

Key words: Battery energy storage system, coronavirus herd immunity optimizer, optimization, power loss, solar
photovoltaic, voltage profile

1. Introduction
The usage of renewable energy sources (RES) has significantly expanded over the past two decades due to the
increase in energy demand and the positive impact of RES on the environment due to lowering the carbon
footprint. Moreover, utility companies are encouraged to install these RES at smaller levels in the power
distribution system (PDS) owing to the reduction in costs associated with these sources. Furthermore, it is
anticipated that RES will constitute a larger portion of the global energy mix in the future than conventional
energy sources. Solar PV distributed generation (SPVDG) are primarily incorporated into the PDS because
of its accessibility, lower operating costs, and the absence of pollution. However, the SPVDG is intermittent,
uncertain, and meets the electrical demand only during daylight hours. Despite this, utility companies have
aspiring objectives towards installing of these SPVDGs in the PDS due to the abovementioned environment
and economic benefits [1].

In addition, it is required to accommodate the SPVDG type of RES at an optimal location with optimal
rating to have greater benefits such as reduction in active power loss (APL), reactive power loss (RPL),
∗Correspondence: sumanth.pemmada@students.vnit.ac.in
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improvement in the voltage profile, and other technical advantages [2]. The allocation of these DGs in the
PDS is a mixed integer nonlinear problem. Several methods in the literature based on deterministic, heuristic,
and metaheuristic have been proposed to solve the problem of proper accommodation of these DGs. Mixed
integer linear programming [3], a rapid analytical algorithm for multiple DG sizing and placement [4], genetic
algorithm (GA) [5], particle swarm optimization (PSO) [6], evolutionary programming [7], water cycle algorithm
[8], jaya algorithm [9], enhanced elephant herding algorithm [10], artificial bee colony algorithm (ABC) [11],
and hybrid algorithms such as hybrid grey wolf optimizer [12] and crow search algorithm autodrive PSO [13]
are developed to determine the optimal place and size of the DGs. Furthermore, various classical and artificial
intelligence techniques to solve the allotment problem of DG are reported in detail in [14]. Overall, different
technical and economic objectives have been optimized, but the primary objectives considered are related to
the APL and voltage deviation (VD) issues.

In general, RES is mainly reliant on weather resources that are intermittent and highly variable. The
use of battery energy storage systems (BESS) in conjunction with the RES has acquired significant adoption
to lessen the impact of the drawbacks related to RES [15]. Moreover, the BESS has a fast-acting capability,
sustainable power supply, and is territorial unconstrained. However, Identifying the optimal size of the BESS
is crucial for enhancing the technical benefits offered by BESS [16]. Various strategies have been employed
in the literature to determine the optimal size of the BESS. Simulated annealing algorithm [17], a dynamic
programming method for peak shaving in [18] to model the day ahead optimal scheduling of BESS, and a
hybrid combination of teaching-learning based optimization and ABC algorithm are contemplated to determine
the proper sizing of BESS [19]. In addition, the superiority of the proposed method in [19] in comparison with
GA and differential evaluation is examined. Moreover, a rider optimization algorithm is presented in [20] for
the minimization of APL. Furthermore, an improved harmony search algorithm is developed in [21] for peak
load shaving with and without BESS.

Various metaheuristic algorithms have been developed for different optimization problems in the litera-
ture. However, for nonlinear and multimodal problems such as optimal allotment of SPVDG and BESS, there
is still some window to develop alternative nature-inspired algorithms with intelligent features to address the
issues effectively. For example, literary methods, such as genetic algorithm [5], particle swarm optimization
[6], Jaya algorithm [9], and grey wolf optimization [12], have been suffering from local optima and population
diversity. Because of this, the convergence for the optimal solution is poor. Moreover, the balancing of global
exploration and local exploitation during the optimization is crucial to find the global optimal solution for any
algorithm, which is missing in some of these methods.

In the present article, a recently developed state-of-the-art nature-guided optimization technique namely,
coronavirus herd immunity optimizer (CHIO) [22] has been attempted to solve the planning problem of SPVDG
and BESS. Here, in CHIO, eliminating the least performing candidates (or infected candidates which are not
improved after some iterations) by generating the candidates from the scratch enhances the population diversity.
Hence, the elimination of local optima is successfully achieved. The balancing between global exploration and
local exploitation is well established by tuning the algorithm parameters: reproduction rate and maximum
age. The objective considered in the present study, which consists of a linear combination of APL and VD, is
optimized using this suggested algorithm for the planning problem of PDS.

Firstly, optimal placement and sizing of the DG are implemented for the load when the generation is at
peak which is obtained from the seasonal generation profile and secondly, optimal BESS location and size are
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determined simultaneously by using the proposed algorithm considering the seasonal variation in both load and
SPVDG generation profiles. Moreover, during the optimization process, the BESS energy and power constraints
are validated. Furthermore, the optimal scheduling of the BESS for 24 h is determined optimally by choosing
the four-hour peak load and off-peak load during the 24-h day. The battery is idle for the remaining hours of
the day. One charge-discharge cycle per day is considered in this study to extend the life of the BESS [23]. The
performance of the proposed algorithm is compared with the different optimization algorithms.
The main contributions of this article are as follows:
1. The novel COVID-19 virus herd immunity-based optimization algorithm is proposed to determine the near
global optimal solution for the optimal planning problem (OPP) of PDS.
2. Novel sensitivity factors are proposed for determining the best potential sites for SPVDG installation.
Ratings of SPVDG in the PDS are evaluated using the proposed CHIO method with voltage and current limits
as constraints.
3. Simultaneous optimal placement, optimal capacity, and power ratings of BESS in the PDS are determined
using the suggested CHIO algorithm along with validation of charge/discharge constraints of BESS.
4. Optimum charge/discharge scheduling of the BESS for 24 h is designed to reduce the peak demand on the
system.
5. The minimization of APL and VD in the PDS is modeled for the framework of optimal allotment of SPVDG
with BESS considering hourly load and generation with seasonal variation for a year is implemented in this
study.
6. Different case studies are examined in the presented work for the OPP of PDS with and without SPVDG
and BESS on two test PDSs namely, 33 and 69 IEEE bus systems.

The remaining sections of the article are organized in this sequence: The framework of the problem is
defined in Section 2. Section 3 is briefed about the suggested algorithm, and its implementation for optimal
allotment of SPVDG and BESS is discussed in Section 4. Furthermore, simulation results and discussions are
presented in Section 5. Finally, Section 6 provides the conclusion of the work.

2. Framework of the problem

In this section, the problem formulation, which consists of objectives and constraints is briefly explained. The
OPP study of the PDS is carried out here for the curtailment of APL and enhancement of the voltage profile.
Furthermore, optimal sizing and siting of SPVDG and BESS are evaluated for the above objectives using the
novel proposed CHIO algorithm. During the optimization process, the valid constraints such as voltage min/max
limits, current max limits, and BESS charge/discharge, state of charge (SOC) min/max limits are included.
Moreover, while optimizing the size of BESS, it is ensured that the charge left in the battery at the end of
the day is made equal to the charge left in the battery at the start of the day. This is to maintain the energy
balance in the PDS and to have enough energy storage at the start of the next day.

A sample portion of the PDS is displayed in Figure 1. It is assumed that the SPVDG and BESS are
optimally placed at bus-p and bus-q with optimal ratings, respectively. In Figure 1, p and q are ‘from bus’
and ‘to bus’ of a line-k . Here, the resistance and reactance of the line-k are represented by rk and xk ,
respectively. Moreover, PDG

p and QDG
p represent real and reactive power generations from SPVDG at bus-p ,

respectively. Similarly, PL
p , QL

p and PL
q , QL

q are real and reactive power loads at bus-p and bus-q , respectively.

Furthermore, P ch
q and P dch

q are charging and discharging powers, respectively through the BESS connected at
bus-q (at any time, only either charge or discharge occurred through the BESS). Furthermore, Pp , Qp and Pq ,
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Qq are real and reactive power injections at bus-p and bus-q , respectively. Lastly, Vp∠δp and Vq∠δq represent
the voltage with phase angle at bus-p and bus-q , respectively.

Figure 1. A sample section of a power distribution system.

2.1. Objective function for SPVDG sizing

The objective obj1 , which is the linear combination of APL and VD as shown in Equation (1) is considered for
estimating the best position and size of the SPVDG. In this study, weighting factors c1 and c2 are considered
to be 1 based on the work reported in [23]. Moreover, these weights are assumed to be the same for all the
cases studied in the presented manuscript. In general, the PDS operator assigns the weights c1 and c2 in
real-time operation based on the requirements and relative importance of the objectives pertaining to the safety
and appropriate functioning of the PDS. In Equations (1) and (2), PL represents the total APL of the PDS.
PLDG and PLbase are APL of the PDS with and without SPVDG, respectively. Similarly, V DG

p and V base
p

are voltages at bus-p with and without SPVDG in the PDS, respectively. Moreover, the number of lines and
number of buses of the PDS are denoted by Nline and Nbus , respectively.

obj1 = c1 ×
PLDG

PLbase
+ c2 ×

Nbus∑
p=2

(
V DG
p − 1

)2
Nbus∑
p=2

(
V base
p − 1

)2 (1)

PL =

Nline∑
k=1

∣∣∣∣Vp∠δp
(
Vp∠δp − Vq∠δq

rk + jxk

)∗

+ Vq∠δq
(
Vq∠δq − Vp∠δp

rk + jxk

)∗∣∣∣∣ (2)

2.2. Objective function for BESS sizing

The sizing of the BESS (i.e. determining the optimal energy rating and power rating) involved estimating the
optimal hourly charge-discharge scheduling of the BESS over 24 h using the CHIO algorithm. Therefore, the
overall objective obj2 , considering APL and VD, is slightly modified as in Equation (3), where PLDG_BESS

t

represents the total APL of the system considering both SPVDG and BESS placed in the PDS at a time slot-t ,
whereas the APL of the PDS without any external device (i.e. base case) at a time slot-t is represented by
PLbase

t . Similarly, V base
t,p and V DG_BESS

t,p denote the voltage at the bus-p at a time slot-t for the base case
and for the case with SPVDG and BESS, respectively. Lastly, the total number of time slots is represented by
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Ts .

obj2 = c1 ×

Ts∑
t=1

PLDG_BESS
t

Ts∑
t=1

PLbase
t

+ c2 ×

Ts∑
t=1

Nbus∑
p=2

(
V DG_BESS
t,p − 1

)2

Ts∑
t=1

Nbus∑
p=2

(
V base
t,p − 1

)2 (3)

2.3. Operating constraints

The following constraints are to be satisfied in this work during the optimization of the problem. Violation of
any undermentioned operational limits results in an addition of penalty factor to the objective function. As
this research is aimed to find a minimum APL and VD as shown in Equations (1) and (3), the penalty factor
is set at a higher value (the analysis is done with 20 p.u.).

2.3.1. Power balancing equations

During the load flow, the net active and reactive power (Pp and Qp ) at any bus-p should be zero to meet the
power balancing equations as given in Equations (4) and (5), where PDG

p , QDG
p and PL

p , QL
p are active and

reactive powers of DG and demand at bus-p , respectively. yp,q , θp , and θq are the admittance magnitude and
angles of the branch amid buses p and q .

NetPp = PDG
p − PL

p +
(
P dch
p or − P ch

p

)
− Vp

Nbus∑
q=1

Vq yp,q cos(δp−δq − θp + θq) = 0 (4)

NetQp = QDG
p −QL

p − Vp

Nbus∑
q=1

Vq yp,q sin(δp−δq − θp + θq) = 0 (5)

2.3.2. DG unit operational limits

Power injections of the SPVDG into the PDS should be kept in bounds and may be represented as in Equation
(6), where PDGmin

p , PDGmax
p are minimum, maximum active power limits of DG units at bus-p . In this study,

PDGmin
p and PDGmax

p are 0 and 3 MW, respectively.

PDGmin
p ≤ PDG

p ≤ PDGmax
p (6)

2.3.3. Voltage bounds at a bus

Bus voltage should be kept within the lowest and maximum limit. This may be represented as in Equation (7),
where Vp , V min

p , and V max
p are the voltage magnitude and the lowest and the highest permitted voltages at

bus-p , respectively (V min
p and V max

p are considered 0.95 and 1.05 p.u. in this work, respectively).

V min
p ≤ Vp ≤ V max

p (7)
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2.3.4. Branch current limits
Branch current passing through the branches is to be kept between the maximum and minimum current
restrictions as shown in Equation (8). The current and its maximum permissible limit in a line-k are denoted
by Ik and Imax,k [24].

−Imax,k ≤ Ik ≤ Imax,k (8)

2.4. Model and constraints of BESS

In this article, the sodium-sulfur (NaS) battery is regarded as a storage device. Despite NaS batteries costing
more than standard lead-acid batteries initially, their use is ultimately more cost-effective because of their longer
lifespan and higher efficiency, which onsequently reduces operating and maintenance expenses [23]. This study
simulated a NaS battery with an average lifespan of six years and an average efficiency of 85% while charging
and discharging. The following are the BESS energy equations for charging and discharging:

While discharging : Eb (t) = Eb (t− 1)− Pb (t)×∆t

ηd
(9)

While charging : Eb (t) = Eb (t− 1) + (Pb (t)×∆t× ηc) (10)

Here Eb(t) and Eb(t− 1) are energy left in the battery at the end of the hour-t and the previous hour
t − 1 , respectively. Pb(t) is the power charge/discharge through the battery during the hour-t . Furthermore,
ηc and ηd are efficiencies of the charge and discharge of the battery, respectively. ∆t represent the time slot
duration. Here ∆t is considered to be 1 h. Moreover, while optimizing the accommodation of BESS for the
objective in Equation (3), the charging power of the battery is considered a load; similarly, discharging power
of the battery is considered a generation at the bus where BESS is located.

In addition, to prolong the life of the battery, it is ensured that the energy left in the battery is kept
within the minimum and maximum limits of the SOC at the end of every hour as displayed in Equation (11).
Moreover, the number of charge-discharge cycles in a given day is limited to one. Moreover, the energy left in
the battery at the end of the day is maintained equal to the initial stored energy in the battery at the start of
the day as shown in Equation (12). This is to ensure the energy balance in the system as well as to have enough
stored energy in the battery at the start of the next day for peak hours.(

SOCmin × Er

)
≤ Eb (t) ≤ (SOCmax × Er) (11)

Eb (0) = Eb (T ) (12)

Here Er is the optimal energy rating of the BESS. SOCmin and SOCmax are the minimum and maximum SOC

of the battery, respectively. In this work, SOCmin and SOCmax are considered 20% and 90%, respectively.
The terms Eb(0) and Eb(T ) represent the energy stored in the battery at the start and at the end of the day,
respectively (In this work, it is assumed that initial stored energy in the battery is equal to the SOCmin ). To
fulfill the energy constraints of the battery in Equations (11) and (12) during the optimization, Eb(t) may be
expressed as in Equation (13).

Emin
b (t) ≤ Eb (t) ≤ Emax

b (t) (13)
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Emin
b (t) = max


SOCmin

Eb (t− 1)− Pr ×∆t/ηd

Eb (0)− (T − t)× Pr ×∆t× ηc

(14)

Emax
b (t) = min


SOCmax

Eb (t− 1) + Pr ×∆t× ηc

Eb (0) + (T − t)× Pr ×∆t/ηd

(15)

Here Pr is the optimal power rating of the BESS. Based on the min/max limits on the Eb as in Equation (13),
the power charge/discharge min/max limits are defined as in Equation (16).

Pmin
b (t) ≤ Pb (t) ≤ Pmax

b (t) (16)

Here Pmin
b and Pmax

b are defined during the discharge of the BESS as shown in Equations (17) and (18).

Pmin
b (t) = max

{
0

(Eb (t− 1)− Emax
b (t))× ηd/∆t

(17)

Pmax
b (t) = min

{(
Eb (t− 1)− Emin

b (t)
)
× ηd/∆t

Pr

(18)

Similarly, Pmin
b and Pmax

b are defined during the charge of the BESS as shown in Equations (19) and (20).

Pmin
b (t) = max

{
0(
Emin

b (t)− Eb (t− 1)
)
/(ηc ×∆t)

(19)

Pmax
b (t) = min

{
(Emax

b (t)− Eb (t− 1))/(ηc ×∆t)

Pr

(20)

3. The proposed CHIO algorithm

This work proposed a state-of-the-art human-based nature-guided optimization method viz., coronavirus herd
immunity optimizer (CHIO) [22]. The optimization procedure depended on the herd immunity level and social
distancing of the society/population when COVID-19 is attacked. The population’s immunity level has been
classified into three groups when the virus strikes: susceptible, infected, and immune. Susceptible people are
those who have not been affected by COVID-19 but may get affected if they come into contact with an infected
person. Those with a proven case of the virus are considered to be infected, and they run the risk of spreading it
to the susceptible people. People who have successfully recovered from the virus are considered to be immune.
This particular group of individuals can halt the virus from spreading further. The proposed algorithm is based
on the idea of immunizing a significant proportion of the susceptible population that is not affected to protect
the community from the infection in the best possible way.

The concept of achieving herd immunity among the individuals in a society is pictorially represented
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in Figure 2. In the initial stage, a larger number of susceptible individuals exist in the community with a
few infected individuals. Then, in the second stage, the virus infected more individuals in the community.
Moreover, some individuals recovered from the illness and are immune. Furthermore, the virus affected very
few individuals to the mortality, and most of the remaining individuals are either recovered (and immune) or
susceptible in the last stage.

Figure 2. Spreading of the virus and herd immunity in a community.

During the optimization using CHIO, a status vector (S ) and an age vector (A) are defined for each
individual in the initial population. S takes the value of 0, 1, or 2 (0 = susceptible; 1 = infected; 2 = Immune).
However, S is initialized with ‘zero’ for all the individuals except a very few with ‘one’ at the start of the
iteration. At later iterations/generations, S is updated from 0 to 1 and from 1 to 2 along with the updating
individuals. This occurred according to the algorithm updating procedure where social distancing is one of the
criteria used to evolve herd immunity in the population. Moreover, A is initialized with ‘zero’ at the start
though, it is incremented by ‘one’ for every iteration only when the updated candidate is worse than the present
candidate. Again, the age vector is reassigned with ‘zero’ when it reaches the maximum infected case age
(AGEmax ).

Two control parameters are employed in this algorithm: the first is the reproduction rate (RR), which
regulates the algorithm by spreading the virus among people. A higher value of RR leads to a high rate of
spreading the disease and thus the exploration becomes large. Therefore, the search requires a longer time to
converge. On the other hand, when the value of RR is small, the generated candidates which are affected by
the virus are fewer and thus the exploration in the search space is less. As a result, the convergence is faster;
however, the algorithm may always converge to the local optimum. Therefore, it is crucial to determine the
value of RR so that the exploration and exploitation are balancing. In accordance with this, the value of RR

is taken as 0.05 by trial and error which empowers the convergence behavior of CHIO to achieve the right
balance between exploration and exploitation of the search space and thus the best performance is attained
in the presented manuscript. Second, AGEmax determines the condition of the infected person, i.e. whether
the person has recovered or has become mortal The infected cases that are reached the AGEmax threshold
without improvement will be destroyed, and a new solution will be rebuilt from scratch. This operation can be
considered a source of exploration. The smaller the value of AGEmax , the higher the exploration. The value
of AGEmax taken as 100 in this manuscript seems reasonable to diversify the search. However, there is no
significant effect of the value of AGEmax on the results produced. Overall, the properly tuned parameters of
RR and AGEmax produced the near-global optimal solution for the given problem. The algorithm parameters
taken in this manuscript are provided in Section 5 in Table 1. The following steps described the working of the
CHIO algorithm.

Algorithm 1: Implementation steps for optimization through the CHIO.
1. Initialize the algorithm parameters such as population size (np), maximum iterations (itermax ), initially
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infected individuals (N0 ), reproduction rate (RR), age vector (A), and maximum infected case age (AGEmax ).
The objective function f(x) is to be minimized for x in the range of [ l , u ] as shown below, where l and u are
lower and upper limits of x , respectively.

min
x

f(x) x ∈ [l, u] (21)

2. Generate an initial random population of size np , and estimate the objective value for each candidate.
Moreover, the status vector Si , (where, i=1,2, ... np) is initiated with either 1 or 0 for each candidate in the
population (1= infected; 0=susceptible).

3. The ith individual at iterth iteration xiter
i , updated to xiter+1

i at (iter + 1)
th iteration is dependent on the

four categories below.

xiter+1
i =


xiter
i if rand ≥ RR

C
(
xiter
i

)
if 0 < rand < (1/3 ×RR)

N
(
xiter
i

)
if (1/3 ×RR) < rand < (2/3 ×RR)

R
(
xiter
i

)
if (2/3 ×RR) < rand < RR

(22)

where rand = uniformly distributed random number between 0 and 1, and

C
(
xiter
i

)
= xiter

i + rand×
(
xiter
i − xiter

c

)
(23)

N
(
xiter
i

)
= xiter

i + rand×
(
xiter
i − xiter

n

)
(24)

R
(
xiter
i

)
= xiter

i + rand×
(
xiter
i − xiter

r

)
(25)

where xiter
c and xiter

n are random infected and susceptible cases from the population, such that c = i|Si=1 and
n = i|Si=0 , respectively. xiter

r is the best candidate from the immune case, such that

f(xiter
r ) = arg min

i∼{|S0=2}
f(xi) (26)

4. Forward xiter+1
i to the next iteration, if the fitness of xiter+1

i is better than xiter
i . Otherwise, forward xiter

i

to the next iteration and increment the age vector Ai , by one. Further, Si and Ai are also updated according
to the Equation (27). Where coviditer+1

i is a binary number which is equal to 1 when the new candidate xiter
i

is generated from the infected candidate. Furthermore, ∆f(xiter) is the average fitness of the population at
the iterth iteration.

Si = 1, Ai = 1 ; if
((
f(xiter+1

i ) > ∆f(xiter)
)
∧ (Sn = 0) ∧

(
coviditer+1

i

))
= True

Si = 2, Ai = 0 ; if
(
f(xiter+1

i ) < ∆f(xiter) ∧ (Sn = 1)
)
= True

 (27)

5. According to the maximum infected case age (AGEmax ), if the fitness value of xiter
i does not improve after

a certain number of iterations, it is deemed fatal. Hence, the candidate solution xiter
i is recreated amid the

lower and upper limits. Moreover, Ai and Si are initiated to zero. This mechanism is used to improve the
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diversity and avoid local optima of the searching algorithm.
6. Check the stopping condition for maximum number of iterations, itermax ; if not satisfied, follow the steps
from 3 to 5.

4. Application of the proposed method for the OPP of PDS

In this section, the proposed CHIO algorithm is utilized to evaluate the optimal solution for the OPP of PDS.
At first, the optimal location and sizing of SPVDG are determined. Secondly, optimal siting and sizing of BESS
are studied within the presence of SPVDG by the suggested method. The operational constraints as well as
battery constraints are considered while solving the whole optimization problem for the objectives shown in
Equations (1) and (3).

4.1. Optimal accommodation of SPVDG

In this section, the optimal accommodation of the SPVDG is presented. Here, the CHIO algorithm has been
used to identify the optimal rating of the DG in the PDS for curtailing APL and VD. Before optimizing the
rating of this unit, its appropriate placement must be determined. Otherwise, the system’s performance may
suffer. Prior location estimation reduces the search algorithm’s computation time for DG size optimization. For
the best position of SPVDG, the objective mentioned in Equation (1) is determined using the direct approach
load flow method [25]. This objective is evaluated by sequentially injecting thirty percent of the overall active
power demand at each node. Once the evaluation is completed for all the nodes in the PDS, the node that
gives the minimum value of the objective is selected as the best node (Loc) to place the SPVDG. Moreover,
in this work, the normalized load and normalized SPVDG generation profiles are considered for the study as
shown in Figures 3a and 3b. The data regarding variation in load and generation are taken from [23]. Here,
the typical data for 24 h represented the load and generation data for a particular season. Therefore, the 96
h of data reflected all four distinct seasons that make up a typical year (8760 h): winter, spring, summer,
and fall, sequentially. As most of the days in a season follow a similar pattern of demand/generation; Here, a
valid assumption is considered regarding the data of demand/generation of a season that comprises an average
demand/generation of all days of that season at each hour.

PL
t,p = loadfractiont × PL

p (28)

QL
t,p = loadfractiont ×QL

p (29)

PDG
t,Loc = genfractiont × PDG

Loc (30)

The hourly active and reactive power load at a bus-p (where p=1,2, ... Nbus) is obtained as shown
in Equations (28) and (29), where loadfractiont is the normalized load in p.u. at the hour-t and PL

p is the
peak load at bus-p . Similarly, hourly generation of the SPVDG at the optimal location (Loc) is obtained from
Equation (30), where genfractiont is the normalized generation of SPVDG at the hour-t and PDG

Loc is the
optimal size of the SPVDG. This optimal size is determined for peak generation which occurred at t = 85 as
shown in Figure 3b. Therefore, the load at all buses at the 85th hour using Equations (28) and (29) is considered
for estimating the optimal peak size of the SPVDG. Furthermore, the implementation steps for determining

332



PEMMADA et al./Turk J Elec Eng & Comp Sci

Load SPVDG
Figure 3. Normalized load and SPVDG generation profiles for a year.

the optimal size of the SPVDG while satisfying the operating constraints using the suggested methodology are
given in Algorithm 2.

Algorithm 2: Implementation steps for estimating optimal rating of SPVDG by CHIO
1. Read the PDS data, count of DGs (mDG), PDGmin , PDGmax , optimal SPVDG bus location (Loc), and
CHIO algorithm parameters such as np , itermax , N0 , RR , S , A , and AGEmax .
2. Set pop counter, i = 1 .
3. while i ≤ np do
4. Create mDG number of DG ratings, randomly between PDGmin and PDGmax as PDG

Loc = PDGmin
Loc +(

PDGmax
Loc − PDGmin

Loc

)
× rand . The candidate solution (PDG

Loc ) size is 1×mDG .
5. Inject PDG

Loc as a negative active power load at the locations specified by Loc as shown PL
Loc = PL

Loc −PDG
Loc .

6. Evaluate the objective in Equation (1) using the load flow given in [25] and validate the operational con-
straints from Equations (4) to (8). If the operational constraints are disobeyed, then add a penalty to the
Equation (1) accordingly.
7. Update the pop counter, i = i+ 1 .
8. End while
9. Set generation counter, iter = 1 .
10. while iter ≤ itermax do
11. As illustrated in Equation (22) update the population and follow steps 5 to 6 to find the objective in
Equation (1).
12. Keep the better candidate solution between present and updated candidate according to the minimum
objective. Moreover, update the status vector (S ) and age vector (A) according to Equation (27). Further,
Determine the candidate that produced the minimum objective and store it as PDG,best

Loc .
13. Revise the generation count, iter = iter + 1 .
14. End while

4.2. Optimal accommodation of BESS with SPVDG
Once the optimal peak size of the SPVDG is estimated for the reduction of APL and VD using CHIO, the
optimal accommodation of BESS is modeled considering the SPVDG in the PDS. The accommodation of BESS
constitutes simultaneous siting and sizing of BESS to optimize the objective given in Equation (3). The sizing
of the battery involved estimating the optimal energy rating and power rating of the battery. In this work, the
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battery is operated for one charge-discharge cycle per day to improve the life of the battery; therefore, it is as-
sumed that the battery is discharged for four hours during the peak-hour period (5 PM to 9 PM) and charged for
4 h during the off-peak hour period (10 AM to 2 PM). Furthermore, the battery is idle for the remaining hours
of the day. Due to the charge/discharge of the battery at the off-peak/peak hours, the peak demand on the PDS
is reduced. Furthermore, it is maintained that the initial charge left in the battery at the start of the day is the
same at the end of the day to ensure the energy balance in the PDS. In addition, while solving for the optimal
energy rating and power rating of the battery, the constraints mentioned in Equations (9) to (20) are followed.
Moreover, in this work, it is assumed that the charging power is considered to be a load, and discharging power
is assumed to be a generation at the bus where the BESS is located. Here, the main goal of the problem is
to find the optimal scheduling of charge/discharge power through the battery for 96 h (24 h is a season) for
the optimal energy rating and power rating of the battery at the optimal bus location in the PDS. Therefore,
solving this problem involves the main problem, i.e. finding the energy and power rating, and a subproblem,
i.e. finding the charge/discharge powers of the battery. Moreover, while solving this problem using the CHIO
algorithm the objective in Equation (3) is required to be evaluated for each variation in demand/generation
for each particle in the population. Therefore, in this work, the variation in demand/generation is considered
for 96 h (24hours × 4seasons) instead of 8760 hours (24 × 365) to reduce the computational burden on the
algorithm. The implementation steps for the optimal accommodation of BESS in the PDS is described in the
Algorithm-3.

Algorithm 3: Implementation steps for optimal accommodation of BESS in the PDS
1. Read the PDS data, battery parameters such as Pmin

r , Pmax
r , Emin

r , Emax
r , ηd , ηc , Eb(0)(= SOCinitial) ,

and T (=24 h), and CHIO algorithm parameters such as np , itermax , N0 , RR , S , A , and AGEmax .
2. Set the bus counter, bc = 1 .
3. Set the main iteration counter, itermain = 1 .
4. Set the main population counter, popmain = 1 .
5. Initialize the energy rating (Er ), between Emin

r and Emax
r ; similarly, power rating (Pr ), between Pmin

r

and Pmax
r .

6. Set the sub iteration counter, itersub = 1 .
7. Set the sub-population counter, popsub = 1 .
8. Set the time slot, t = 1 .
9. Initialize Pb between Pmin

b and Pmax
b using Equations (17) to (20). Moreover, evaluate Eb using Equations

(9) and (10).
10. Check t ≤ T . If yes; update t = t+ 1 , and go to step 9. If no; go to step 11.
11. Run the load flow [25] to evaluate the objective given in Equation (3). While solving the load flow for Ts

(= 96 hrs) slots, variation of load and SPVDG generation is followed according to Equations (28) to (30) with
peak SPVDG size from Algorithm-2 at the optimal location. Here, BESS is scheduled for a day; therefore, the
size of Pb is 1× T (= 24 hrs), and the same is repeated for all seasons to make up for Ts (4× 24hrs) slots.
12. Check popsub ≤ np . If yes; update popsub = popsub + 1 and go to step 8. If no; go to step 13.
13. Update the values of Pb according to the CHIO in Algorithm 1. If the updated Pb has not fall within the
limits of Pmin

b and Pmax
b ; then, generate Pb randomly between Pmin

b and Pmax
b . Consequently, evaluate Eb

by satisfying the BESS constraints given in Equations (9) and (10).
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14. Run the load flow and estimate the objective in Equation (3) similar to the step 11.
15. Keep the better candidate solution set of Pb and Eb according to the minimum objective. Moreover, update
S and A using Equation (27). Further, determine the candidate that produced the minimum objective and
store the values of P best

b , Ebest
b , and objbest2 .

16. Check itersub ≤ itermax . If yes; update itersub = itersub + 1 , and go to step 13. If no; go to step 17.
17. Check popmain ≤ np . If yes; update popmain = popmain + 1 , and go to step 5. If no; go to step 18.
18. Update the values of Er and Pr according to the CHIO in Algorithm 1. If the updated Er and Pr have
not fall within the limits of Emin

r , Emax
r and Pmin

r , Pmax
r , respectively; then, generate Er and Pr randomly

within the limits.
19. Repeat step 6 to step 16 for estimating the optimal Pb , Eb , and obj2 for new Er and Pr .
20. Keep the better candidate solution set of Er and Pr according to the minimum obj2 . Moreover, update
S and A using Equation (27). Further, determine the candidate that produced the minimum obj2 and store
them as Ebest

r , P best
r , P best

b , Ebest
b , and objbest2 .

21. Check itermain ≤ itermax . If yes; update itermain = itermain + 1 , and go to step 18. If no; go to step 22.
22. Check bc ≤ Nbus . If yes; update bc = bc+ 1 , and go to step 3. If no; go to step 23.
23. Identify the bus location which has the minimum objbest2 and store the parameters corresponding to that
location as Ebest

r,BLoc , P best
r,BLoc , Ebest

b,BLoc , P best
b,BLoc , and objbest2,BLoc . Where, BLoc is the battery optimal location.

5. Simulation study results and discussions

The main aim of this work is to decrease the APL, RPL and enhance the voltage profile of the PDS by discovering
the optimal ratings of SPVDG and BESS at optimal locations in the PDS. The proposed approach is investigated
and evaluated in a SONY laptop with Windows 10 configuration, 8GB of RAM, and an Intel Core i3 processor
with 2.40 GHz in the MATLAB environment. To examine the effectiveness of the suggested approach, two
conventional radial PDSs, viz., 33 and 69 bus systems are investigated. When sizing the SPVDG, the fraction
of normalized load on the system when the SPVDG normalized generation has a maximum is considered for
the study. It is observed that the SPVDG has the peak at the 85th hour from Figure 3b; therefore, the load
fraction corresponding to the 85th hour from the normalized load curve in Figure 3a is considered the load
for the study of SPVDG optimal sizing using the proposed methodology. The battery optimal scheduling of
charge/discharge of powers is obtained along with the optimal energy rating and power rating considering the
variation of load and SPVDG generation for a year. This is modeled by using the suggested methodology for the
abovementioned objectives. The technical and algorithm data utilized in this work is as shown in Table 1. In
this article, different cases which are based on with and without SPVDG and BESS in the PDS are presented.
Moreover, the obtained numerical results demonstrated the proposed method’s validity and effectiveness.

5.1. Test system-1: 33 bus radial PDS

The 33 bus PDS works at a voltage of 12.66 kV with a capacity of 100 kVA. It accommodates 33 buses and 32
branches. It contains a total active and reactive power load of 3715 kW and 2300 kVAr, respectively. Table 2
summarizes all the simulated outcomes for the aforementioned case studies such as with and without SPVDG
and BESS. It is observed that from the base case, the voltage of 0.9131 p.u. at bus-18 is the lowest nodal voltage
among all the nodal voltages. The optimal rating of SPVDG is estimated as 2604.32 kW at bus-8 by using the
suggested CHIO algorithm. With the addition of this rated SPVDG in the PDS at the optimal location, the
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lowest nodal voltage has been increased to 0.9721 p.u. at bus-18. Moreover, it is also observed from Figure 4
that the deviation of voltages from the unity has also been decreased by the addition of SPVDG in the PDS
by following the proposed method. Furthermore, the APL and RPL have been decreased to 95.236 kW and
74.34 kVAr, respectively. The inclusion of BESS, in addition to the SPVDG in the PDS, at the optimal location
(bus-29) with the optimal energy rating (2754.46 kWh) and power rating (1350.88 kW) furthermore reduced
the APL and RPL to 87.53 kW and 70.20 kVAr, respectively. The lowest nodal voltage of the PDS at the hour
when the SPVDG generation has the peak is further enhanced to 0.9762 at the bus-18. It is noted that the
APL, RPL, and VD of the system are significantly reduced for the case where both DG and BESS are optimally
located with optimal ratings compared to without DG and BESS (i.e. base case). The APL is reduced from
202.68 kW to 87.53 kW with a reduction of 56.81%; similarly, RPL is decreased to 70.20 kVAr from 135.14 kVAr
with a reduction of 48.05%. Moreover, the least voltage is improved from 0.9131 p.u. at bus-18 to 0.9762 at
bus-18.

Table 1. Technical and algorithm parameters data.

Technical parameters Algorithm parameters
Parameter Value Parameter Value
V min, V max (p.u.) [11] 0.95, 1.05 np 40
C1, C2 1, 1 itermax 500
PDGmin, PDGmax (MW) 0.3, 3 RR [22] 0.05
Emin

b , Emax
b (kWh) 500, 4000 N0 [22] 1

Pmin
b , Pmax

b (kW) 100, 1000 AGEmax [22] 100
SOCmin, SOCmax, SOCinitial 0.2, 0.9, and 0.2
T , Ts (hrs) [23] 24, 96
ηd, ηc [23] 0.85, 0.85

Table 2. Simulation results of OPP of PDS with SPVDG and BESS for test system-1.

Parameters Base case With only SPVDG With SPVDG+BESS
PDG @bus, (MW) - 2.60@8 2.60@8
Er, Pr (MWh, MW) - - 2.75, 1.35 @29
Energy loss, (MWh) 1227.7 966.25 902.85
APL, (kW) 202.68 95.24 87.53
RPL, (kVAr) 135.14 74.34 70.2
Min. voltage @bus, (p.u.) 0.9131@18 0.9721@18 0.9762@18
Max. voltage @bus, (p.u.) 1@1 1@1 1@1
% reduction in Energy loss - 21.30 26.46
% reduction in APL - 53.01 56.81
% reduction in RPL - 44.99 48.05

5.2. Test system-2: 69 bus radial PDS
In this test case, the 69 bus PDS works at an operating voltage of 12.66 kV and a capacity of 100 kVA is studied.
It has 69 buses and 68 branches. Moreover, it contains an overall active power load of 3791.89 kW and a reactive
power load of 2694.1 kVAr. Similar to test system-1, all the cases are examined on this system, and the results
are reported in Table 3.
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Figure 4. Voltage profile of test system-1 for different case studies

From the base case in Table 3, it is seen that the least voltage of 0.9092 p.u. in the PDS is at bus-65.
The optimal peak SPVDG size is estimated for this system as 2053.03 kW at bus-61 using the proposed CHIO
algorithm. The addition of this SPVDG into the PDS considerably improved the least voltage of the system to
0.9724 at bus-27. Furthermore, the nodal voltages at all the buses have been improved with the addition of the
optimal-sized SPVDG. This can be observed in Figure 5.

Table 3. Simulation results of OPP of PDS with SPVDG and BESS for test system-2.

Parameters Base case With only SPVDG With SPVDG+BESS
PDG@bus (MW) - 2.05@61 2.05@61
Er, Pr @bus (MWh, MW) - - 3.75 , 1.17 @64
Energy loss, (MWh) 1358.4 999.18 959.37
APL, kW 224.95 75.08 69.35
RPL, kVAr 102.14 35.90 32.10
Min. voltage @bus (p.u.) 0.9092@65 0.9724@27 0.9769@27
Max. voltage @bus (p.u.) 1@1 1@1 1@1
% reduction in Energy loss - 26.44 29.38
% reduction in APL - 66.62 69.17
% reduction in RPL - 64.86 68.57

Figure 5. Voltage profile of test system-2 for different case studies.

Moreover, with the inclusion of this SPVDG, the APL and RPL of the PDS have been significantly
reduced to 75.08 kW and 35.90 kVAr, respectively. The integration of BESS besides SPVDG in the PDS at the
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optimum bus location (bus-64) with the optimal energy rating (3750.48 kWh) and power rating (1168.41 kW)
drastically curtailed the APL and RPL even further to 69.35 kW and 32.10 kVAr, with a percentage reduction
of 69.17% and 68.57%, respectively. Furthermore, the least voltage of the PDS at the hour when the SPVDG
generation has the peak has been notably enhanced to 0.9769 at bus-27. Similar to the case of the 33 bus
system, it is observed that the system’s APL, RPL, and VD are greatly lowered when both DG and BESS are
optimally situated with optimal ratings, as opposed to when neither DG nor BESS is present in the PDS (i.e.
base case).

Lastly, the proposed method is compared with the well-known metaheuristic methods such as GA, grey
wolf optimization (GWO), PSO, enhanced leader PSO (ELPSO), Jaya algorithm (JA), and enhanced elephant
herding algorithm (EEHA). These algorithms are implemented for the present study for both the test systems
and tabulated the obtained results in Table 4. It is observed that the results obtained by using the suggested
algorithm has significantly improved the objectives when compared to the remaining algorithms.

Table 4. Comparison of proposed method with different algorithms for OPP of PDS.

Bus system Case study Algorithm Energy loss
(MWh)

APL
(kW)

RPL
(kVAr)

Min. voltage
(p.u.)

33

With SPVDG

GA (studied) 1080.37 111.27 84.19 0.9650
GWO (studied) 1062.13 110.56 83.99 0.9658
PSO (studied) 996.78 103.59 81.26 0.9705
ELPSO (studied) 981.22 102.47 79.81 0.9714
JA (studied) 977.63 101.49 79.45 0.9714
EEHA (studied) 978.04 101.08 78.91 0.9714
Proposed method 966.25 95.24 74.34 0.9721

With SPVDG+BESS

GA (studied) 1011.92 105.32 80.35 0.9689
GWO (studied) 1002.86 103.25 80.12 0.9690
PSO (studied) 967.76 95.24 76.98 0.9721
ELPSO (studied) 915.31 91.92 75.69 0.9743
JA (studied) 913.12 91.26 75.56 0.9743
EEHA (studied) 911.51 90.84 74.28 0.9750
Proposed method 902.85 87.53 70.2 0.9762

69

With SPVDG

GA (studied) 1121.76 98.23 52.12 0.9653
GWO (studied) 1075.94 95.59 51.02 0.9661
PSO (studied) 1039.45 80.69 45.6 0.9709
ELPSO (studied) 1020.96 78.9 42.62 0.9716
JA (studied) 1015.95 77.9 42.05 0.9717
EEHA (studied) 1010.41 76.67 40.68 0.9719
Proposed method 999.18 75.08 35.9 0.9724

With SPVDG+BESS

GA (studied) 1089.23 85.83 49.27 0.9662
GWO (studied) 1024.71 81.73 45.09 0.9668
PSO (studied) 981.68 75.71 40.03 0.9749
ELPSO (studied) 965.59 72.35 39.53 0.9751
JA (studied) 964.94 72.01 38.96 0.9753
EEHA (studied) 963.45 71.73 36.32 0.9755
Proposed method 959.37 69.35 32.1 0.9769
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6. Conclusion
A novel CHIO optimization technique is successfully implemented in this article for the OPP of the PDS. This
algorithm is efficiently controlled by the reproduction rate and maximum age factors for global exploration
and local exploitation for identifying the optimal solution. The proposed algorithm is studied to determine the
optimal location and optimal size of the SPVDG and BESS in the PDS for diminishing APL, RPL, and VD,
thereby improving the voltage profile. The supremacy of the developed algorithm is highlighted by successfully
employing it on the two test PDSs viz., 33 and 69 bus PDSs. Various case studies predicated on with and
without SPVDG and BESS are simulated. The numerical outcomes of APL, RPL, minimum voltage, and
maximum voltage of the PDS that are based on a comparative analysis of all the case studies are tabulated.
The case where both SPVDG and BESS are integrated into the PDS at the optimal location with optimal size
has provided significant improvement in the percentage curtailment of APL and RPL for both 33 and 69 bus
systems. Furthermore, in this case, the voltage profile has also been near unity at all buses for both the PDSs
along with the improvement in the least voltage. Lastly, the dominance of the suggested algorithm to achieve
the near-optimal global solution in comparison with other existing algorithms such as GA, GWO, PSO, and
ELPSO are evident and the results are tabulated. Although this topic is explored under normal generation and
load conditions, an extension of this article for future work can include multiple objectives in an uncertain load
and generation environment.
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